CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

Day 10 — Info Retrieval







Sets are an unordered collection of items

without duplicates

Set
 Model for mathematical definition of a Set
e Like a List, but:
e Unordered (no Ot item, can’t set/get by position)
* No duplicates allowed
* Operations:
+ add(E e) —adds e to set if not already present
« contains(E e) — returns true if e in Set
- isEmpty () — true if no elements in Set, else false
- Iterator<E> iterator () — returns iterator over Set
« remove (E e) —removes e from Set
. size() —returns number of elements in Set




Trees are one way to implement Sets

Sets implemented with Trees

* Could implement as a List, but linear search time

* Trees are a natural way to think about implementation

* Given key, easy and fast to determine if item in list as in
the contains method

. add must make sure duplicates are not allowed (Java
documentation cautions that behavior is undefined if
elements are mutable)

* Soon we will see another way to implement a Set using a
hash table



We can use a Set to easily count unique

words in a body of text

UnigueWords.java
* Pretend page was loaded from a web page
* allWords holds each word from page after tokenizing
* Loop over each word in allWords and add to Set
uniqueWords
* Duplicates overwritten
* Print results






Maps associate a key with a value

Maps

* Python people think Dictionary

* Key is something used to look up a value (ex., student ID)
e Value could be an object (e.g., a person object)

* Operations:

containsKey (K key) —true if key in Map, else false
containsValue (V value)— true if one or more keys contain value
get (K key) — returns value for specified key or null

isEmpty () — true if no elements in Map

keysSet () —returns Set of keys in Map

put (K key, V value) — Store key/valuein Map; overwrite
existing

remove (K key) —removes key from Map

size () —returns number of elements in Map



Trees are one way to implement Maps

Maps implemented with Trees
* Could implement as a List, but linear search time
* Like Sets, trees are natural way to think about implementation
* Problem: no easy way to implement containsvaiue() (but
containsKey () IS easy!)
e Could search entire tree for value,
* Problem: linear time
* Could keep a Set of values and search it
* Problem: a value could be stored with multiple keys, so if
delete key, can’t delete value from Set
e Solution: keep another Map with counts of values
* When adding a value, increment its count
* When deleting a key, decrement value count
* Now have log time search for value (if tree kept balanced)

8



We can use a Map count how many times

a word appears in a body of text
UniqueWordCounts.java

Count how many times each word appears
Pretend page was loaded from a web page
wordCounts maps String (word) to Integer (count of
each word)
allWords holds each word from page after tokenizing
Loop over each word in allWords
* Check if word already in Map

* True: increment count by getting value, then

add 1

* False: put word with count 1

Print results



A Map can also contain a List associated

with each key

UniqueWordPositions.java

Count what position where each word appears
Pretend page was loaded from a web page
wordPositions maps String (word) to List of Integers
(so we can have more than one integer per key)
allWords holds each word from page after tokenizing
Loop over each word in allWords
* Check if word already in Map

 True: add position i to List for this key

* False: create new Arraylist, add j to it, store in

Map

Print results

10



The same concept can apply to reading

data from different files

UniqueWordPositionsFile.java
 Same as unigueWordPositions.java except reads
from file
* loadFilelntoString(filename) returns text from
filename into a string
* Create BufferedRader in
* Initialize str (accumulator) and line
 Read filename line by line
e Assigns line in the while loop expression (yuck)
e Tests for null (end of file)
* Appends line read onto str
* Returns str

11



12



The same concept can apply to reading

data from different files

Search.java
* Reads text from several Shakespeare works

* Create 4 four Maps:

e file2WordCounts: filename->(map word->count)

* numWords: filename-># words in file

e totalCounts: word-> count over all files

* numfFiles: word -> # files containing it
* |oadFile(File file) —fill file2WordCounts and

numWords for each file
 computeTotals() — fill totalCounts and numFiles (must

be done after all files have been loaded!)

13



The same concept can apply to reading

data from different files

Search.java
e User interface
 Type a word to see how many times it appears in
each file (e.g., nay or love)
* #ntogetnmostcommon words
e Can restrict to just a single file with #n (e.qg., # 10
hamlet.txt)
 #-nto getthe least common
e printWordCounts() sorts and prints
e Custom comparator, WordCountComparator()
to sort entries to print
* Looks at sign of number to print and gets top
or tail of list -



The same concept can apply to reading

data from different files

Search.java
e User interface
e Can search for multiple words (forsooth and forbear)

15



