COSC 174 - Project Proposal Franks, Nasir, Thompson

IDENTIFYING GENE EXPRESSION PATTERNS ASSOCIATED
WITH INCREASED SURVIVAL TIME ACROSS CANCERS

INTRODUCTION

Aside from predicting drug efficacy, genetic biomarkers can also function as important tools
for cancer treatment. For example, by examining gene expression differences in tumors from different
breast cancer patients and comparing their survival, it may be possible to learn what genetic differences
lead to better breast cancer prognosis. However, performing this analysis across different types of
cancers will hopefully identify genetic differences that contribute most to cancer patient survivorship in
general. Thus, if multiple cancers can be shown to function similarly at a genetic level, then it may be
possible to repurpose a drug therapy developed for one cancer to another.

Unfortunately, this is a complex task. Humans have over 20,000 genes. Simultaneously
examining gene expression in this many genes for thousands of patients proves to be challenging.
Therefore, we propose a machine learning approach to handle this complexity. In this project, we will
apply supervised machine learning methods to publicly available cancer gene expression data to learn
genes expression patterns that are associated with increased survival across multiple cancers (if any
such patterns exist). Our goal is to identify genes that lead to increased survival times across multiple

cancers.

DATA

The Cancer Genome Atlas (TCGA) is a large project aimed to catalog genetic mutations that
are responsible for a variety of cancers by sequencing tumors and measuring gene expression from
patients in both tumor and normal tissue [1]. It involves multiple research institutions and is managed
by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI)
which are part of the National Institutes of Health (NIH).

So far, TCGA has collected data from thousands of cancer patients spanning thirty-four cancer
types. We will analyze gene expression and clinical data for four cancer types: breast cancer, ovarian
cancer, uterine cancer and cervical cancer. While pan-cancer research has gained momentum [2],
researchers have not yet analyzed genetic commonalities across this combination of tumor types in
relation to patient survival. Our total data will comprise 2,041 tumor samples and expression data from
20,530 genes [Figure 1]. Data values are real numbers representing the activity levels of genes in the
samples and survival times for patients.
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METHODOLOGY

We will use two primary algorithms, LASSO (Least Absolute Shrinkage and Selection
Operator) and ANN (Artificial Neural Network) to complete our project objective. The first stage of
our project will include model building with each algorithm. Next, we will select a subgroup of genes
that best serve as predictors of survival across all tumor types. Finally, we will evaluate the
performance of our machine learning methods by completing a literature search of the top ranked
genes’ annotations to confirm biological significance [3].

LASSO logistic regression builds a particularly efficient model of features, using only the
variables that are the most informative [4,5]. It is a popular technique for selecting a sparse set of
predictors in biological datasets (e.g. identifying the smallest set of genes that reliably predict if an
individual would benefit from a particular therapy). LASSO optimization is similar to normal logistic
regression, but it tends to reduce many of the feature coefficients to 0, leaving a relatively small set of
features that are best able to predict an example’s class. This ultimately removes redundant features and
leads to a model that is easier to interpret than some other approaches. This model could be extremely
useful for problems such as ours in identifying a smaller subset of genes that best predict survival.

As the name suggests, ANNs are made up of a network of interconnected nodes that were first
adopted for mathematical modelling in 1943 [6]. The nodes are linked to each other by weighted
connections, and we will use back propagation (BP) learning to construct our network [7]. BP is
implemented in two cycles; a forward generation of output followed by backwards error propagation.
The weighted connections are updated during the second cycle and this is carried out until the error in
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the network is minimized. Lastly, we will compare the results of our algorithms with baseline methods
to assess performance of our trained models.

MILESTONE

By February 17, we will have completed our code for LASSO and ANN and performed initial
runs on a sample of our training data. The three major steps after this will be implementing our code on
the entire data, comparing the results generated by our two models with other baseline methods, and
functionally analyzing our genes of interest.
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