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Why Interaction Networks?

• Individual analysis of each person ignores inter-personal 
interactions
• E.g., When person A looks at or talks to another person B, 

it creates an interaction from A to B

• Networks give an efficient framework to represent 
(verbal and non-verbal) interactions between people

• Interaction networks can be used for modeling and 
downstream prediction tasks
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Our goal: Multi-layered Interaction Networks
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Our context: Deception

• A game of 7 people who talk to each other

• People have assigned (but unknown) roles:
• Deceivers

• Truth-tellers

• In the end of the two groups
wins
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This talk:
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Predicting the Visual Focus of Attention Prediction in Multi-person Discussion Videos. 

Chongyang Bai, Srijan Kumar, Jure Leskovec, Miriam Metzger, Jay Nunamaker, V.S. 

Subrahmanian. IJCAI 2019



Extracting Dynamic Networks from Video: 
Who Looks at Whom?
• How do we extract dynamic interaction networks from video?
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Extracting Dynamic Networks from Video: 
Who Looks at Whom?

• How do we extract dynamic interaction networks from video?

• For every 1/3rd second, predict every person’s focus of attention
• Who is the player is looking at?

• It takes 1/3rd second to focus attention (Rayner, 2009)

• Candidates:
• Other players

• Tablet
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Challenge #1
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1 second
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Looking at 

Player 1

[IJCAI 2019]

• Focus of attention changes rapidly:



Challenge #2

• One’s focus of attention is affected by others’ verbal and non-verbal 
behavior
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Player is 

speaking, so 

everyone 

looks at him

[IJCAI 2019]



Our solution: Multi-layered collective 
classification algorithm (ICAF)
• ICAF: a collective classification predictive model

• Core idea: Where a player looks influences where others look and is 
influenced by where others look. 

• Simultaneously make the prediction for all players.
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First model that uses where others are looking at the moment to 

come up with joint prediction of who-looks-at-whom

[IJCAI 2019]



Three major components of ICAF

At time t, three inputs are given to the predictor:

1. Instantaneous input component: Where u looks at time t, depends on its head 
and eye features
• We extract raw features from video of the player’s face at time t and use it as an input

• Head pose (from OpenFace)

• Eye gaze (from OpenFace)

• Speaking probability (predicted)

2. Collective classification component: Where u looks at time t, depends on 
where all others look at time t
• We use output of other classifiers at time t as one input 

3. Temporal component: Where u looks at time t, depends on where u was 
looking at time t-1
• We use output of u’s classifier at time t-1 as one input 11



ICAF details

• We train one classifier for each player 

• Classifiers of all players are inter-dependent so that they influence 
one another

• All classifiers are trained jointly to make accurate predictions
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Dataset creation

• We manually annotated 6,540 seconds (109 minutes) of videos 
from 35 8-person discussions to generate 7,604 labels ”who 
interacts with whom”.

• One label is generated for every 1/3rd second

• Tedious and time-consuming process: 40 hours needed to label 
total of ~2 hours of video
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Baselines

We compare with 6 baselines

• GC: one classifier for all players in the game

• PC: one classifier per player

• These classifiers can use different features:
• H: head pose feature

• E: eye gaze feature

• S: speaking probability 

14



Result: Next Focus of Attention Prediction 

• Learn a model from [0,t] seconds, predict in [t,t+1]

• Prediction accuracy of baselines and ICAF:
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ICAF consistently 
performs better 

than others, 
irrespective of the 

base classifier.



Network Extracted by ICAF
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Demo with more videos: 

https://home.cs.dartmouth.edu/~cy/icaf/

[IJCAI 2019]

https://home.cs.dartmouth.edu/~cy/icaf/


Lightly-supervised ICAF

• Scalability is a major challenge because labeling videos is 
resource intensive

• We extend ICAF with the intuition: People are likely to look 
at the speaker

• Lightly-supervised ICAF:
• Find continuous speaking segment during the introduction round 

• Use this segment as the label of all other players
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Evaluating LightICAF

• ICAF vs. LightICAF
• ICAF performs only slightly better than LightICAF

• Average prediction accuracy of who is a person looking at:
• ICAF: 61% (random guessing gets 1/8 12.5%)

• LightICAF: 56% 

• We used LightICAF to generate 62 networks:
• Publicly released the networks to promote future research: 

http://snap.stanford.edu/data/comm-f2f-Resistance.html
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Our Contributions
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(1) Network extraction demo: 

https://home.cs.dartmouth.edu/~cy/icaf/

(2) Mafia network dataset: 

http://snap.stanford.edu/data/comm-f2f-Resistance.html

https://home.cs.dartmouth.edu/~cy/icaf/
http://snap.stanford.edu/data/comm-f2f-Resistance.html


Our context: The “mafia” game

• A game of 7 people who talk to each other

• People have assigned (but unknown) roles:
• Deceivers

• Truth-tellers

• In the end of the two groups
wins

• We also perform surveys during 
the game
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Multi-layered Interaction Networks
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Key Questions

• RQ1: Does the behavior of Deceivers vary across games? 

• RQ2: Do Deceivers and Truth-Tellers have distinct looking patterns?

• RQ3: How does the speaking pattern of Deceivers and Truth-Tellers differ?

• RQ4: Do Deceivers interact differently with other Deceivers compared to 
Truth-Tellers? 
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Analysis #1: Deceiver Win vs. Lose Games
• Finding 1: Deceivers are more trusted than Truth-Tellers in the 

first 2 rounds in Deceiver-win games.

• Finding 2: Deceivers are identified in the first 2 rounds only in 
Deceiver-lose games.
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Analysis #2: Look-at Network
• Finding 3: Deceivers have a lower entropy and reciprocity of looking.

• However, this is more nuanced: Depends on the game result
• Finding 4: Deceivers and Truth-Tellers have similar entropy and reciprocity of 

looking in Deceiver-win games

• Finding 5: Deceivers have lower entropy and reciprocity of looking in Deceiver-lose 
games
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Analysis #3: Speaking Network
• Finding 6: Deceivers speak less and are listened to less. 

Depends on the game outcome: 

• Finding 7: Deceivers in Deceiver-lose games speak less, not listened 
to, and get less attention (weighted indegree) than Truth-Tellers.

• Finding 8: Deceivers and Truth-Tellers in Deceiver-win games have 
similar speaking behavior.
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Analysis #4: Pairwise Interactions
• Finding 9: Truth-Tellers interact equally with everyone.

• Finding 10: Deceivers interact more with Truth-Tellers and ignore 
other Deceivers.
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Answers to Key Questions

• RQ1: Does the behavior of Deceivers vary across games? 
• Answer: Deceiver behavior is different in Deceiver-win vs Deceiver-lose games

• RQ2: Do Deceivers and Truth-Tellers have distinct looking patterns?
• Answer: Deceivers in Deceiver-lose games have lower entropy and reciprocity of looking.

• RQ3: How does the speaking pattern of Deceivers and Truth-Tellers differ?
• Answer: Deceivers in Deceiver-lose games speak less and are listened to less.

• RQ4: Do Deceivers interact differently with other Deceivers compared to Truth-
Tellers? 

• Answer: Deceivers ignore other Deceivers and interact more with Truth-Tellers. 
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Our Contributions
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Key Prediction Questions

1. Can we accurately identify who is a Deceiver using the networks?

2. What is the length of observation (video/network) needed to make 
accurate prediction?
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Model #1: Temporal Graph Convolution
• Input: Sequence of graph snapshots

• Output: Node labels

• Steps:

1. Run graph neural network model on each network 

2. Aggregate outputs from the sequence of graphs
• Aggregations: average, input to LSTM, input to RNN, etc.
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Graph Neural Networks

Learn how to propagate information across the graph to 
compute node features

31

Determine node 

computation graph

Propagate and

transform information

𝑖

Idea: Node’s neighborhood defines a 
computation graph

The Graph Neural Network Model. Scarselli et al. IEEE Transactions on Neural Networks 2005

Semi-Supervised Classification with Graph Convolutional Networks. T. N. Kipf, M. Welling, ICLR 2017

http://ieeexplore.ieee.org/document/4700287/
https://arxiv.org/pdf/1609.02907.pdf


Graph Neural Networks
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Each node defines a computation graph
• Each edge in this graph is a transformation/aggregation 

function 

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.

https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf


Our Model #2: Belief Propagation 

1. Create a negative network for each 1 second fragment: 
• Replace each edge weight wi,j with 1 – wi,j

2. Initialize nodes using a feature vector:
• Node features: Fraction of speaking, entropy of looking at, 

in-degree, in-degree while speaking

3. Run till convergence on each network

4. Average 𝑺 scores over all networks/time steps
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Prediction Results #1
• Task 1: Identify who is a Deceiver using the networks

• Setup: Given 1 minute of interaction network, output the Deceivers

• Setting: 5-fold cross validation results: 
• Split by game to avoid label leakage: 80% games are used for training, 20% 

testing
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Method Performance

Emotion 0.538 AUC

Head and eye movement 0.549 AUC

Facial action unit 0.569 AUC

Late fusion 0.587 AUC

Graph Neural Network 0.596 AUC

Belief propagation on negative 

network

0.73 AUC

Baselines



Prediction Results #2

• Task 2: Measure impact of network duration 

• Result: Performance of our model is consistent with the change in the 
length of the segment (still we do 1 network per second)
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Features

Belief Propagation + Features

Belief Propagation on negative network



Next steps:

• Multimodality: Create multimodal framework to simultaneously 
model networks + language + videos 

• All modalities depend on one another and have cross-correlations 
• Treating them independently is sub-optimal
• This requires creation of new models that leverage all three 

components together

• Network modeling of trust and dominance:
• We have shown that networks are useful in detecting deception
• Thus, we will use the networks to predict trust and dominance next

• Existing network models may not be sufficient, so we may create new models
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Next steps:
• Cross-correlation between trust, deception, and 

dominance:
• Social affects are inter-dependent

• We will create a multi-task learning framework based on networks 
to simultaneously predict deception, trust, and dominance 

• Cultural effects in networks: 
• Current network models use all cultures to train and make 

predictions 

• We will use the networks to elicit culture-specific novelties

• E.g., does our finding “Deceivers avoid looking at one another” 
hold for all cultures? 37



Deep Models for Temporal 
Networks

@vssubrah, vs@dartmouth.edu 38



Deep Temporal Models

• Goal: Model the time-evolving player behavior

• Our solution: Deep learning model to learn dynamic embeddings
• Mutually-coupled deep neural network model

• Trained to predict future embedding

• KDD 2019: Predicting Dynamic Embedding Trajectory in Temporal 
Interaction Networks. S. Kumar, X. Zhang, J. Leskovec. 

• Highly accurate in identifying temporal anomalies

• Code and data released to promote research: http://snap.stanford.edu/jodie
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Temporal Interaction Networks

Features

[KDD’19]

A flexible way to represent time-evolving relations

Users Products

Time 

interaction user    item   time  features

where

Representing as a 
sequence of interactions:



Temporal Interaction Networks

[KDD’19]

E-commerce Social media

Finance

Web

Accounts Posts

Time 

Features 

= text

Education

IoT

Application Domains



Temporal Interaction Networks

[KDD’19]

E-commerce Social media

Finance

Web

Students Courses

Time 

Features 

= actions

Education

IoT

Application Domains



Problem Setup
Given a temporal interaction network

where 

generate an embedding trajectory of every user

and an embedding trajectory of every item

[KDD’19]

interaction user    item   time  features



Goal: Generate Dynamic Trajectory

Output: Dynamic trajectory 

in embedding space

Input: Temporal 

interaction network

[KDD’19]
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2
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Two Fundamental Problems
How to predict future user-item interactions? 
Applications: 

Recommendation

Network Evolution 

Normal behavior modeling

How to detect anomalous change in user state?
Example: Has an account been compromised? 

Applications:

Anomaly detection

Device failure prediction

Churn prediction
Ok!Alert!

[KDD’19]



Challenges in Dynamic Trajectories

Challenges in learning:

• C1: How to learn inter-dependent user and item embeddings? 

• C2: Model should be able to make predictions at any time. How to 
generate embedding for every point in time?

Challenges in scalability: 

• C3: During inference, how to make sub-linear time interaction 
predictions? 

• C4: How to train temporal network in batches, not one-interaction-at-
a-time?

[KDD’19]



Existing Methods

Deep recommender systems
• Time-LSTM (IJCAI 2017)

• Recurrent Recommender Networks (WSDM 2017)

• Latent Cross (WSDM 2018)

Dynamic co-evolution
• Deep Coevolve (DLRS, 2016)

Temporal network embedding
• CTDNE (BigNet, 2018)

Our model: JODIE

[KDD’19]

C1
Co-

influence

C2
Embed 

any time

C3
Near 

constant 

prediction

C4
Train in 

batches



Our Model: JODIE
JODIE: Joint Dynamic Interaction Embedding

• Mutually-recursive recurrent neural network framework 

• Notations: u(t-) is the embedding before time t. u(t) is embedding at time t. 

User RNN Item RNN

Projection

Operator

[KDD’19]

Update 

Component

Project

Component

f =



JODIE: Update Component

• Each user has one RNN. All users share the RNN parameters. 

Similar for items.

[KDD’19]

User RNN Item RNN

f =

Weight matrices W 
are trainable

Projected embedding ෝ𝐮(t+ Δ)

Temporal attention vector w
Time 

Δ



JODIE: Projection Component

• Projected embeddings are linear scaling, based on time, of 

the observed embeddings

Projected embedding ෝ𝐮(t+ Δ)

[KDD’19]

Temporal attention vector w
Time 

Δ

Projected 

embeddings

User RNN Item RNN

f =



Challenges in Dynamic Trajectories

Challenges in learning:

• C1: How to learn inter-dependent user and item embeddings? 

• C2: Model should be able to make predictions at any time. How to 
generate embedding for every point in time?

Challenges in scalability: 

• C3: During inference, how to make sub-linear time interaction 
predictions? 

• C4: How to train temporal network in batches, not one-interaction-at-
a-time?

[KDD’19]



Interaction Predictions: Sub-linear

To predict interactions: which item i ∈ 𝐼 will a user u
interact with at time t ? 

• Standard approach: 
• Choose

• | 𝑰 | linear computations: expensive during 
inference

• How can we make predictions in near-constant 
time?

[KDD’19]



Interaction Predictions: Sub-linear

JODIE predicts the item embedding directly
• At inference, output the item with the closest embedding: near-

constant time predictions

• Prediction is done via a fully-connected linear layer 

[KDD’19]

Predicted 

item 

embedding

Projected 

embedding

Previous 

item 

embedding

Bias



JODIE Formulation
Update:

Project:

Predict:

[KDD’19]

Loss:

Predicted item embedding 

should be close to the  real 

item embedding
Smoothness in evolving 

embeddings



Standard Training Processes: N/A
Training must maintain temporal order

[KDD’19]

(1)

(2)

(3)

(4)

.

.

.

.
.

.

(1)

(2)

(3)

Split by user (or item): 

not allowed 

Sequential processing: 

not scalable
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2
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4

4
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T-batch: Batching for Scalability

T-batch: Temporal data batching algorithm
• Creates a sequence of batches

• Interactions in each batch are processed in parallel
• Processing the batches in sequence = processing each interaction in sequence

• Main idea: create each batch as an independent edge set

[KDD’19]



T-batch: Batching for Scalability

Batch 2Batch 1 Batch 3

[KDD’19]
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In each batch, 

edges are the 

lowest time-

stamped edges 

incident on      

the user and    

the item



Experiments: Prediction Tasks

• Interaction prediction:
• Given interactions till time t, which item i ∈ 𝐼 will user u interact with 

at time t?

• Anomaly detection:
• Will an interaction lead to an anomalous change in the state of user 

u?

• Settings:
• Temporal Splits: 60%, 20%, 20%

• Metrics: Mean reciprocal rank, Recall@10, AUROC

[KDD’19]

Code and Data: https://snap.stanford.edu/jodie

https://snap.stanford.edu/jodie


Datasets

[KDD’19]

Code and Data: https://snap.stanford.edu/jodie

0.05%

0.14%

0.99%

% State 

Changes

Rare events!

https://snap.stanford.edu/jodie


Experiment 1: Interaction Prediction

JODIE outperforms baselines by > 20%

Mean 

Reciprocal 

Rank

0.0

1.0

Latent 

Cross

0.42

0.18

Time-

LSTM

0.60

RRN

0.73

0.39

0.17

CTDNE Deep 

Coevolve
JODIE

0.2

0.4

0.6

0.8

[KDD’19]



Experiment 2: Anomaly Detection

JODIE outperforms all baselines by >12% 

Average 

AUROC

0.5

1.0

Latent 

Cross

0.63
0.18

Time-

LSTM

0.65

RRN

0.73

0.65 0.64

CTDNE Deep 

Coevolve
JODIE

0.6

0.7

0.8

0.9
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Experiment 3: T-batch Speed-up

T-batch leads to 8.5x speed-up in training

5.1 minutes 

44 minutes

JODIE without 

t-Batch

JODIE with 

t-Batch

Running 

Time

0

50

10

20

30

40

8.5x 

speed-up

[KDD’19]



Project website: https://snap.stanford.edu/jodie

JODIE generates and projects 

embedding trajectories

Mutually-recursive RNN 

framework with      

temporal attention

• T-batch: 8.5x training speed-up

• Efficient in interaction prediction 

and anomaly detection

• Extendible to > 2 entity types

https://snap.stanford.edu/jodie

