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Research on the road to the Last Mile

Using behavioral insights to solve real
problems for real people
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Peace keeping efforts Crisis negotiations Business negotiations & Interwewmg Clinical assessment & Border Security
sales medical compliance
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Motivation

Advancing Technology, More Data, Fresh Theories, & New Discoveries
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Emotion Detection and Recognition (EDR):
* Understanding emotion holds significance during the interaction process
of communication between humans, and human & machine systems.
* The global EDR market was valued at USD 12.37 billion in 2018 and is
expected to reach a value of USD 91.67 billion by 2024.
* The key areas where emotion detection and recognition are expected to
gain traction include entertainment, transportation, healthcare, and

retail.

-- Market Reports World, report (01-May-2019):
“EMOTION DETECTION AND RECOGNITION (EDR) MARKET - GROWTH, TRENDS, AND

FORECAST (2019 - 2024)”
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(Research Model)
# Does It Work
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3"d Analysis: Show Generalization
Predict Election / Predict Wins
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Proof-of-Value
(Problems Research Addresses)
# Why is it useful
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» Emotion Understanding > Deception Detection
* Much research shows the better we * “Deception is a disease for which there is no
understand emotions the better we can act cure and an unending opportunity to combat it”.
strategically to achieve desired outcomes -- Dr. Bruce Reinig

* In asurvey of 15+ commercially available
emotion detection APIs, none report —
Dominance, Trust, Nervousness.

Paralleldots Kairos Face++
Emotient  Project Oxford Imotions
Affectiva Face Reader ~ CrowdEmotion
EmoVu Sightcorp FacioMetrics
Nviso SkyBiometry OpenFace




Face Expression Viewer
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Applications Research Makes Possible

Happy = AU6 + AU12

Facial Emotion Finder Tool

Who's Looking At Who - DEMO

Player Select

Olrayerst

Run Game

Who’s Looking At Who w/h Speaker Indicator
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Proof-of-Use

# Is it useful?
Tools & Applications

Interview Coaching

> Provide feedback for video interviews to
improve interview performance

Physical Therapy

> Create tool for facial mobility feedback to assist
stroke Iv|ct|ms for re-training of facial muscle
contro

Integration into Augmented Reality (AR)
Systems

o would provide real-time tactical advantages
during one-on-one crisis situations.
° |nitial focus may target applications for:
o Military Operations
o First Responders
o Crisis Negotiators
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Take a Practice Question

Can't see yourself? Mic meter not moving?
Adjust settings —

Interview Coaching
w/h Auto-Feedback

Commercial
To
Military

AR W|th HUD for Emotion Detection
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Current Results
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Raw Kinesics
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18 Facial
Action Units (AUs) A

Values Direct From Openface Calculated Values From Openface Data

I
AU # FACS name % 1
1
1 Inner brow raiser / :
2 Outer brow raiser :
1
4 Brow lowerer -M :
L 1 Emotion Action Units
5 Upper lid raiser 1 dieht B - N .
1 . ight Brow to Nose Center
6 Cheekraiser ! ! Happiness 6+12
\ : P el
7 Lid tightener 1 Sadness 1+4+15 o e e e
1 : -
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1 * g o
10 Upper lip raiser 1 ‘ R
ppertip 1 Fear 1+2+4+5+7+20+26 |
12 Lip corner puller : PR il Y
. Anger 4+5+7+23 Left Cheek to Nose Center Right Cheek to Nose Center
14 Dimpler : y“' Pl o = .w;. PR a” - P
15 | Lip corner depressor : Disgust 9+15+16 o Ot 7 a0 R ¢ sl o
1 ’ :: & ’ i &
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Truth Data
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In-Game Survey (Perceived Attributions)
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Not-Dominant | I I | Dominant
1 2 3 4 5
|
Not-Nervous | : : | Nervous
1 2 3 4 5
|
Not-Trust | : : ; | Trust
1 2 3 4 5
|
o ' 1
4—: —
Game Role
Not-Deceiver | . Deceiver

0 .
(i.e., Not-Spy) (i.e., Spy)
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Perceived Dominance Feature Analysis

Top Discriminating Features for::BalDom-Dataset
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USIﬂg 20 Featu res Accuracy -vs- Number of Added Features Used for Classification
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Perceived Nervousness Feature Analysis

Top Discriminating Features for::BalNerv-Dataset
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Perceived Nervousness Cla55|f|cat|on

Using 20 Features
| Accuracy -vs- Number of Added Features Used for Classification
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Perceived Trust Feature Analysis

Top Discriminating Features for::BalTrust-Dataset
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Using 20 Features

Confusion Matrix for::BalTrust-Dataset U
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Top Discriminating Features for::BalSpy-Dataset
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Deceiver Classification

Using 20 Features

Accuracy -vs- Number of Added Features Used for Classification
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Transition: Research to Commercialization

Real Proof Proof Proof

Problem " 2 of TN of
Concept Value N Use




