

Predicting Dominance in Group Interaction Videos

Chongyang Bai, Dartmouth College

Joint work with Maksim Bolonkin, Norah Dunbar, Judee Burgoon, Srijan Kumar, Jure Leskovec, and V.S. Subrahmanian

Bai, Chongyang, et al. "<u>Predicting the Visual Focus of Attention in Multi-Person Discussion Videos</u>." *IJCAI*. 2019. Bai, Chongyang, et al. "<u>Predicting dominance in multi-person videos</u>." *IJCAI*. 2019.

Dominance is Related to...

- Personal behaviors
 - Facial expressions
 - Vocalic attributes
- Social interactions
 - Look at / speak to / listen to each other

Problem Setup

 Define a player's dominance score as perceived median dominance score from other players

Problem Setup

- Input frontal videos of a group of players, we predict:
 - Most dominant person (MDP) in the group
 - MDP-Distinct: the group has a single most dominant person
 - Pairwise dominance prediction (PDP): who is more dominant out of 2 people
 - PDP-Distinct: when the difference of Dominance scores between 2 people is larger than 1

Challenges

• How to capture social interactions of a group in videos?

- How to learn ONE model for different groups?
 - People from different groups are not directly comparable
 - Different groups have different numbers of people

Our contribution

- How to capture social interactions in a group?
 - 1. Predict who looks at who
 - 2. Dominance Rank features for dynamic interactions
 - 3. Multi-modality prediction: visual, audio, and social interaction
- How to learn ONE model for different groups?

- 4. Group Dominance Prediction (GDP) Algorithm

Our contribution

• How to capture social interactions in a group?

– 1. Predict who looks at who

- 2. Dominance Rank features for verbal & non-verbal dynamic interactions
- 3. Multi-modality prediction: visual, audio, and social interaction
- How to learn ONE model for different groups?

– 4. Group Dominance Prediction (GDP) Algorithm

Predict who looks at who

C.Bai et al, Predicting the Visual Focus of Attention in Multi-person Discussion Videos, IJCAI'19

Demo, network data and code at: <u>https://home.cs.dartmouth.edu/~cy/icaf/</u>

Why study who looks at whom?

- Conveys non-verbal interaction between people
- Identifies conversational interaction: speak, listen

Why study who looks at whom?

- Conveys non-verbal interaction between people
- Identifies conversational interaction: speak, listen
 Meetings
 Social Games

Interviews

Our Task

- For every 1/3rd second, predict where every player looks at:
 - other players
 - frontal tablet

1/3rd second is the time it takes to visually focus attention (Rayner, 2009)

• A multi-class classification, with 5~8 classes

Demo: frontal view

https://home.cs.dartmouth.edu/~cy/icaf/

 Each person's look-at-whom probability and speaking probability is displayed, the look-at-whom network is visualized

Challenge #1: Focus of attention changes rapidly

Challenge #2: One's focus of attention is affected by others' verbal and non-verbal behavior

Player 1 is speaking, so everyone except P6 looks at her

Model: Iterative Collective Attention Focus (ICAF)

- Core idea: where a player looks influences where others look and is influenced by where others look.
 - Jointly make the prediction for all players.

First model that uses where others are looking at the moment to come up with joint prediction of who-looks-at-whom

Input to classifiers

- K base classifiers for K people.
- At time *t*, base classifier
 C_i receives its raw input
 features f_{i,t}: head pose,
 eye gaze vectors and
 speaking probabilities

Collective Classification

 Output from other players' classifiers are used as additional inputs to the classifier

Temporal Component

 Each player's prediction time t depends on its prediction at time t-1

Challenge #3: Tedious and time-consuming annotation

- Spend 40 hours to label total of ~2 hours of video
 - To observe eye gaze, we need to see frontal videos
 - To observe global position, we need to check the global video
- More labels are needed to learn a general model

Lightly supervised ICAF (LightICAF)

• Intuition:

people most likely look at the speaker

• LightICAF:

- Predict continuous speaking segments
- Use this segment as the label of all other players
- Use the estimated label to train ICAF

Experiments: LightICAF

- ICAF performs slightly better than LightICAF
 - Multi-class classification with **5-8** classes.
 - Random baseline: 12.5%-20% accuracy
- We have released 62 Look-at-whom networks (3M edges) generated by LightICAF
 http://snap.stanford.edu/data/comm-f2f-Resistance.html
- Multi-cultural
 - Videos are from US, Zambia, HongKong, Israel, Singapore, and Fiji

Experiment: Next Focus of Attention

[1] Recognizing visual focus of attention from head pose in natural meeting. Ba et al., 2008[2] Multiperson visual focus of attention from head pose and meeting contextual cues. Ba et al., 2011

22

Experiment: Future Focus Prediction

Train from time 0 to t-1, test at t+k Base classifier: Random Forest

ICAF consistently performs better than others. 5% better than best baseline.

Our contribution

• How to capture social interactions in a group?

– 1. Predict who looks at who

- 2. Dominance Rank features for dynamic social interactions

- 3. Multi-modality prediction: visual, audio, and social interaction
- How to learn ONE model for different groups?

– 4. Group Dominance Prediction (GDP) Algorithm

Family of Dominance Rank (DR) features

$$R_{\text{dom}}(p_i) = \frac{1-d}{N} + d\sum_{j \neq i} \frac{R_{\text{dom}}(p_j)I(p_i, p_j)}{N-1}$$

DR - PageRank weighted by interaction functions

$I(p_i, p_i)$ - interaction function

Represents how interactions between players influence the distribution of dominance in the group

- *N* number of players
- d damping factor

Basic Interactions

- *S*: speaking probabilities
- *G*: looking-at probabilities
- *LS*: looking while speaking
- *LL*: looking while listening

$$S(p_i) = \frac{1}{k} \sum_{t=t_1}^{t_2} s_t(p_i) ,$$

$$G(p_i, p_j) = \frac{1}{k} \sum_{t=t_1}^{t_2} g_t(p_i, p_j) ,$$

$$LS(p_i, p_j) = \frac{1}{k} \sum_{t=t_1}^{t_2} g_t(p_i, p_j) s_t(p_i)$$

$$LL(p_i, p_j) = \frac{1}{k} \sum_{t=t_1}^{t_2} g_t(p_i, p_j) s_t(p_j)$$

Interaction functions *I*

- Examples:
 - $I(p_i, p_j) = LL(p_i, p_j) LL(p_j, p_i)$ looking while listening probability difference
 - $I(p_i, p_j) = LS(p_i, p_j)/LL(p_i, p_j)$ (Visual Dominance Ratio, Dovidio and Ellyson, 1982, Dunbar and Burgoon, 2005) looking while speaking to looking while listening probabilities ratio

- *S*: speaking probabilities
- *G*: looking-at probabilities
- *LS*: looking while speaking
- *LL*: looking while listening

$$R_{\rm dom}(p_i) = \frac{1-d}{N} + d\sum_{j \neq i} \frac{R_{\rm dom}(p_j)I(p_i, p_j)}{N-1}$$

Interaction functions *I*

- Examples:
 - $I(p_i, p_j) = LL(p_i, p_j) LL(p_j, p_i)$

looking while listening probability difference

Interaction functions *I*

			Pearson Correlation
$I(p_i,p_j)$	r	ρ	Coefficient
$G(p_i, p_j) - G(p_j, p_i)$	0.21	0.23	Spearman Correlation
$G(p_i, p_j)/G(p_j, p_i)$	0.1	0.11	Coefficient
$LL(p_j, p_i) - LL(p_i, p_j)$	0.49	0.53	
$LL(p_j, p_i)/LL(p_i, p_j)$	0.33	0.36	
$LL(p_i, p_j)/LL(p_j, p_i)$	-0.26	-0.32	
$LS(p_j, p_i)/LS(p_i, p_j)$	-0.16	-0.16	
$LS(p_i, p_j) - LS(p_j, p_i)$	0.24	0.23	
$LS(p_i, p_j)/LS(p_j, p_i)$	0.2	0.19	
$LS(p_i, p_j)/LL(p_i, p_j)$	0.50	0.52	
$LL(p_i, p_j)/LS(p_i, p_j)$	0.29	0.30	

- *S*: speaking probabilities
- *G*: looking-at probabilities
- *LS*: looking while speaking
- *LL*: looking while listening

$$R_{\rm dom}(p_i) = \frac{1-d}{N} + d\sum_{j \neq i} \frac{R_{\rm dom}(p_j)I(p_i, p_j)}{N-1}$$

Our contribution

- How to capture social interactions in a group?
 - 1. Predict who looks at who
 - 2. Dominance Rank features for verbal & non-verbal dynamic interactions

– 3. Multi-modality prediction: visual, audio, and social interaction

• How to learn ONE model for different groups?

– 4. Group Dominance Prediction (GDP) Algorithm

Dominance Ensemble Late Fusion (DELF)

Dominance Ensemble Late Fusion (DELF)

Feature aggregation, normalize feature dimension for varied video length 1. Fisher Vector

2. Histograms

Dominance Ensemble Late Fusion (DELF)

Multimodal fusion:

 $S = \sum_{i=1}^{5} \alpha_i S_i ,$ $S_i \text{ are dominant}$ probabilities predicted by individual features.

Experiment: DELF performance (AUC)

	Features	MDP-All	MDP-Distinct	PDP-All	PDP-Distinct
ſ	DELF	0.791	0.894	0.874	0.949
	DR (LS/LL, 1 sec) + FV	0.754	0.855	0.77	0.832
	DR (LS/LL, 1 sec) + Hist.	0.754	0.836	0.788	0.861
Our	DR (LS/LL, 5 sec) + FV	0.773	0.861	0.771	0.835
Results	DR (LS/LL, 5 sec) + Hist.	0.770	0.844	0.793	r 0.861
	Speaking + FV	0.741	0.838	0.853	1 (0.92)
	Speaking + Hist.	0.756	0.821	0.847	0.91
	Baseline (speak.)	0.738	0.769	0.800	0.893
	Baseline (comb.)	0.767	0.764	0.828	0.906

Single features:

(a) Dominance rank features gave the best AUC for MDP tasks

(b) Speaking probability features achieved the best AUC for PDP tasks

(c) Better than baseline [Beyan et al. 2018]

Experiment: DELF performance (AUC)

	Features	MDP-All	MDP-Distinct	PDP-All	PDP-Distinct
	DELF	0.791	0.894	0.874	0.949
	DR (LS/LL, 1 sec) + FV	0.754	0.855	0.77	0.832
	DR (LS/LL, 1 sec) + Hist.	0.754	0.836	0.788	0.861
Our	DR (LS/LL, 5 sec) + FV	0.773	0.861	0.771	0.835
Results	DR (LS/LL, 5 sec) + Hist.	0.770	0.844	0.793	0.861
	Speaking + FV	0.741	0.838	0.853	0.92
	Speaking + Hist.	0.756	0.821	0.847	0.91
	Baseline (speak.)	0.738	0.769	0.800	0.893
	Baseline (comb.)	0.767	0.764	0.828	0.906

Multimodal fusion:

DELF achieved the highest AUC overall for all 4 tasks.

Performance (AUC) depends on the length of the video used

- Task: MDP-All
- Control two variables:
 - X: percentage of video length
 - Y: percentage of video starting time

Performance (AUC) depends on the length of the video

- Task: MDP-All
- Control two variables:
 - X: percentage of video length
 - Y: percentage of video starting time

For any length, videos closer to the end yield better prediction AUC.

The entire video gives the highest prediction result.

Our contribution

- How to capture social interactions in a group?
 - 1. Predict who looks at who
 - 2. Dominance Rank features for verbal & non-verbal dynamic interactions
 - 3. Multi-modality prediction: visual, audio, and social interaction
- How to learn ONE model for different groups?
 4. Group Dominance Prediction (GDP) Algorithm

- Motivation:
 - To find the most dominant player it is desirable to compare all the players in the game
 - We only care about the most dominant player
- Challenges:
 - Different games have different numbers of players
 - Small number of games

- Solution:
 - Form a new dataset by combining groups of 5 players

	Game 1	p1	p2	р3	p4	р5	р6		
	Game 2	p1	p2	р3	p4	р5	р6	р7	p8
Train	Game 3	p1	p2	р3	p4	р5	р6	р7	
	Game 71	p1	p2	р3	p4	р5			
	Game 72	p1	p2	р3	p4	р5	р6		
Test									
	Game 79	p1	p2	р3	p4	р5	р6	р7	

- Solution:
 - Form a new dataset by combining groups of 5 players
 - Augment the data by considering all permutations of players in the group

	Game 1	p1	p2	р3	p4	р5	р6		
	Game 2	p1	p2	р3	p4	p5	p6	р7	p8
Train	Game 3	p1	p2	р3	p4	р5	p6	р7	
	Game 71	p1	p2	р3	p4	р5			
	Game 72	p1	p2	р3	p4	р5	р6		
Test									
	Game 79	p1	p2	р3	p4	р5	р6	р7	

	Game 1_1	p1	p2	р3	p4	р5
	Game 1_2	p1	p2	р3	p4	р6
	Game 1_3	p1	p2	р3	р5	р6
	Game 1_4	p1	р3	p4	р5	р6
Train	Game 1_5	p2	р3	p4	р5	р6
main	Game 1_6	p5	p4	р3	p2	p1
	Game_ 71_1					
	Game 71_120					
	Game 72_1	p1	p2	р3	p4	р5
	Game 72_2	p1	p2	р3	p4	p6
	Game 72_3	p1	p2	р3	р5	p6
Test	Game 72_4	p1	р3	p4	р5	p6
	Game 72_5	p2	р3	p4	р5	p6
	Game 72_6	p5	p4	р3	p2	p1

- Solution:
 - Form a new dataset by combining groups of 5 players
 - Augment the data by considering all permutations of players in the group

Train a model to infer probabilities of each player in each augmented games

	Game 1_1	p1	p2	р3	p4	р5
	Game 1_2	p1	p2	р3	p4	р6
	Game 1_3	p1	p2	р3	р5	р6
	Game 1_4	p1	р3	p4	p5	p6
Train	Game 1_5	p2	р3	p4	р5	р6
ITalli	Game 1_6	p5	p4	р3	p2	p1
	Game_ 71_1					
	Game 71_120					
	Game 72_1	p1	p2	р3	p4	р5
	Game 72_2	p1	p2	р3	p4	p6
	Game 72_3	p1	p2	р3	р5	p6
Test	Game 72_4	p1	р3	p4	р5	p6
	Game 72_5	p2	р3	p4	р5	p6
	Game 72_6	p5	p4	р3	p2	p1

- Solution:
 - Form a new dataset by combining groups of 5 players
 - Augment the data by considering all permutations of players in the group

During test stage

- predict the most dominant player for each augmented game.
- average the predictions of a player from all the augmented games he appeared

	Game 1_1	p1	p2	р3	p4	р5	
	Game 1_2	p1	p2	р3	p4	р6	
	Game 1_3	p1	p2	р3	р5	р6	
	Game 1_4	p1	р3	p4	р5	р6	
Train	Game 1_5	p2	р3	p4	р5	р6	
Irain	Game 1_6	p5	p4	р3	p2	p1	
	Game_ 71_1						
	Game 71_120						
	Game 72_1	p1	p2	р3	p4	р5	
	Game 72_2	p1	p2	р3	p4	p6	
	Game 72_3	p1	p2	р3	р5	p6	
Test	Game 72_4	p1	р3	p4	р5	p6	
	Game 72_5	p2	р3	p4	р5	p6	
	Game 72_6	p5	p4	р3	p2	p1	

- Solution:
 - Form a new dataset by combining groups of 5 players, consider MDP task for those groups
 - Augment the data by considering all permutations of players in the group

Experiment: GDP in MDP task

Feature	Classif.	AUC	
	MDP-All		
Speaking + FV Speaking + FV DR (LS/LL, 5sec) + FV DR (LS/LL, 5sec) + Hist.	MLP RF MLP MLP	0.809 0.817 0.783 0.772	In both MDP tasks, the GDP algorithm
N	IDP-Distin	ct	outperforms our
Speaking + FV Speaking + FV DR (LS/LL, 5sec) + FV DR (LS/LL, 5sec) + FV	MLP RF RF MLP	0.936 0.902 0.878 0.850	ensemble DELF model

Features	MDP-All	Ν	IDP-Distinct
DELF	0.791) (0.894

ELEA dataset

https://www.idiap.ch/dataset/elea

Video content:

- Cooperative setting
- Winter survival task:
 3-4 people in a group, decide to arrange items in the order of importance

Labels:

 In-group ratings of dominance scores (PDom)

Human study:

• Out-of-group ratings by independent humans

Experiment in ELEA dataset

Task 1: predict who are	Method	PDom
more dominant than others (compare to	[Okada et al., 2018]	58.82
median score)	[Aran and Gatica-Perez, 2013]	65.69
	[Okada <i>et al.</i> , 2015]	67.65
DR features outperform	DR (LS/LL) + FV (ours)	76.47
baselines and human study	DR (LS/LL) + Hist. (ours)	74.51
predictions	Human scores	68.63
	[Sanchez-Cortes et al., 2012]	74.10
	DR (LS/LL) + FV (ours)	77.50
	DR (LS/LL) + Hist. (ours)	76.50
	Human scores	78.43

Experiment in ELEA dataset

	Method	PDom
	[Okada <i>et al.</i> , 2018]	58.82
	[Aran and Gatica-Perez, 2013]	65.69
	[Okada <i>et al.</i> , 2015]	67.65
	DR (LS/LL) + FV (ours)	76.47
	DR (LS/LL) + Hist. (ours)	74.51
	Human scores	68.63
Task 2: predict the most	[Sanchez-Cortes et al., 2012]	74.10
dominant person	DR (LS/LL) + FV (ours)	77.50
DR features outperform	DR (LS/LL) + Hist. (ours)	76.50
baselines, but human	Human scores	(78.43)
scores are slightly better		

Demo

Demo at: http://home.cs.dartmouth.edu/~cy/dom/

Conclusion

- Predict who looks at who in group interaction videos
 - Release the interaction network dataset
- Study two classes of dominance-related problems
 - Most dominant person
 - more dominant person
- Propose a novel family of **Dominance Rank** features
- Develop **DELF** model and **GDP** algorithm
- Beat baselines in Resistance and ELEA dataset

Q & A

Dataset, demo and code: <u>http://home.cs.dartmouth.edu/~cy/icaf/</u> <u>http://home.cs.dartmouth.edu/~cy/dom/</u>

Contact: <u>cy@cs.dartmouth.edu</u> <u>www.cs.dartmouth.edu/~cy</u>