CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

Day 12 — Keeping order




2. Queues



Stacks are a Last In, First Out (LIFO) data

structure

Stack overview
* Think of stack of dinner plates (or Pez dispenser)
e Additem to the top, others move down
* Toremove, take top item (last one inserted)
e Commonly used in CS — function calls, paren
matching, ...
* Operations
push— add item to top of stack
pop — remove top item and return it
peek — return top item, but don’t remove it
isEmpty — true if stack empty



Stack in action

Initially empty

Stack



Stack in action

Push 1

Operations
Push 1




Stack in action

Push 12

Operations
Push 1
Push 12




Stack in action

Push 5

Operations
Push 1
Push 12
Push 5

Top

Stack



Stack in action

Operations
Push 1

Push 12

Push 5

Pop —return 5

Top

Stack



Stack in action

Push 7

Operations
Push 1

Push 12

Push 5

Pop —return 5
Push 7

Top

Stack



Stack in action

Pop —return 7

I

Top

Stack

Operations
Push 1

Push 12

Push 5

Pop —return 5
Push 7

Pop —return 7

10



Stack in action

Pop —return 12

—

12

Stack

Operations
Push 1

Push 12

Push 5

Pop —return 5
Push 7

Pop —return 7
Pop —return 12

11



Stack in action

Pop —returnl /_(_>

Operations
Push 1

Push 12

Push 5

Pop —return 5
Push 7

Pop —return 7
Pop —return 12
Pop —return 1

Top 3
Stack

12



Stack in action

Pop — throw exception

Operations

Push 1

Push 12

Push 5

Pop —return 5

Push 7

Pop —return 7

Pop —return 12

Pop —return 1

Top | Pop — throw exception

Stack

13



SimpleStack.java is an interface defining

Stack operations

SimpleStack.java
* Interface that mandates Stack operations

14



We can use the simple stack to easily

match parens in a string

MatchParens.java
* Define what constitutes an open and a close paren
* check(String s)
* Creates new stack of integers called opened
* Loop over all charactersins
* If sin open parens, push idx (paren type) on to
stack
* If sin close parens,
* If opened empty, then string is invalid
because we have a close with an open
* Else if pop() #idx then didn’t match
e If stack empty after all chars checked, then all
parens match

15



We can implement a Stack using an array

Stack array implementation

 Create array and set top =-1

e To push(T elmt), add 1 to top and stack[top] = eImt

 To peek() return stack[top], if top >=0

« To pop(), do peek() and set top -= 1

 Implementation is O(1) for all operations, never
need to move items

 Might run out of space using an array

 Can use Arraylist and not run out of space
 To push(), add on to end
e To pop(), remove from end

16



An ArrayList implementation makes sure

the Stack does not run out of space

ArrayLlistStack.java
* Implements SimpleStack
e Arraylist keeps track of top for us with size!
* main()
e Set breakpoints and run
e Adds are O(1), but might need to resize the array, so
amortized O(1), some times takes longer

17



A Singly Linked List also works well for a

Stack, using top as head of list

SLLStack.java
* Implements SimpleStack
* Top of stack is head
* Implementation is straight forward
* push() adds to front
e pop() removes from front
* All operations O(1)
* Never have empty space list an array implementation

18



1. Stacks

» 2. Queues

19



Queues are a First In, First Out (FIFO) data

structure

Queue overview
 Think of line at a store, join in back, leave from front

 Used in simulations, queuing print jobs, running jobs, could
have used it for PS-1 to visit neighbor pixels
* Operations
enqueue— add item at rear of queue
dequeque — remove and return first item in queue
front — return first item, but don’t remove it
isEmpty — true if queue empty
* Java uses different names (first ones throw errors, seconds
ones return false if unable to complete)
enqueue == add() and offer()
dequeue == remove() and poll()
front == elemen t() and peek()

20



Queues can be implemented with Singly

Linked List using head and tail pointers

Queue implementation
e Easytoremove from head
 Use tail to add to back of queue
 Set new element next to null
* Set previous tail next to new element
 All operations O(1)

head — — tail

data next data next data next

R i

“Alice” “Bob” “Charlie”

21



All operations on a Singly Linked List

implementation are O(1)

SLLQueue.java
* Implements SimpleQueue, tracks head and tail
* enqueue(T item)
e IfisEmpty(), set head and tail to item
e Else tail.next = new Element, tail=tail.next
dequeue()
* Check for isEmpty()
* Save head.data in temporary item
* head = head.next
* returnitem
front()
* Return head.data
* Run

22



Arrays are seemingly unpromising as a

Queue data structure, but it can work well

Array implementation
* Could enqueue at back, dequeue from front
enqueue IS fast, just add item to end O(1)
dequeue must move all elements left one space O(n)
e Could engueue at front and dequeue from back
enqueue Must move all elements right one space O(n)
dequeue is fast, just take last item O(1)
e Could track rfront and rear indexes (circular array)
enqueue at r, thenincrement r
dequeue at £, thenincrement r
e If r orr > m-1, wrap around to empty spaces at front
e Full or empty when r==r (use empty space or track count
of items)
enqueue and dequeue O(l)

23



Array implementing a Queue using index

for front and rear

Array implementing Queue

Empty f==r, size = 0

24



Array implementing a Queue using index

for front and rear

Array implementing Queue

enqueue (a)

enqueue (h)

25



Array implementing a Queue using index

for front and rear

Array implementing Queue

dequeue ()
dequeue ()

26



Array implementing a Queue using index

for front and rear

Array implementing Queue

enqueue (1)
enqueue (7))
Wrap around r to front empty spaces due to prior dequeue operations

27



Array implementing a Queue using index

for front and rear

Array implementing Queue

Enqueue (k)

Enqueue (1)

Queueisfull f == r andsize != 0
How would extending array size work?

Start with £ and copy to end of array (2-9), then copy fromOtor-1 (0and1) 28



