
Network Extraction, Analysis, and
Prediction of Deception

Jure Leskovec
Computer Science, Stanford University

Joint work with S. Kumar, C. Bai, VS. Subrahmanian.

1

Why Interaction Networks?

• Individual analysis of each person ignores inter-personal
interactions
• E.g., When person A looks at or talks to another person B,

it creates an interaction from A to B

• Networks give an efficient framework to represent
(verbal and non-verbal) interactions between people

• Interaction networks can be used for modeling and
downstream prediction tasks

2

Our goal: Multi-layered Interaction Networks

3

Our context: Deception

• A game of 7 people who talk to each other

• People have assigned (but unknown) roles:
• Deceivers

• Truth-tellers

• In the end of the two groups
wins

4

This talk:

5

Step 1:

Extract

interaction

network

Step 2:

Network

analysis for

deception

and trust

Step 3:

Network

algorithms for

predictions

Predicting the Visual Focus of Attention Prediction in Multi-person Discussion Videos.

Chongyang Bai, Srijan Kumar, Jure Leskovec, Miriam Metzger, Jay Nunamaker, V.S.

Subrahmanian. IJCAI 2019

Extracting Dynamic Networks from Video:
Who Looks at Whom?
• How do we extract dynamic interaction networks from video?

6

[IJCAI 2019]

Joint work with Dartmouth, UCSB, Arizona

Extracting Dynamic Networks from Video:
Who Looks at Whom?

• How do we extract dynamic interaction networks from video?

• For every 1/3rd second, predict every person’s focus of attention
• Who is the player is looking at?

• It takes 1/3rd second to focus attention (Rayner, 2009)

• Candidates:
• Other players

• Tablet

7

[IJCAI 2019]

Joint work with Dartmouth, UCSB, Arizona

Challenge #1

8

Frame 25

Looking at

Player 6

Frame 35

Looking at

Player 1

Frame 55

Looking at

Player 7

1 second

Frame 45

Looking at

Player 1

[IJCAI 2019]

• Focus of attention changes rapidly:

Challenge #2

• One’s focus of attention is affected by others’ verbal and non-verbal
behavior

9

Player is

speaking, so

everyone

looks at him

[IJCAI 2019]

Our solution: Multi-layered collective
classification algorithm (ICAF)
• ICAF: a collective classification predictive model

• Core idea: Where a player looks influences where others look and is
influenced by where others look.

• Simultaneously make the prediction for all players.

10

First model that uses where others are looking at the moment to

come up with joint prediction of who-looks-at-whom

[IJCAI 2019]

Three major components of ICAF

At time t, three inputs are given to the predictor:

1. Instantaneous input component: Where u looks at time t, depends on its head
and eye features
• We extract raw features from video of the player’s face at time t and use it as an input

• Head pose (from OpenFace)

• Eye gaze (from OpenFace)

• Speaking probability (predicted)

2. Collective classification component: Where u looks at time t, depends on
where all others look at time t
• We use output of other classifiers at time t as one input

3. Temporal component: Where u looks at time t, depends on where u was
looking at time t-1
• We use output of u’s classifier at time t-1 as one input 11

ICAF details

• We train one classifier for each player

• Classifiers of all players are inter-dependent so that they influence
one another

• All classifiers are trained jointly to make accurate predictions

12

Dataset creation

• We manually annotated 6,540 seconds (109 minutes) of videos
from 35 8-person discussions to generate 7,604 labels ”who
interacts with whom”.

• One label is generated for every 1/3rd second

• Tedious and time-consuming process: 40 hours needed to label
total of ~2 hours of video

13

Baselines

We compare with 6 baselines

• GC: one classifier for all players in the game

• PC: one classifier per player

• These classifiers can use different features:
• H: head pose feature

• E: eye gaze feature

• S: speaking probability

14

Result: Next Focus of Attention Prediction

• Learn a model from [0,t] seconds, predict in [t,t+1]

• Prediction accuracy of baselines and ICAF:

15

ICAF consistently
performs better

than others,
irrespective of the

base classifier.

Network Extracted by ICAF

16

Demo with more videos:

https://home.cs.dartmouth.edu/~cy/icaf/

[IJCAI 2019]

https://home.cs.dartmouth.edu/~cy/icaf/

Lightly-supervised ICAF

• Scalability is a major challenge because labeling videos is
resource intensive

• We extend ICAF with the intuition: People are likely to look
at the speaker

• Lightly-supervised ICAF:
• Find continuous speaking segment during the introduction round

• Use this segment as the label of all other players

17

[IJCAI 2019]

Evaluating LightICAF

• ICAF vs. LightICAF
• ICAF performs only slightly better than LightICAF

• Average prediction accuracy of who is a person looking at:
• ICAF: 61% (random guessing gets 1/8 12.5%)

• LightICAF: 56%

• We used LightICAF to generate 62 networks:
• Publicly released the networks to promote future research:

http://snap.stanford.edu/data/comm-f2f-Resistance.html

18

[IJCAI 2019]

http://snap.stanford.edu/data/comm-f2f-Resistance.html

Our Contributions

19

Step 1:

Extract

interaction

network

Step 2:

Network

analysis for

deception

and trust

Step 3:

Network

algorithms for

predictions

(1) Network extraction demo:

https://home.cs.dartmouth.edu/~cy/icaf/

(2) Mafia network dataset:

http://snap.stanford.edu/data/comm-f2f-Resistance.html

https://home.cs.dartmouth.edu/~cy/icaf/
http://snap.stanford.edu/data/comm-f2f-Resistance.html

Our context: The “mafia” game

• A game of 7 people who talk to each other

• People have assigned (but unknown) roles:
• Deceivers

• Truth-tellers

• In the end of the two groups
wins

• We also perform surveys during
the game

20

Multi-layered Interaction Networks

21

Key Questions

• RQ1: Does the behavior of Deceivers vary across games?

• RQ2: Do Deceivers and Truth-Tellers have distinct looking patterns?

• RQ3: How does the speaking pattern of Deceivers and Truth-Tellers differ?

• RQ4: Do Deceivers interact differently with other Deceivers compared to
Truth-Tellers?

22

Analysis #1: Deceiver Win vs. Lose Games
• Finding 1: Deceivers are more trusted than Truth-Tellers in the

first 2 rounds in Deceiver-win games.

• Finding 2: Deceivers are identified in the first 2 rounds only in
Deceiver-lose games.

23

Analysis #2: Look-at Network
• Finding 3: Deceivers have a lower entropy and reciprocity of looking.

• However, this is more nuanced: Depends on the game result
• Finding 4: Deceivers and Truth-Tellers have similar entropy and reciprocity of

looking in Deceiver-win games

• Finding 5: Deceivers have lower entropy and reciprocity of looking in Deceiver-lose
games

24

Analysis #3: Speaking Network
• Finding 6: Deceivers speak less and are listened to less.

Depends on the game outcome:

• Finding 7: Deceivers in Deceiver-lose games speak less, not listened
to, and get less attention (weighted indegree) than Truth-Tellers.

• Finding 8: Deceivers and Truth-Tellers in Deceiver-win games have
similar speaking behavior.

25

Analysis #4: Pairwise Interactions
• Finding 9: Truth-Tellers interact equally with everyone.

• Finding 10: Deceivers interact more with Truth-Tellers and ignore
other Deceivers.

26

Answers to Key Questions

• RQ1: Does the behavior of Deceivers vary across games?
• Answer: Deceiver behavior is different in Deceiver-win vs Deceiver-lose games

• RQ2: Do Deceivers and Truth-Tellers have distinct looking patterns?
• Answer: Deceivers in Deceiver-lose games have lower entropy and reciprocity of looking.

• RQ3: How does the speaking pattern of Deceivers and Truth-Tellers differ?
• Answer: Deceivers in Deceiver-lose games speak less and are listened to less.

• RQ4: Do Deceivers interact differently with other Deceivers compared to Truth-
Tellers?

• Answer: Deceivers ignore other Deceivers and interact more with Truth-Tellers.

27

Our Contributions

28

Step 1:

Extract

interaction

network

Step 2:

Network

analysis for

deception

and trust

Step 3:

Network

algorithms for

predictions

Key Prediction Questions

1. Can we accurately identify who is a Deceiver using the networks?

2. What is the length of observation (video/network) needed to make
accurate prediction?

29

Model #1: Temporal Graph Convolution
• Input: Sequence of graph snapshots

• Output: Node labels

• Steps:

1. Run graph neural network model on each network

2. Aggregate outputs from the sequence of graphs
• Aggregations: average, input to LSTM, input to RNN, etc.

30

Graph Neural Networks

Learn how to propagate information across the graph to
compute node features

31

Determine node

computation graph

Propagate and

transform information

𝑖

Idea: Node’s neighborhood defines a
computation graph

The Graph Neural Network Model. Scarselli et al. IEEE Transactions on Neural Networks 2005

Semi-Supervised Classification with Graph Convolutional Networks. T. N. Kipf, M. Welling, ICLR 2017

http://ieeexplore.ieee.org/document/4700287/
https://arxiv.org/pdf/1609.02907.pdf

Graph Neural Networks

32

Each node defines a computation graph
• Each edge in this graph is a transformation/aggregation

function

Inductive Representation Learning on Large Graphs. W. Hamilton, R. Ying, J. Leskovec. NIPS, 2017.

https://cs.stanford.edu/people/jure/pubs/graphsage-nips17.pdf

Our Model #2: Belief Propagation

1. Create a negative network for each 1 second fragment:
• Replace each edge weight wi,j with 1 – wi,j

2. Initialize nodes using a feature vector:
• Node features: Fraction of speaking, entropy of looking at,

in-degree, in-degree while speaking

3. Run till convergence on each network

4. Average 𝑺 scores over all networks/time steps

33

Prediction Results #1
• Task 1: Identify who is a Deceiver using the networks

• Setup: Given 1 minute of interaction network, output the Deceivers

• Setting: 5-fold cross validation results:
• Split by game to avoid label leakage: 80% games are used for training, 20%

testing

34

Method Performance

Emotion 0.538 AUC

Head and eye movement 0.549 AUC

Facial action unit 0.569 AUC

Late fusion 0.587 AUC

Graph Neural Network 0.596 AUC

Belief propagation on negative

network

0.73 AUC

Baselines

Prediction Results #2

• Task 2: Measure impact of network duration

• Result: Performance of our model is consistent with the change in the
length of the segment (still we do 1 network per second)

35

Features

Belief Propagation + Features

Belief Propagation on negative network

Next steps:

• Multimodality: Create multimodal framework to simultaneously
model networks + language + videos

• All modalities depend on one another and have cross-correlations
• Treating them independently is sub-optimal
• This requires creation of new models that leverage all three

components together

• Network modeling of trust and dominance:
• We have shown that networks are useful in detecting deception
• Thus, we will use the networks to predict trust and dominance next

• Existing network models may not be sufficient, so we may create new models

36

Next steps:
• Cross-correlation between trust, deception, and

dominance:
• Social affects are inter-dependent

• We will create a multi-task learning framework based on networks
to simultaneously predict deception, trust, and dominance

• Cultural effects in networks:
• Current network models use all cultures to train and make

predictions

• We will use the networks to elicit culture-specific novelties

• E.g., does our finding “Deceivers avoid looking at one another”
hold for all cultures? 37

Deep Models for Temporal
Networks

@vssubrah, vs@dartmouth.edu 38

Deep Temporal Models

• Goal: Model the time-evolving player behavior

• Our solution: Deep learning model to learn dynamic embeddings
• Mutually-coupled deep neural network model

• Trained to predict future embedding

• KDD 2019: Predicting Dynamic Embedding Trajectory in Temporal
Interaction Networks. S. Kumar, X. Zhang, J. Leskovec.

• Highly accurate in identifying temporal anomalies

• Code and data released to promote research: http://snap.stanford.edu/jodie

39

[KDD 2019]

http://snap.stanford.edu/jodie

Temporal Interaction Networks

Features

[KDD’19]

A flexible way to represent time-evolving relations

Users Products

Time

interaction user item time features

where

Representing as a
sequence of interactions:

Temporal Interaction Networks

[KDD’19]

E-commerce Social media

Finance

Web

Accounts Posts

Time

Features

= text

Education

IoT

Application Domains

Temporal Interaction Networks

[KDD’19]

E-commerce Social media

Finance

Web

Students Courses

Time

Features

= actions

Education

IoT

Application Domains

Problem Setup
Given a temporal interaction network

where

generate an embedding trajectory of every user

and an embedding trajectory of every item

[KDD’19]

interaction user item time features

Goal: Generate Dynamic Trajectory

Output: Dynamic trajectory

in embedding space

Input: Temporal

interaction network

[KDD’19]

1

2

4

3

5

6

Two Fundamental Problems
How to predict future user-item interactions?
Applications:

Recommendation

Network Evolution

Normal behavior modeling

How to detect anomalous change in user state?
Example: Has an account been compromised?

Applications:

Anomaly detection

Device failure prediction

Churn prediction
Ok!Alert!

[KDD’19]

Challenges in Dynamic Trajectories

Challenges in learning:

• C1: How to learn inter-dependent user and item embeddings?

• C2: Model should be able to make predictions at any time. How to
generate embedding for every point in time?

Challenges in scalability:

• C3: During inference, how to make sub-linear time interaction
predictions?

• C4: How to train temporal network in batches, not one-interaction-at-
a-time?

[KDD’19]

Existing Methods

Deep recommender systems
• Time-LSTM (IJCAI 2017)

• Recurrent Recommender Networks (WSDM 2017)

• Latent Cross (WSDM 2018)

Dynamic co-evolution
• Deep Coevolve (DLRS, 2016)

Temporal network embedding
• CTDNE (BigNet, 2018)

Our model: JODIE

[KDD’19]

C1
Co-

influence

C2
Embed

any time

C3
Near

constant

prediction

C4
Train in

batches

Our Model: JODIE
JODIE: Joint Dynamic Interaction Embedding

• Mutually-recursive recurrent neural network framework

• Notations: u(t-) is the embedding before time t. u(t) is embedding at time t.

User RNN Item RNN

Projection

Operator

[KDD’19]

Update

Component

Project

Component

f =

JODIE: Update Component

• Each user has one RNN. All users share the RNN parameters.

Similar for items.

[KDD’19]

User RNN Item RNN

f =

Weight matrices W
are trainable

Projected embedding ෝ𝐮(t+ Δ)

Temporal attention vector w
Time

Δ

JODIE: Projection Component

• Projected embeddings are linear scaling, based on time, of

the observed embeddings

Projected embedding ෝ𝐮(t+ Δ)

[KDD’19]

Temporal attention vector w
Time

Δ

Projected

embeddings

User RNN Item RNN

f =

Challenges in Dynamic Trajectories

Challenges in learning:

• C1: How to learn inter-dependent user and item embeddings?

• C2: Model should be able to make predictions at any time. How to
generate embedding for every point in time?

Challenges in scalability:

• C3: During inference, how to make sub-linear time interaction
predictions?

• C4: How to train temporal network in batches, not one-interaction-at-
a-time?

[KDD’19]

Interaction Predictions: Sub-linear

To predict interactions: which item i ∈ 𝐼 will a user u
interact with at time t ?

• Standard approach:
• Choose

• | 𝑰 | linear computations: expensive during
inference

• How can we make predictions in near-constant
time?

[KDD’19]

Interaction Predictions: Sub-linear

JODIE predicts the item embedding directly
• At inference, output the item with the closest embedding: near-

constant time predictions

• Prediction is done via a fully-connected linear layer

[KDD’19]

Predicted

item

embedding

Projected

embedding

Previous

item

embedding

Bias

JODIE Formulation
Update:

Project:

Predict:

[KDD’19]

Loss:

Predicted item embedding

should be close to the real

item embedding
Smoothness in evolving

embeddings

Standard Training Processes: N/A
Training must maintain temporal order

[KDD’19]

(1)

(2)

(3)

(4)

.

.

.

.
.

.

(1)

(2)

(3)

Split by user (or item):

not allowed

Sequential processing:

not scalable

1

2

3

4

4

32

1 5

6

T-batch: Batching for Scalability

T-batch: Temporal data batching algorithm
• Creates a sequence of batches

• Interactions in each batch are processed in parallel
• Processing the batches in sequence = processing each interaction in sequence

• Main idea: create each batch as an independent edge set

[KDD’19]

T-batch: Batching for Scalability

Batch 2Batch 1 Batch 3

[KDD’19]

1

2

3

4

5

6

2

1

4

3

5

6

In each batch,

edges are the

lowest time-

stamped edges

incident on

the user and

the item

Experiments: Prediction Tasks

• Interaction prediction:
• Given interactions till time t, which item i ∈ 𝐼 will user u interact with

at time t?

• Anomaly detection:
• Will an interaction lead to an anomalous change in the state of user

u?

• Settings:
• Temporal Splits: 60%, 20%, 20%

• Metrics: Mean reciprocal rank, Recall@10, AUROC

[KDD’19]

Code and Data: https://snap.stanford.edu/jodie

https://snap.stanford.edu/jodie

Datasets

[KDD’19]

Code and Data: https://snap.stanford.edu/jodie

0.05%

0.14%

0.99%

% State

Changes

Rare events!

https://snap.stanford.edu/jodie

Experiment 1: Interaction Prediction

JODIE outperforms baselines by > 20%

Mean

Reciprocal

Rank

0.0

1.0

Latent

Cross

0.42

0.18

Time-

LSTM

0.60

RRN

0.73

0.39

0.17

CTDNE Deep

Coevolve
JODIE

0.2

0.4

0.6

0.8

[KDD’19]

Experiment 2: Anomaly Detection

JODIE outperforms all baselines by >12%

Average

AUROC

0.5

1.0

Latent

Cross

0.63
0.18

Time-

LSTM

0.65

RRN

0.73

0.65 0.64

CTDNE Deep

Coevolve
JODIE

0.6

0.7

0.8

0.9

[KDD’19]

Experiment 3: T-batch Speed-up

T-batch leads to 8.5x speed-up in training

5.1 minutes

44 minutes

JODIE without

t-Batch

JODIE with

t-Batch

Running

Time

0

50

10

20

30

40

8.5x

speed-up

[KDD’19]

Project website: https://snap.stanford.edu/jodie

JODIE generates and projects

embedding trajectories

Mutually-recursive RNN

framework with

temporal attention

• T-batch: 8.5x training speed-up

• Efficient in interaction prediction

and anomaly detection

• Extendible to > 2 entity types

https://snap.stanford.edu/jodie

