CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

Day 13 — Prioritizing

» 1. Priority queues

2. Java’s priority queue
3. Reading from a file

4. ArraylList implementations

We can model airplanes landing as a queue

Airplanes queued to land

Each airplane
assigned a
priority to
land in order
e of arrival

b

First in
pattern, first
to land

Sometimes higher priority issues arise and

we need to change order

Airplanes queued to land

I’'ve got an
emergency

Suddenly one
aircraft has an
in flight
emergency,
and needs to
land now!

Need a way to
go to front of
queue

Enter the
priority queue

4

Priority queues add the ability to extract

the highest priority item
Min Priority Queue Overview
 Lowest priority number are removed first (you are
number 1 for landing)
 (Can be used for sorting (put everything in, then
extract lowest priority number, one at a time, until
gueue empty)
* Used extensively in simulations and scheduling
* Minute 1, factory machine starts job, will end at
current time + 10 mins (minute 11)
* Minute 2, another job starts and will end at
current time + 3 mins (minute 5)
* Priority queue tells us job 2 will finish first, at
minute 5, no need to check minute 2,3,4...

5

Priority queues have operations for adding

and removing items

Min Priority Queue Operations
* jsEmpty() — true if no items stores

* jnsert() —insert an element in priority queue

* minimum() — return element with smallest key, but
leaves the element in priority queue

e extractMin() — return and remove element with
smallest key

 decreaseKey() — reduce priority value of item so it is
chosen more quickly :

Interface is specified in

MinPriorityQueue.java

MinPriorityQueue.java

* Interface for min priority queue

* Each element has value
e Called key, but used to evaluate priority
* Will be used to remove lowest key

* Element type must extend Comparable<E> so we can
tell which key is lowest using compareTo() function
(built in for Strings, Integers, etc, otherwise need to
implement ourselves)

* Can also have max priority queue, just reverse the

compareTo()

1. Priority queues
» 2. Java’s priority queue
3. Reading from a file

4. ArraylList implementations

Java implements a PriorityQueue, but with

non-standard names

Java’s Min Priority Queue Operations
 jnsert==add

* minimum == peek
e extractMin == remove

* ISEmpty == IsEmpty

If we use our own PriorityQueue, we need

to provide way to compare objects

Student.java
* Three ways to compare objects

* Method 1: provide a compareTo method
e Students have name and year

e @Override compareTo in Student class

Compare this student’s name with param Student
Use String’s built in compareTo() to compare
names and return -1, O, +1
name.compareTo(s2.name)

Run

* First demo ArrayList

* Then addAll students to PriorityQueue

e Remove one at a time (essentially sorting) *

There are several ways to implement the

comparator

Student.java
Method 2
Create a custom compator class that implements

Comparator, instantiate, and pass to PQ constructor:

class NameLengthComparator implements
Comparator<Student> {
Public int compare (Student sl1, Student s2) {
return sl.name.length() — sZ2.name.length ()

}
}

Comparator<Student> lenCompare = new
NameLengthComparator () ;
Pg = new PriorityQueue<Student> (lenCompare)

11

There are several ways to implement the

comparator

Student.java
Method 3

Use anonymous function

* Allows function in middle of code without giving

it a name

Pg = new PriorityQueue<Student>((Student sl,
Student s2) -> sl.year — sZ.year);

* Method body comes after ->

 Anonymous functions sometimes called Lambda
expressions

12

1. Priority queues

2. Java’s priority queue
» 3. Reading from a file

4. ArraylList implementations

13

Use a BufferedReader to read a file line by

line until reaching the end of file

Reading from a file

BufferedReader input = new BufferedReader (new FileReader (fileName))
String line;

int lineNum = 0;

while ((line = input.readLine()) != null) {
System.out.println ("read @"+lineNum+" "+line+"'");
lineNum++;

}

+ BufferedReader Oopens file with name riiename
* Reading will start at beginning of file

* Each line from file stored in 1inein while loop
« input.readLine Will return null at end of file
 Here we are just printing each line

14

When reading files, we need to be ready to

handle many different exceptions

Roster.java

. We try-catch the attempt to open the file, in case it's not there. Note that
this requires splitting up the declaration of the variable from its initial
assignment, so that the declaration sits outside of the try-catch.

. We try-catch the loop to read from the file, in case something goes wrong
during reading.

. We test the number of comma-separate pieces in a line, and we try-catch
the extraction of an integer from the second piece.

. We try-catch the closing of the file.

. One note: if we didn't want to print out the message for 10 error while
reading, we could have dropped the "catch" clause and instead put a
"finally" clause that would be executed in either case (exception or not).
This clause would wrap up the whole block of code to close the file, to
ensure an attempt at closing in normal or exceptional circumstances. But
then the method would pass the IO exception on up the line. That's
illustrated in readRoster2.

15

1. Priority queues
2. Java’s priority queue
3. Reading from a file

» 4. Arraylist implementations

16

We can implement a PriorityQueue with an

unsorted ArrayList

Unsorted ArraylList implementation

15 6 9 27

Keep elements unsorted in ArrayList

17

We can implement a PriorityQueue with an

unsorted ArrayList

Unsorted ArraylList implementation

15 6 9 27

Inserting new items — just tack on to end

Operation Run Notes

time
isEmpty O(1) Returnsize
insert O(1) Add on to end (amortized)
minimum O(n) Must loop through all elements to find

extractMin (Q(n) Loop through all elements and move to fill hole

decreasekKey (O(1) Justupdate value 18

We can implement a PriorityQueue with an

unsorted ArrayList

Unsorted ArraylList implementation

extractMin — get smallest and move last item to smallest index

Operation Run Notes

time
isEmpty O(1) Returnsize
insert O(1) Add on to end (amortized)
minimum O(n) Must loop through all elements to find

extractMin (Q(n) Loop through all elements and move to fill hole

decreasekKey (O(1) Justupdate value 19

We can implement a PriorityQueue with an

unsorted ArrayList

Unsorted ArraylList implementation

15 12 9 27

extractMin — get smallest and move last item to smallest index

Operation Run Notes

time
isEmpty O(1) Returnsize
insert O(1) Add on to end (amortized)
minimum O(n) Must loop through all elements to find

extractMin (Q(n) Loop through all elements and move to fill hole

20

We can implement a PriorityQueue with an

unsorted ArrayList

ArraylListMinPriorityQueue.java

e Class Implements MinPriorityQueue interface

 Element type must provide Comparable

* Elements kept in Arraylist list of type E

* indexOfMinimum() returns index of smallest item in list
* Loop through all elements compare with smallest so far
* If smaller, then update index of smallest
* Return smallest index

 minimum() uses indexOfMinimum with get to return smallest

element

e extractMin()
* Get smallest item
* Move last item into hole created by removing smallest
* Return smallest

21

We can improve extractMin by using a

sorted List, but inserts take more time

Sorted ArrayList implementation

27 15 9 6

Keep elements sorted in ArrayList with smallest at end

22

We can improve extractMin by using a

sorted List, but inserts take more time

Sorted ArrayList implementation

27 15 9 6

Keep elements sorted in ArrayList with smallest at end

23

We can improve extractMin by using a

sorted List, but inserts take more time

Sorted ArrayList implementation

27 15 9 6

Keep elements sorted in ArrayList with smallest at end

24

We can improve extractMin by using a

sorted List, but inserts take more time

Sorted ArrayList implementation

27

15 9 6

Keep elements sorted in ArrayList with smallest at end

Operation

1sEmpty
insert
minimum

extractMin

Run

time
O(1)
O(n)
O(1)
O(1)

Notes

Return size, same as unsorted
Insert in place and move other items right
Get last element

Get last element, no need to move items

25

We can improve extractMin by using a

sorted List, but inserts take more time

SortedArrayListMinPriorityQueue.java
* jinsert() —store in decreasing order so last item is the smallest
* O(n) to find place to insert into list with add(index, element)

 minium() and extractMin() now just get the last item
* 0(1)

* Generally the same number of inserts as extracts, so no real
gain, unless just looking for min without extracting

e We will do better next class!

26

