CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

Day 15 — Relationships

» 1. Graph interface

2. Four common representations

3. Implementation

Graphs are a useful way to represent

different types of relationships

My coworkers

The Metropolitan Dartmouth
Museum of Art i
Dave
Nick Reza
Ellen Dan

Abby Kirby

Start up

Graphs are a useful way to represent

different types of relationships

My coworkers

The Metropolitan Dartmouth
Museum of Art i
Dave
Nick Reza
* | know everyone
Ellen Dan

Abby Kirby

Start up

Graphs are a useful way to represent

different types of relationships

My coworkers

The Metropolitan Dartmouth
Museum of Art i
Dave
Leslie B Q
Nick Reza

* | know everyone

e Reza and Dan do
not know each Ellen Dan
other directly

Abby Kirby

Start up 5

Graphs are a useful way to represent

different types of relationships

My coworkers

The Metropolitan Dartmouth
Museum of Art ,
Lila Dave
Leslie é} Ron
B Tim
Nick Reza

* | know everyone
e Reza and Dan do

not know each Ellen Dan
other directly
e Butlcould Abby Kirby

introduce them
(there is a path) Start up

Graphs are a useful way to represent

different types of relationships

My coworkers

The Metropolitan Dartmouth
Museum of Art ,
Lila Dave
Leslie é> Ron
B Tim
Nick Reza

* | know everyone
e Reza and Dan do

not know each Ellen Dan if there is a path

other directly between then

* Butl could Abby Kirby * There may be
introduce them

(there is a path) Start up

* Nodes are said
to be reachable

nodes that are
unreachable

Graphs are a useful way to represent

different types of relationships

My coworkers

The Metropolitan | Dartmouth
Museum of Art il Kevin Bacon Dave
Leslie é> Ron
Tim
Nick Reza

* | know everyone
e Reza and Dan do

not know each Ellen Dan if there is a path

other directly between then

* Butl could Abby Kirby * There may be
introduce them

* Nodes are said
to be reachable

nodes that are
i Start u
.mage;nbc.cghere is a path) P unreachable

Two types of relationships: Undirected and

directed

facebook

— i
| s I

Undirected (Symmetrical) Directed (Asymmetrical)
If Alice is friends with Bob, If Alice follows Bob, then
then Bob is friends with Bob does not necessarily

Alice follow Alice

Images: Facebook, Twitter, 1designshop.com

Graphs represent directed or undirected

relationships with nodes and edges

Graphs Undirected edges

* Connect objects in

C both directions
0
O,

“Two way street”

Directed edges
 Connect objectsin a
single directions
“One way street”

Q/D
Nodes (vertices)

* Represent objects .
 Could be a person or

city or computer or
intersection of roads...

Undirected graph
Only undirected edges

Directed graph
Only directed edges

Mixed graph
Has both directed and
undirected edges

10

Both nodes and edges can hold

information about the relationship

Graphs
Nodes
* Represent an object
 (Can be as simple as a String

6\ 1 * Could be more complex like a
4 Person object
Edges
* Can hold information about
Q/ /3 relationship
e Distance between cities

* (Capacity of a pipe

* Label of relationship type
(“follower”, “friend”, “co-
worker”)

11

Graph ADT defines several useful methods

Graph.java

Graph methods
outDegree/inDegree

Count of edges out of or into a node
outNeighbors/inNeighbors

Other nodes connected from/to a node
haskEdge

True if one node connected to another
getLabel

Return label on edge from one node to

another
insertVertex

Add node to graph
insertDirected/Undirected

Add edge to graph between two nodes
removeVertex/Directed/Undirected

Remove node or edge

12

We can use Graph ADT methods to answer

Interesting questions

The Metropolitan Dart th
Museum of Art artmou Questions we can answer
e Who is the most connected?

Lila Dave (most in edges)
Leslie Ron
Tim Who are mutual acquaintances
“cliques” where all nodes have
: Reza (“cliq
Nick edges to each other)
 Who is a friend-of-a-friend but
Ellen Dan is not yet a friend? (breadth-
first search, next class)
Abby Kirby

Start up

13

We can use Graph ADT methods to answer

Interesting questions

RelationshipTest.java
 Undirected edges implemented as a directional edge in both
directions
* Run to breakpoint after building graph

14

1. Graph interface
» 2. Four common representations

3. Implementation

15

Edge Lists create an unordered list of

vertex pairs where each entry is an edge

1. Edge List

{ {0,1}, {O,4}, {1,2}, {1,3},
{1,4}, (2,3}, {3,4} }

0 1
O Notes:

Assume:
n nodes (here 5) .
m edges (here 7)

Number nodes 0..n-1

Store node i in array at index i

Edge List stores pairs of indexes that
reference nodes in array

Each Edge List entry represents an edge
between two nodes

Insert fast, just add to list

Everything else slow

Example: removevertex is O(m), have to
remove all edges to/from node, so search

all edges leading to or from node
16

Adjacency Lists store adjacent nodes in a

list; gives improved performance
2. Adjacency List

O 1114
1| 1701|423
@ 1 2| +—>{1]3
3| 1—11]4]|2
4| t+—3|0]1
Notes:
e e Store linked list of nodes in or out of
Q/ 3 each vertex (same if undirected)

Might keep two lists, one for in
Assume: neighbors and one for out neighbors
Faster to get neighbors than Edge

n nodes (here 5) List, just iterate in O(degree(v)) vs.
m edges (here 7) O(m)

17

Adjacency Matrices create an n x n array to

indicate existence of edges

3. Adjacency Matrix To
01 2 3 4
0/0 1 0 0 1
{1 0 1 1 1
From _ ,
6\ . 2101 01 0
J 3/0 11 0 1
4111 01 0

Notes:

 Create nx n matrix A, set A[i,j] =1 if edge
from node i to node j, else 0

Q/ /3 * Works if no parallel edges

* Undirected graph Ali,j] == Alj,i]
hasEdge (u, v) is now O(1), whereas in

Assume: Adjacency List it was O(degree(u))
n nodes (here 5) * Finding neighbors now O(n) because have
m edges (here 7) to check entire row or column

* Adding/removing vertices O(n?), have to
rebuild entire matrix 18

Adjacency Maps create a Map for each

node and a second Map to adjacent nodes
4. Adjacency Map

O
/]

Notes:

Q/ /3 * Create Map of nodes

Each entry in Map holds a second Map of
adjacent nodes
Assume: * No need to number nodes in order

n nodes (here 5) * hasEdge (u,v) now O(1)

* Look up uin Map O(1)
m edges (here 7) « Look up v in second Map O(1)

19

How a Graph is implemented has a big

Impact on run-time performance

{{0,1}, o [H—{1l=] R R
(0,4}, {1,2y, [4—lleRlE (T T
(1,3}, (1,4}, 20— = 2101010
23 B4 BBl e I
Method Edge Adjacency Adjacency Adjacency
List List Matrix Map
in/ O(m) 0(1) O(n) 0(1)
outDegree (V)
in/ O(m) o(d,) O(n) O(d,)
outNeighbors (v)
hasEdge (u, v) O(m) O(min(du,dv)) 0O(1) O(1)
insertVertex (v) Q(1) 0(1) O(n?) O(1)
removeVertex (v) O(m) O(dv) O(nz) O(dv)
insertEdge (u,v) Q(1) 0(1) 0(1) O(1)
removeEdge (u,v) QO(m) 0O(1) O(1) O(1)

n = number of nodes (5), m = number of edges (7), d, = degree of node v ”

1. Graph interface

2. Four common representations

» 3. Implementation

21

Our implementation will allow a mixed

graph (directed and undirected edges)

friend
_ >
«—— Bob Undirected edges
friend are two directed
\\§ edges, one in each
«© direction
Dartmouth
7
\%
Er
Charlie

follower

22

Graph.java specifies the Graph Interface

Graph.java
* Interface specifying graph methods

23

AdjancyMapGraph.java stores in an out

edges in two different Maps

AdjacenyMapGraph.java
* Maintain two Maps for each vertex
* One for contains in edges, one contains out edges
out and in are Map<V, Map<V,E>>
Key iS vertex (string)
value iS @ Map with vertex as key and edge as value
(both strings)

insertVertex (V V)
* Add vertex v to in and out Maps with new HashMap for

edges (no edges set yet)
insertDirected (V u, V v, E e)

 Update out on u by adding to Map to v and label
 Update in on v by adding to Map from u and label e

insertUndirected (V u, V v, E e)
 Add two directed edges between u and v, one going each

direction

24

AdjancyMapGraph.java stores in an out

edges in two different Maps
AdjacenyMapGraph.java

* removeDirected(V u, V v)

« Remove edge from both in and out
* removeUndirected(V u, V v)

e Call removenirected twice, once for each node direction
e Review other methods

25

RelationshipTest.java shows how it all

works

RelationshipTest.java
* Run

26

27

We can use Graph ADT methods to answer

Interesting questions

Questions we can answer
 Who is the most popular?
(most in edges)

 Who are mutual acquaintances
(“cliques” where all nodes have
edges to each other)

 Who is a friend-of-a-friend but
is not yet a friend? (breadth-
first search, next class)

28

Image: nbc.com

Three common ways to represent graphs:

Edge List, Adjacency List, Adjacency Matrix

3. Adjacency Map

A |WINIFR]| O

N

0
(118
Notes: 3] f
* Create n x n matrix A, set A[i,j] =1 if edge
from node i to node j, else 0

 Works if no parallel edges

* Undirected graph Ali,j] == Alj,i]

Assume: * hasEdge (u,v) is now O(1), whereas in
Adjacency List it was O(degree(u))

* Finding neighbors now O(n) because have
to check entire row or column

* Adding/removing vertices O(n?), havez'go
rebuild entire matrix

n nodes (here 5)
m edges (here 7)

How a Graph is implemented has a big

impact on run-time performance

| 01 2 3 4

{{o,1}, {o0,4}, ° L[4 ofo 1 00 1

{1,2}, {1,3}, i DI | 1l 0 1 1 1

{1,4}, {2,3}, ° 113 200 101 0

{3,4}} 3 el 3o 11 0 1

4 = S0l a1 101 0

Method Edge List Adj. List Adj. Matrix
in/outDegree (V) O(m) O(1) O(n)
in/outNeighbors (v) O(m) O(dv) O(n)
hasEdge (u, v) O(m) O(min(d,d.) O(1)
insertVertex (v) 0(1) O(]_) O(nZ)
removeVertex (v) O(m) O(dv) O(nZ)
insertEdge (u, v) O(1) O(1) O(1)
removeEdge (u, v) O(m) O(1) O(1)

n = number of nodes, m = number of edges, d, = degree of node v v

