CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

Day 14 — Prioritizing 2

2. Heap sort

Heaps based on Binary Trees

Tree data structure

Root node
__ Parent to two children

|
Edge
Child node of root
. Parent node to child below

éﬁlr\xterior node
NS C
N _ _/ Leaf (or external) node

In a Binary Tree, each node has 0, 1, or 2 children
Height is longest path from root to leaf
Each node has a key and a value

Heaps have two additional properties

beyond Binary Trees: Shape and Order

Shape property keeps tree compact

Next node
added here

Adding nodes

* Nodes added from left
to right

* New level started only
once a prior level is filled

e “Complete” tree

* Makes height as small as
possible —log, n

* Prevents “vines”

The shape property makes an array a

natural implementation choice
Array implementation

Nodes stored in array

* Nodestored atindex i

* Parent atindex (i-1)/2

e Left child at index i*2 +1
* Right child at index i*2+2

01 2 3 4 5 6 7 8 9
16/14|110(8 | 7]9|3|2(|4]1

Node 3 containing 8

e j=3

* Parent=(3-1)/2=1

e Leftchild=3*2+1=7
e Right child =3*2+2=8

Heap-Order property specifies the

relationship between nodes

Heap-Order property

Max heap
¥V nodes i # root,

value(parent(i)) = value(i)

Min heap
¥V nodes i # root,
value(parent(i)) < value(i)

Root is max (or min) of entire
tree

Any node is max (or min) of
subtree below that node

Inserting into max heap must keep both

shape and order properties intact

Max heap insert
Insert 15

* Shape property: fill in next
spot in left to right order
(index i=10)

01 2 3 4 5 6 7 8 9
16/14|110(8 | 7]9|3|2(|4]1

Next node
added here

Inserting into max heap must keep both

shape and order properties intact

Max heap insert
Insert 15

* Shape property: fill in next
spot in left to right order
(index i=10)

01 2 3 4 5 6 7 8 910
16(14{10{8 |7 |9 |3 |2|4|1[I5

* Order property: parent must
be larger than children

 Can’t keep 15 below 7

* Swap parent and child

Inserting into max heap must keep both

shape and order properties intact

Max heap insert

Insert 15

* Shape property: fill in next
spot in left to right order
(index i=10)/\

o 1 2 3 4 5 6 7 8 9 10

16(14(10{8 |7 |93 |2|4]|1]I5

* Order property: parent must
be larger than children

 Can’t keep 15 below 7

* Swap parent and child

* Parentis atindex (i-2)/2 =4

9

We may have to swap multiple times to get

both heap properties

Max heap insert
Insert 15

e Shape property: good!

* Order property: parent must
be larger than children, not
met

0 1 2 3 4 5 6 7 8 9 10
16(14{10| 8 |15|9 |3 |2 |4 |1 |7

T/

* Swap parent and child
 Child is atindex i=4
e Parent at (i-1)/2=1

10

Eventually we will find a spot for the newly

inserted item, even if that spot is the root

Max heap insert
Insert 15

e Shape property: good!
* Order property: good!
* Done

0 1 2 3 4 5 6 7 8 9 10
16(15{10| 8 |14|9 |3 |2 |4 |1 |7

General rule
* Keep swapping until order
property holds again

11

extractMax means removing the root, but

that leaves a hole
extractMax

extractMax

* Max position is at root
(index 0)

* Removing it leaves a hole,
violating shape property

o 1 2 3 4 5 6 7 8 9 10

15/110{ 8 |14{9 |3 |2|4|1]|7

e Also, bottom right most node
must be removed to maintain
shape property

* Solution: move bottom right
node to root 12

Moving bottom right node to root restores

shape, but not order property

extractMax

After swap
e Shape property: good!

* Order property: want max at
root, but do not have that

1 2 3 4

5

6

7

3 9

15/10| 8 |14

9

3

2

411

Left and right subtrees still

valid

Swap root with larger child
Will be greater than new root
and everything in subtree

13

May need multiple swaps to restore order

property

extractMax

After swap 15 and 7

e Shape property: good!

e Order property: invalid

* Swap node with largest child

o 1 2 3 4 5 6 7 8 9
15]7(10|8 (14|93 (2|41

L/

14

Stop once order property is restored

extractMax
After swap 7 and 14

e Shape property: good!
* Order property: good!

15/14/10(8 | 7193 (2|41

15

HeapMinPriorityQueue implements a

heap- based Min Priority Queue

HeapMinPriorityQueue.java
e Storeitems in an Arraylist called heap
* Helper functions parent(), left(), right() calculate indexes of
these locations given node index
* swap() exchanges places of two nodes
e extractMin()
* Remove item at index O
 Copy lastitem toindex O
* Remove last item
* Restore heap property by repeated swapping in
minHeapify()
e jinsert()
 Additem to end of heap
 Repeated swap with parent if element smaller
* Run

16

Run time analysis shows the heap

implementation is better than previous

Unsorted Sorted
Operation Heap ArraylList ArraylList
iSEmpty O(1) O(1) O(1)

iIsEmpty()
 Each implement just checks size of ArrayList; O(1)

17

Run time analysis shows the heap

implementation is better than previous

Unsorted Sorted
Operation Heap ArraylList ArraylList
iSEmpty O(1) O(1) O(1)
insert O(log,n) O(1) O(n)

insert()

Heap: insert at end O(1), then may have to bubble up
height of tree; O(log,n)

Unsorted Arraylist: just add on end of ArrayList; O(1)
Sorted Arraylist: have to find place to insert O(n), then do
insert, moving all other items; O(n)

18

Run time analysis shows the heap

implementation is better than previous

Unsorted Sorted
Operation Heap ArraylList ArraylList
iSEmpty O(1) O(1) O(1)
insert O(log,n) O(1) O(n)
minimum O(1) O(n) O(1)

minimum()

* Heap: return item at index O in ArrayList; O(1)

* Unsorted Arraylist: search Arraylist; O(n)

e Sorted Arraylist: return last item in ArrayList; O(1)

19

Run time analysis shows the heap

implementation is better than previous

Unsorted Sorted
Operation Heap ArraylList ArraylList
iSEmpty O(1) O(1) O(1)
insert O(log,n) O(1) O(n)
minimum O(1) O(n) O(1)
extractMin O(log,n) O(n) O(1)

extractMin()

 Heap: return item at index 0, then replace with last item,
then bubble down height of tree; O(log,n)

* Unsorted Arraylist: search Arraylist, O(n), remove, then
move all other items; O(n)

e Sorted Arraylist: return last item in ArrayList; O(1) 0

1. Heaps

» 2. Heap sort

21

Using a heap, we can sort items “in place”

in a two stage process

Heap sort

Given array in unknown order
1. Build max heap in place using array given
e Start with last non-leaf node, max heapify node and children
 Move to next to last non-leaf node, max heapify again
 Repeat until at root

 NOTE: not necessarily sorted, only know parent > children
and max is at root

2. Extract max (index 0) and swap with item at end of array, then
rebuild heap not considering last item

Does not require additional memory to sort

22

Step 1: build heap in place

Build heap given unsorted array

Given

912147 | 6|5 Q °

Non heap!

Given array in unsorted
First build a heap in place

Start at last leaf and heapify last leaf’s parent and children (4 and 5)
Repeat for other non-leaf nodes (2 and 9)

23

Step 1: build heap in place

Build heap given unsorted array

Non heap!

Given array in unsorted
First build a heap in place

Start at last leaf and heapify last leaf’s parent and children (4 and 5)
Repeat for other non-leaf nodes (2 and 9)

24

Step 1: build heap in place

Build heap given unsorted array

Non heap!

Given array in unsorted
First build a heap in place

Start at last leaf and heapify last leaf’s parent and children (4 and 5)
Repeat for other non-leaf nodes (2 and 9)

25

Step 1: build heap in place

Build heap given unsorted array

917|152 |6]|A4 o
o@lBe

Now it’s a heap!

Given array in unsorted
First build a heap in place

Start at last leaf and heapify last leaf’s parent and children (4 and 5)
Repeat for other non-leaf nodes (2 and 9)

26

After building the heap, parents are larger

than children, but items may not be sorted

Step 1: Build heap given unsorted array

917|152 |6]|A4 o
o@lBe

Heap array after construction Q G @

Conceptual heap tree

Heap order is maintained here
Looping over array does not give elements in sorted order
Traversing tree doesn’t work either

* Preorder=9,7,2,6,5,4

* |norder=2,7,6,9,4,5

e Postorder=2,6,7,4,5,9

27

Step 2: Repeatedly extractMax and store at

end, rebuild heap

Heap on left, sorted on right

917|152 |6]|A4 o
o@lBe

Heap array a G @

Conceptual heap tree

extractMin =9
Swap with last item in array

28

Step 2: Repeatedly extractMax and store at

end, rebuild heap

Heap on left, sorted on right

T T o
(7. (5

Heap array a G @

Conceptual heap tree

extractMin =9
Swap with last item in array

29

Step 2: Repeatedly extractMax and store at

end, rebuild heap

Heap on left, sorted on right
Helap

(\ 7

716|5]2]|4 \GD
6
Heap array é 4

Conceptual heap tree

Rebuild heap on n-1 items

30

Step 2: Repeatedly extractMax and store at

end, rebuild heap

Heap on left, sorted on right
Helap Sorted

: 7

[

T BAE ~
6

Heap array @ 4

Conceptual heap tree

extractMax =7
Swap with last item in array

31

Step 2: Repeatedly extractMax and store at

end, rebuild heap

Heap on left, sorted on right
Helap

(1 6

4
Heap array é

Conceptual heap tree

Rebuild heap on n-2 items

32

Step 2: Repeatedly extractMax and store at

end, rebuild heap

Heap on left, sorted on right
Helap Sorted

: \ 6

il o
4

Heap array é

Conceptual heap tree

extractMax = 6
Swap with last item in array

33

Step 2: Repeatedly extractMax and store at

end, rebuild heap

Heap on left, sorted on right
Helap Sorted

(\ 5

2

Heap array

Conceptual heap tree

Rebuild heap on n-3 items

34

Step 2: Repeatedly extractMax and store at

end, rebuild heap

Heap on left, sorted on right
Helap Sorted

: 5

|
- 4 GD/
2

Heap array

Conceptual heap tree

extractMax =5
Swap with last item in array

35

Step 2: Repeatedly extractMax and store at

end, rebuild heap

Heap on left, sorted on right
Helap Sorted

(\ 4
4 | 2

Heap array

Conceptual heap tree

Rebuild heap on n-4 items

36

Step 2: Repeatedly extractMax and store at

end, rebuild heap

Heap on left, sorted on right
Heap Sorted

— 4

2

Heap array

Conceptual heap tree

extractMax =4
Swap with last item in array

37

Step 2: Repeatedly extractMax and store at

end, rebuild heap

Heap on left, sorted on right
Heap Sorted

—— 2

Heap array

Conceptual heap tree

Rebuild heap on n-5 items

38

Step 2: Repeatedly extractMax and store at

end, rebuild heap

Heap on left, sorted on right
Sorted

Heap array

Conceptual heap tree

Done
ltems sorted in place
No extra memory used

39

Heapsort in two steps

Heapsort.java

Two step process:
1. First build heap
e Set |lastLeaf to last index (n-1)
* Calculate lastNonLeaf
* While lastNonLeaf >0
* Fix up heap with lastNonLeaf and it’s children
* Move to previous non leaf node
2. After heap built, repeatedly extractMax and store at end

Run time O(n log n)
Each swap might take log n operations to restore Heap
Might have to make n swaps

40

