CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

Day 11 — Hashing

2. Computing Hash functions

3. Handling collisions
1. Chaining
2. Open Addressing

The old Sears catalog stores illustrate how

hashing works
Sears store implementation of hash table

100 slots behind order desk, 0...99

Shipments arrive, details of where item stored in
warehouse put in slot by last two digits of customer phone
Customer arrives, clerk asks for last two digits of phone
Given two-digit number, clerk finds slot with that number
Clerk searches contents of that slot only

Could be multiple orders, but can find the current
customer’s order quickly because only a few orders in slot
This splits a set of (possibly) hundreds or thousands of
orders into 100 slots of a few items each

Trick: find a hash function that spreads customers evenly
Last two digits work, why not first two? i

The store is using a form of hashing based

on customer’s phone number

Hashing phone numbers to find orders

Goal: given phone number, j
quickly find orders 00

01

\ 0 |
J Search only

03 |—
Phone Hash small
—_—

number function . number of
/ . orders
Output: slot index o8 E j
(last two phone |
number digits = slot)
Fixed size Customer

table orders 4

Can use the same idea to create Sets and

Maps with better performance than Trees

Sets and Maps implemented with Trees

Set Map
contains (object) — true if has object containsKey (key) — true has key
e Search for object in Tree e Search for key in Tree
* O(h) e O(h)
add (object) — puts object in Set put (key,value) — puts value in Map
* Search for object in Tree stored by key
* |nsert at leaf if not e Search for key in Tree
* O(h) * Update value if found

e |nsert value at leaf if not
 O(h)

Can use the same idea to create Sets and

Maps with better performance than Trees

High level overview of Hash tables Hash table

* Begin with fixed
00 ,
” size Hash table to

Map] hold items we want
02 .
Key > to find

03
Hash. Hashcode . e Use hash function
function i
on Key or Object to

Set .
Object —>-/ give index into
. Hash table

m-2
Big idea: — 1 ° Get item from Hash
Hashing maps an object . _ table at index given
to a table index Fixed size by hash function
Hash table

O(1) ’

1. Hashing
» 2. Computing Hash functions

3. Handling collisions
1. Chaining
2. Open Addressing

Good hash functions map keys to indexes

in table with three desirable properties

Desirable properties of a hash function
1. Hash can be computed quickly and consistently

2. Hash spreads the universe of keys evenly over the
table

3. Small changes in the key (e.g., changing a character

in a string or order of letters) should result in
different hash value

Suppose we used the first letter of people’s

names to hash, how would that work?

First letter of name as hash
1. It can be computed quickly
Yes

2. It spreads the universe of keys evenly over the table
No

3. Small changes in the key (e.g., changing a character
in a string or order of letters) should result in
different hash value
Not really. Different, if change first letter,
otherwise not.

Hashing is often done in two steps to map

an object to a table index

Hashing as a two step process

Map \ Hashcode
Key » integer

Hash | [-inf... +inf]l Compression

Integer [0...m]

function function
Set
Object —>-/
Step 1: Hash an object Step 2: Constrain the
to an integer integer hashcode to a

table index

10

Compression function maps hashcode to

table index

Hashing as a two step process

Map \ Hashcode
Key » integer

Hash | [-inf ... +inf]] Compression
function function

Set
Object —j /

Integer [0...m]

Division method:

hashcode mod m

Works well if m is prime
MAD is a more complicated

version

11

Hash function maps objects to an integer

Hashing as a two step process

Map \ Hashcode
Key q integer

Hash | [-inf... +inf]f Compression

Integer [0...m]

function function
Set
Object —>~/
For some types can For longer types, such as arrays
just cast to integer or Strings, need a better solution
Works for byte, short, Convert object to integer with

int, and char polynomial function

12

The polynomial method is often used for
hashing more complex objects

Hashing complex objects
 Consider array of length s

* Pick prime number a (book recommends 33, 37, 39 or 41)
 Convert each array item to integer representation
e C(Calculate polynomial hashcode as x,a»! + x,am2 + .. x_,a + x__,

 Use Horner’s rule to effeciently compute hash code

public int hashCode () {
final int a=37;

int sum = x[0]; //first item in array
for (int J=1;73<s;j++) {
sum = a*sum + x[J]; //array element]

}

return sum;

}
 Experiments show that when using a as above, 50,000

English words had fewer than 7 collisions

13

Java uses hashCode method and a

compression function to find table index

Hash function + compression function
 Works well if

table size is
\ prime
Integer |Rashcode Table Books gives
ObjGCt—) hashCode - ° . d e SOIUtion if not
hashcode|table index)
- prime
/ slze
e Java handles
Hash function: Compression compression
Objects must implement function for us (take
hashCode (default CS30 for
more)

returns memory address)

14

We should override hashcode to use

objects as keys for Maps and Sets

hashCode for composite objects as keys

* InJava, all objects implement a hashcode function

e By default Java uses the memory address of the object as a
hashcode and then compresses that to get a table index

* We want to hash based on values in object, not whatever memory
location an object happened to be assigned

* This way two objects with same instance variables will map to the
same table location (those objects are equal)

 Composite objects have several instance variables or are Strings or
arrays or ...

* Could just add all instance variables, but that wouldn’t work well
because changing order of items doesn’t change hash (e.g. String)

 Can compute a polynomial based on composite object

e |f you use Java’s built in types (e.g., Strings, integers, doubles) as
keys, you can use Java’s hashcode methods 1

5

If you override equals, you must also

override hashCode
Equals

By default, Java will compare memory addresses to determine if two
objects are equal

Only equal when two objects point to the same memory address
We can override equals to compare each instance variables in two
objects (e.g., two Blobs, check both have same x, y, and r)

public boolean equals (Blob b2) {

if (this.x != b2.getX()) return false;
1f (this.y !'= b2.get¥()) return false;
1f (this.r != b2.getR()) return false;

return true;

}

If don’t override hashcode function, even if equal according to code
above, Java will use the memory address and look in the wrong slot

16

1. Hashing
2. Computing Hash functions
» 3. Handling collisions

1. Chaining
2. Open Addressing

17

Collisions happen when multiple keys map

to the same table index

Integer keys

Given table sizem =13

Compute h(key) = (key % m)

Example
* h(6)=6

"
‘LD‘OO‘\I (O] h‘w\w‘la\o

10
11

12

Collisions happen when multiple keys map

to the same table index

Integer keys

Given table sizem =13

Compute h(key) = (key %m)

Example
* h(6)=6
 h(8)=8

"
‘LD ~ (O] h‘w\w‘la\o

10
11

12

Collisions happen when multiple keys map

to the same table index

Integer keys 0

Given table sizem =13

Compute h(key) = (key %m) 4

Example

* h(6)=6
 h(8)=8
 h(15)=2

10
11

12

Collisions happen when multiple keys map

to the same table index

Integer keys 0

Given table sizem =13

Compute h(key) = (key %m) 4
5
Example _ Collision!
* h(6)=6 - 6 and 19 mapped to
e h(8)=8 the same index
e h(15) =2 .
¢ h(19)=6

10
11

12
m=13 .

1. Hashing
2. Computing Hash functions
3. Handling collisions

» 1. Chaining

2. Open Addressing

22

Chaining handles collisions by creating a

linked list for each table entry

Chaining g
> /] T (k]
/
/
/ P -
>/ k| T [k T [&]/
/
/| k| /
/ k| T The[/
/

 Create a table pointing to linked list of items that hash to
the same index

* Slotiholds all keys k for which h(k) =i

23

Load factor measures number of items in

the list that must be searched on average

Chaining o
/ k| L k|
/
/
/
> /| ks L k| 9L (5]
/
——— /| k| /
——>{ /[k] T (k6] /
/

 Assume table with m slots and n keys are stored in it

 On average, we expect n/m elements per collision list

 Thisis called the load factor (A)

 Sosearch timeis ©(1+A), assuming simple uniform
hashing (each possible key equally likely to hash into a
particular slot), worst case is 0(n) “

Is the load factor gets too high, then we

should increase the table size

Chaining s
/ k| T k|
L
4
£
> / | ks L |k < | k7|7
/
——— /| k| /
——>1/ | k| T [k]/
/

 If n(# elements) becomes larger than m (table size), then
collisions are inevitable and search time goes up
 Javaincreases table size by 2X and rehashes into new

table when A > 0.75 to combat this pro
* Problem: memory fragmentation with

blem
ink lists spread out

all over, might not be good for embedc

ed systems ”

1. Hashing
2. Computing Hash functions
3. Handling collisions

1. Chaining
»2. Open Addressing

26

Open addressing is different solution,

everything is stored in the table itself

Open addressing using linear probing

 |nsertitem at hashed index (no linked list)

* For key k compute h(k)=i, insert at index i

* |f collision, a simple solution is called linear probing
* Tryinserting at /+1
e |Ifsloti+1 full, try i+2... until find empty slot
 Worap around to slot O if hit end of table at m-1
 |f A<1 will find empty slot
* IfA=1,increase table size (m*2)

 Search analogous to insertion, compute key and

probe until find answer or empty slot (key not in
table)

27

Linear probing is one way of handling

collisions under open addressing

Integer keys 0

Given table sizem =13

Compute h(key) = (key %m) 4

Example

* h(6)=6
 h(8)=8
 h(15)=2

10
11

12

Linear probing is one method of open

addressing

Integer keys 0

Given table sizem =13

Compute h(key) = (key %m) 4

5

Example _ Collision!

h(6) =6 »
h(8) =8

h(15) = 2
h(19) = 6

9
10
11

12

m=13 7

Linear probing is one method of open

addressing

Integer keys

Given table sizem =13
Compute h(key) = (key %m)

Example
h(6) =6
h(8) =8
h(15) =2
h(19) =6

10
11

12

13

Insertati+l1 =7

30

Deleting items is tricky, need to mark

deleted spot as available but not empty

Problems deleting items under linear probing

* Insertk,, k,, and k; where h(k,)=h(k,)=h(k;)

 All three keys hash to the same slot in this example

* kyinsloti, k, insloti+1, k; in slot j+2

* Remove k,, creates hole at i+1

* Search for k,
* Hashk;to i, slotiholds k;#k,, advance to slot j+1
* Find hole at i+1, assume k; not in hash table

 Can mark deleted spaces as available for insertion,
and search moves on from marked spaces

 This can be a problem if many deletes create many
marked slots, search approaches linear

31

Clustering of keys can built up and reduce

performance

Clustering problem
* Long runs of occupied slots (clusters) can build

up increasing search and insert time

* Clusters happen because empty slot preceded by
t full slots gets filled with probability (t+1)/m,
instead of 1I/m (e.g., t keys can now fill open slot
instead of just 1 key)

* Clusters can bump into each other exacerbating

the problem

32

Clustering of keys can built up and reduce

performance

Integer keys

Given table sizem =13
Compute h(key) = (key %m)

Example

* h(6)=6
 h(8)=8
 h(15)=2
* h(19)=6

10
11

12

S—

13

Hashing 6,7,8, or 9
go into index 9

Makes index 9 more

likely to be filled
than other slots

33

Double hashing can help with the

clustering problem
Double hashing

Use two hash functions h; and h, to make a third h’
h’(k,p)=(h,(k) + ph,(k)) mod m, where p number of
probes

First probe h,(k), p=0, then p incremented by 1

If collision, next probe is offset by h,(k), then mod m
Need to design hashes so that if h,(k,)=h,(k,), then
unlikely h,(k,)=h,(k,)

34

Run time complexity is O(1/(1-A))

Insert and search time

Run time gets large as A gets large

If table 90% full, then need about 10 probes for
insert or unsuccessful search

Successful search completes a little faster, about 2.5

probes (math on course web page)
This means we need to grow table to keep it sparsely
populated or performance suffers

35

