CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

Day 16 — Graph Traversals

» 1. Depth first search

2. Breadth first search

Graph traversals are useful to answer

guestions about vertex relationships

Some Graph traversals uses

Uses are typically around reachability

Computing path from vertex u to vertex v

Given start vertex s of Graph G, compute a path with the
minimum number of edges between s and all other vertices (or
report no such path exists)

Testing whether ¢ is fully connected (e.g., all vertices reachable)

ldentifying cycles in (or reporting no cycle exists)

Today’s examples have no cycles (next class will consider them)

Depth First Search (DFS) uses a stack to
explore as if in a maze

DFS basic idea

e Keep going until you
can’t go any further,
then back track

* Relies on a stack (implicit
or explicit) to keep track
of where you’ve been

Graph structure from http://stackoverflow.com/questions/687731/breadth-first-vs-depth-first

Some of you did Depth First Search on

Problem Set 1

RegionFinder

Loop over all the pixels
If a pixel 1s unvisited and of the correct color

Start a new region
Keep track of pixels need to be visited, 1initially just one
As long as there's some pixel that needs to be visited

Get one to wvisit

Add i1t to the region

Mark it as visited

Loop over all its neighbors

If the neighbor i1s of the correct color
Add it to the 1list of pixels to be visited

If the region is big enough to be worth keeping, do so

Some of you did Depth First Search on

Problem Set 1

RegionFinder

Loop over all the pixels
If a pixel 1s unvisited and of the correct color

Start a new region
Keep track of pixels need to be visited, 1initially just one

As long as there's some pixel that needs to be visited

Get one to visit
Add i1t to the region
Mark it as visited
Loop over all its neighbors
If the neighbor i1s of the correct color
Add it to the list of pixels to be visited

If the regT is big enough to be worth keeping, do so

If you added to end of list...

Some of you did Depth First Search on

Problem Set 1

RegionFinder

Loop over all the pixels

If a pixel 1s unvisited and of the correct color
Start a new region

Keep track of pixels need to be visited, 1initially just one
As long as there's some pixel that needs to be visited

Get one to visit < _ _
Add it to the region And if you get pixel from end of

Mark it as visited list, you implemented a stack
Loop over all its neighbors
If the neighbor i1s of the correct color
Add it to the list of pixels to be visited

If the regT is big enough to be worth keeping, do so

If you added to end of list...

Depth First Search (DFS) is like exploring a

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop()
if 'u.visited
u.visited = true
(maybe do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Depth First Search (DFS) is like exploring a

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop()
if 'u.visited
u.visited = true
(maybe do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Depth First Search (DFS) is like exploring a

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop()
if 'u.visited
u.visited = true
(maybe do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Pop(A), mark visited
Stack

10

Depth First Search (DFS) is like exploring a

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop()
if 'u.visited
u.visited = true
(maybe do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Push unvisited adjacent

Stack

T 0O

11

Depth First Search (DFS) is like exploring a

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop()
if 'u.visited
u.visited = true
(maybe do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Pop(B), mark visited
Stack

T 06

12

Depth First Search (DFS) is like exploring a

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop()
if 'u.visited
u.visited = true
(maybe do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Push unvisited adjacent (F, but not A)
Stack

T 06

13

Depth First Search (DFS) is like exploring a

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop()
if 'u.visited
u.visited = true
(maybe do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Pop(F), mark visited
Stack

T 06

14

Depth First Search (DFS) is like exploring a

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop()
if 'u.visited
u.visited = true
(maybe do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Push unvisited adjacent (H, but not B)
Stack

T 0O

15

Depth First Search (DFS) is like exploring a

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop()
if 'u.visited
u.visited = true
(maybe do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Pop(H), mark visited
Stack

T 06

16

Depth First Search (DFS) is like exploring a

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
u = stack.pop()
if 'u.visited
u.visited = true
(maybe do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Nothing to push, back up by popping C
Stack

T 06

17

Depth First Search (DFS) is like exploring a

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
______ u = stack.pop()
if 'u.visited

u.visited = true

(maybe do something while here)

for v € u.adjacent

if !v.visited
stack.push (v)

Pop(C), mark visited
Stack

T o6

18

Depth First Search (DFS) is like exploring a

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
______ u = stack.pop()
if 'u.visited

u.visited = true

(maybe do something while here)

for v € u.adjacent

if !v.visited
stack.push (v)

Nothing to push, back up by popping D
Stack

T o6

19

Depth First Search (DFS) is like exploring a

Masze

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
______ u = stack.pop()
if 'u.visited

u.visited = true

(maybe do something while here)

for v € u.adjacent

if !v.visited
stack.push (v)

Pop(D), mark visited
Stack

T ©

20

Depth First Search (DFS) is like exploring a

Masze

DFS algorithm
stack.push(s) //start node
repeat until find goal vertex or
stack empty:
______ u = stack.pop()
if 'u.visited

u.visited = true

(maybe do something while here)

for v € u.adjacent

if !v.visited
stack.push (v)

Push unvisited adjacent (G, but not A)
Stack

T o6

21

Depth First Search (DFS) is like exploring a

Masze

DFS algorithm

stack.push(s) //start node
repeat until find goal vertex or
stack empty:

______ u = stack.pop()
if !u.visited
u.visited = true

(maybe do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Pop(G), mark visited

22

Depth First Search (DFS) is like exploring a

Masze

DFS algorithm

stack.push(s) //start node
repeat until find goal vertex or
stack empty:

______ u = stack.pop()
if !u.visited
u.visited = true

(maybe do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Push unvisited adjacent (I, but not D)
Stack

T o0

23

Depth First Search (DFS) is like exploring a

Masze

DFS algorithm

stack.push(s) //start node
repeat until find goal vertex or
stack empty:

______ u = stack.pop()
if !u.visited
u.visited = true

(maybe do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Pop(l), mark visited
Stack

24

Depth First Search (DFS) is like exploring a

Masze

DFS algorithm

stack.push(s) //start node
repeat until find goal vertex or
stack empty:

______ u = stack.pop()
if !u.visited
u.visited = true

(maybe do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

Nothing to push, back up by popping E
Stack

25

Depth First Search (DFS) is like exploring a

Masze

DFS algorithm

stack.push(s) //start node
repeat until find goal vertex or
stack empty:

______ u = stack.pop()
if !u.visited
u.visited = true

(maybe do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

-
-
P
- =

Pop(E), mark visited
Stack

Goal

26

Depth First Search (DFS) is like exploring a

Masze

DFS algorithm

stack.push(s) //start node
repeat until find goal vertex or
stack empty:

______ u = stack.pop()
if !u.visited
u.visited = true

(maybe do something while here)
for v € u.adjacent
if !v.visited
stack.push (v)

-
-
P
- =

Found goal
Stack

Goal

27

Node discovery tells us something about

the graph

Discovery edges

* Edges that lead to unvisited nodes

* Discovery edges form a tree on the graph

e Can traverse from start to goal on tree (if goal reachable)

* Can tell us which nodes are not reachable (not on path
formed by discovery nodes)

* Not guaranteed to be shortest path!

Back edges

* Edges that lead to previously discovered nodes
* Lead to ancestor nodes in tree

* Indicate presence of a cycle in the graph

28

Run time is O(n+m)

Run time

* Assume graph with n nodes and m edges

* Visit each node at most one time (due to visited
indicator)

* Visit each edge at most one time

 Run time is O(n+m)

29

1. Depth first search

» 2. Breadth first search

30

Breadth First Search (BFS) can find the

shortest path between nodes

BFS basic idea
 Explore outward in
“ripples”

* Look at all nodes 1 step
away, then all nodes 2
steps away...

* Relies on a queue
(implicit or explicit)
implementation

e Path found from s to any
other vertex is shortest3

1

Some of you did Breadth First Search on

Problem Set 1

RegionFinder

Loop over all the pixels
If a pixel 1s unvisited and of the correct color

Start a new region
Keep track of pixels need to be visited, 1initially just one
As long as there's some pixel that needs to be visited

Get one to wvisit

Add i1t to the region

Mark it as visited

Loop over all its neighbors

If the neighbor i1s of the correct color
Add it to the 1list of pixels to be visited

If the region is big enough to be worth keeping, do so

32

Some of you did Breadth First Search on

Problem Set 1

RegionFinder

Loop over all the pixels
If a pixel 1s unvisited and of the correct color

Start a new region
Keep track of pixels need to be visited, 1initially just one

As long as there's some pixel that needs to be visited
Get one to visit
Add i1t to the region
Mark it as visited
Loop over all its neighbors
If the neighbor i1s of the correct color
Add it to the list of pixels to be visited

If the regT is big enough to be worth keeping, do so

If you added to end of list...

33

Some of you did Breadth First Search on

Problem Set 1

RegionFinder

Loop over all the pixels

If a pixel 1s unvisited and of the correct color
Start a new region

Keep track of pixels need to be visited, 1initially just one
As long as there's some pixel that needs to be visited

Get one to visit < . :
add it to the region And if you get pixel from front of

Mark it as visited list, you implemented a queue
Loop over all its neighbors
If the neighbor i1s of the correct color
Add it to the list of pixels to be visited

If the regT is big enough to be worth keeping, do so

If you added to end of list...

34

Breadth First Search (BFS) can find the

shortest path between nodes

BFS algorithm

enqueue (s) //start node
s.visited = true
repeat until find goal vertex or
queue empty:
u = dequeque ()
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (v)

35

Breadth First Search (BFS) can find the

shortest path between nodes

BFS algorithm

enqueue (s) //start node
s.visited = true
repeat until find goal vertex or
queue empty:
u = dequeque ()
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (v)

enqueue(A)

Queue

36

Breadth First Search (BFS) can find the

shortest path between nodes

BFS algorithm

enqueue (s) //start node
s.visited = true
repeat until find goal vertex or
queue empty:
u = dequeque ()
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (v)

enqueue(A)

Queue

T o

37

Breadth First Search (BFS) can find the

shortest path between nodes

BFS algorithm
enqueue (s) //start node
s.visited = true

repeat until find goal vertex or
queue empty:
u = dequeque ()
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (v)

dequeue(A), unvisited enqueue adjacent

Queue

T o000

38

Breadth First Search (BFS) can find the

shortest path between nodes

BFS algorithm
enqueue (s) //start node
s.visited = true

repeat until find goal vertex or
queue empty:
u = dequeque ()
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (v)

dequeue(B), enqueue unvisited adjacent F

Queue

T o000

39

Breadth First Search (BFS) can find the

shortest path between nodes

BFS algorithm
enqueue (s) //start node
s.visited = true

repeat until find goal vertex or
queue empty:
u = dequeque ()
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (v)

dequeue(C), enqueue unvisited adjacent (none)

Queue

T oo0o0

40

Breadth First Search (BFS) can find the

shortest path between nodes

BFS algorithm
enqueue (s) //start node
s.visited = true

repeat until find goal vertex or
queue empty:
u = dequeque ()
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (v)

dequeue(D), enqueue unvisited adjacent G

Queue

T o000

41

Breadth First Search (BFS) can find the

shortest path between nodes

BFS algorithm
enqueue (s) //start node
s.visited = true

repeat until find goal vertex or
queue empty:
u = dequeque ()
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (v)

dequeue(E), enqueue unvisited adjacent

Queue

t oo

42

Breadth First Search (BFS) can find the

shortest path between nodes

BFS algorithm
enqueue (s) //start node
s.visited = true

repeat until find goal vertex or
queue empty:
u = dequeque ()
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (v)

Found goall!

Queue

t oo

43

Breadth First Search (BFS) can find the

shortest path between nodes

BFS algorithm
enqueue (s) //start node
s.visited = true

repeat until find goal vertex or
queue empty:
u = dequeque ()
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (v)

Keep going for fun

Queue

t oo

44

Breadth First Search (BFS) can find the

shortest path between nodes

BFS algorithm
enqueue (s) //start node
s.visited = true

repeat until find goal vertex or
queue empty:
u = dequeque ()
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (v)

dequeue(F), enqueue unvisited adjacent H

Queue

T oo

45

Breadth First Search (BFS) can find the

shortest path between nodes

BFS algorithm
enqueue (s) //start node
s.visited = true

repeat until find goal vertex or
queue empty:
u = dequeque ()
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (v)

dequeue(G), enqueue unvisited adjacent |

Queue

T oo

46

Breadth First Search (BFS) can find the

shortest path between nodes

BFS algorithm
enqueue (s) //start node
s.visited = true

repeat until find goal vertex or
queue empty:
u = dequeque ()
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (v)

dequeue(H), enqueue unvisited adjacent (none)

Queue

T o

47

Breadth First Search (BFS) can find the

shortest path between nodes

BFS algorithm
enqueue (s) //start node
s.visited = true

repeat until find goal vertex or
queue empty:
u = dequeque ()
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (v)

dequeue(l), enqueue unvisited adjacent (none)

Queue

48

Breadth First Search (BFS) can find the

shortest path between nodes

BFS algorithm
enqueue (s) //start node
s.visited = true

repeat until find goal vertex or
queue empty:
u = dequeque ()
for v € u.adjacent
if !v.visited
v.visited = true
enqueue (v)

All nodes explored

Queue

49

Node discovery tells us something about

the graph
Discovery edges
* Lead to unvisited nodes
* Form a tree on the graph
e Can traverse from start to goal (or any node)
* Can tell us which nodes are not reachable (not on path

formed by discovery nodes)
* Path guaranteed to have smallest number of edges

Can track how we got to node to find shortest path

* Build vertex tree

 Parent of each vertex is vertex that discovered it
 Parentis unique because we don’t visit vertices twice

50

Run time is O(n+m)

Run time
* Assume graph with n nodes and m edges

* Visit each node at most one time (due to visited
indicator

* Visit each edge at most one time
* Run time O(n+m)

e Useful for the Kevin Bacon game!

51

