CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

Day 17 — Shortest Path

» 1. Shortest-path simulation

2. Dijkstra’s algorithm
3. A* search

4. Implicit graphs

Previously we looked at finding the

minimum number of steps between nodes
Breadth First Search

BFS is a good choice

Can find shortest number
of steps between source
and any other node

Could use BFS on a map to
plan driving routes
between cities

Previously we looked at finding the

minimum number of steps between nodes
Breadth First Search

BFS is a good choice

Can find shortest number
of steps between source
and any other node

Could use BFS on a map to
plan driving routes
between cities

t Search adjacent cities first

BFS considers the number of steps, but not

how long each step could take

Fastest driving route to Seattle from Hanover

50 hours?

Seattle

29 hours

.

travelmath.com

Total time: 45 hours

12 hours

Hanover

4 hours

Could try to take the

most direct route

* Take local roads

* Try to keep on a line
between Start and
Goal

Could try to take major
highways:

* New York

* Chicago

e Seattle

Now we consider the idea that not all steps

are the same

Fastest driving route to Seattle from Hanover

50 hours? ' BFS would choose the
direct route (one leg)

29 hours Highway travel makes

s 1> houre 4hoUrS larger numbe;r of steps
more attractive
Total time: 45 hours
Note: our metric now is
driving time, however total
distance is longer!

Need a way to account for
the idea that each step
might have different
“weight” (drive time here)

6

Drive time estimates from travelmath.com

With no negative edge weights, we can use

Dijkstra’s algorithm to find short paths

Goal: find shortest path to all nodes considering edge weights

Start at node s (single source)

Find path with smallest sum of
weights to all other nodes

Store shortest path weights in
v.dist instance variable

Keep back pointer to previous
node in v.pred

Updated v.dist and v.predif
find shorter path later found

To get intuition, imagine sending runners

from the start to all adjacent nodes

TimeO

Simulation
s.dist = 0

Runners take edge weight
minutes to arrive at adjacent
nodes

When runners arrive at node:
e Record arrival time in v.dist
* Record prior node in v.pred

Runners immediately leave for
an adjacent node

Here runners leave for y and t

8

Imagine we send runners from the start to

all adjacent nodes

Time 4

x Runner arrives at yin 4
minutes

e Record y.dist = 4
e Record y.pred = s

3

s.dist=0

Runners leave y for adjacent
nodest, x, andz

Runner from s has not
reached t yet

-t
e
fa

Imagine we send runners from the start to

all adjacent nodes

Time 5 t.dist = 5
t.pred =y

Runner from vy arrives at ¢

attime 5
e t.dist
* t.pred

5
Y

Runners from s still hasn’t
made it to t

Runners leave t for
adjacent nodes x and y

10

Imagine we send runners from the start to

all adjacent nodes

Time 6 t.dist = 5
Runner from s arrives at t at
time 6

Runner from y has already
arrived, so best route is from v,
not direct from s

Do not update t.dist and
t.pred

NOTE: BFS would have chosen
the direct route to «

11

Imagine we send runners from the start to

all adjacent nodes

Time 7 t.dist = 5
Runner from y arrives at -z at
time 7

Record z.dist = 7 and
z.pred = vy

Runners leave z for s and x

12

Imagine we send runners from the start to

all adjacent nodes

Time 8 x.dist = 8

t.dist = 5
t.pred =y x.pred =t Runner from t arrives at x at

time 8
x.dist = 8, x.pred = t
All nodes explored

Now have shortest path from
s to all other nodes

Shaded lines indicate best
y.dist = 4 z.dist = 7 nath to each node

Path forms a tree on graph _

1. Shortest-path simulation
» 2. Dijkstra’s algorithm
3. A* search

4. Implicit graphs

14

Dijkstra’s algorithms works similarly but

doesn’t rely on waiting for runners

Dijkstra’s algorithm

Overview
Start at s

Process all out edges at the
same time

Compare distance to adjacent
nodes with best so far

If current path < best, update
best distance and predecessor
node

Example: one hop from s set
t.dist = 6, t.pred = s

15

Dijkstra’s algorithms works similarly but

doesn’t rely on waiting for runners

Dijkstra’s algorithm Overview
Start at s

Process all out edges at the
same time

Compare distance to adjacent
nodes with best so far

If current path < best, update
best distance and predecessor
node

Example: one hop from s set
t.dist = 6, t.pred = s, then
update t.dist = 5, t.pred = y
on second hop o

Dijkstra uses a Min Priority Queue with

dist values as keys to get closest vertex

Dijkstra’s algorithm starting from s

vold dijkstra(s) { —_ Zejetsz Priority
queue = new PriorityQueue<Vertex>();
for (each vertex v) { ___ Initialize aist and pred
v.dlist = infinity;
v.pred = null; Use dist as key for Min
queue.enqueue (V) ; —_— Priority Queue (initially
} infinite)
s.dist = 0; Initialize s distance
while (!queue.isEmpty()) { While not all nodes
. have been explored
u = queue.extractMin();

for (each vertex v adjacent to u)

Get closest node based
relax(u, v);

on distance (initially s)

} Examine adjacent and
relax 17

Dijkstra defines a relax method to update

best path if needed

Dijkstra’s relax method

volid relax(u, v) {
if (u.dist + w(u,v) < v.dist) {
v.dist = u.dist + w(u,v);
v.pred = u;

}

Currently at vertex u, considering distance to vertex v

Check if distance to u + distance from u to v < best distance to v so far
Distance fromu to v is w(u, v)

If shorter total distance to v than previous, then update:

v.dist = u.dist + w(u,Vv)
v.pred = u

18

Example

Dijkstra’s algorithm void dijkstra(s) f{

queue = new PriorityQueue<Vertex>();
for (each vertex v) {
v.dist = infinity;
v.pred = null;
queue.enqueue (V) ;
}
s.dist = 0;

while (!queue.isEmpty()) {

u = queue.extractMin () ;

for (each vertex v adjacent to u)
relax(u, v);

}
}

All nodes have distance 1nfinity, except Start with distance O
Distances shown in center of vertices

extractMin() from Min Priority Queue first selects s (dist =0)

19

Example

Dijkstra’s algorithm void dijkstra(s) f{

queue = new PriorityQueue<Vertex>();
for (each vertex v) {

v.dist = infinity;

v.pred = null;

queue.enqueue (V) ;

}
s.dist = 0;

while (!queue.isEmpty()) {
u = queue.extractMin() ;
for (each vertex v adjacent to u)

relax(u, v);

Loop over all adjacent nodes v
If distance less than smallest so far, then relax

That is the case here, so update dist and predont and y

20

Example

Dijkstra’s algorithm void dijkstra(s) f{

queue = new PriorityQueue<Vertex>();
for (each vertex v) {

v.dist = infinity;

v.pred = null;

queue.enqueue (V) ;

}
s.dist = 0;

while (!queue.isEmpty()) {
u = queue.extractMin() ;
for (each vertex v adjacent to u)

relax(u, v);

extractMin() now picks y (dist=4)
Look at adjacent t, x, and z
Relax each of them

21

Example

Dijkstra’s algorithm void dijkstra(s) f{

queue = new PriorityQueue<Vertex>();
for (each vertex v) {

v.dist = infinity;

v.pred = null;

queue.enqueue (V) ;

}
s.dist = 0;

while (!queue.isEmpty()) {
u = queue.extractMin() ;
for (each vertex v adjacent to u)

relax(u, v);

}

extractMin() now picks t (dist =5)
Look at adjacent x and y
Relax x, but not v

22

Example

Dijkstra’s algorithm void dijkstra(s) f{

queue = new PriorityQueue<Vertex>();
for (each vertex v) {
v.dist = infinity;
X v.pred = null;
queue.enqueue (V) ;

}
s.dist = 0;

while (!queue.isEmpty()) {
u = queue.extractMin() ;
for (each vertex v adjacent to u)

relax(u, v);

ﬂ
/
4
}

extractMin() now picks z (dist = 7)
Look at adjacent x and s
Do not relax x or s

23

Example

Dijkstra’s algorithm s void dijkstra(s) f{

queue = new PriorityQueue<Vertex>();
for (each vertex v) {

v.dist = infinity;

v.pred = null;

queue.enqueue (V) ;

}
s.dist = 0;

while (!queue.isEmpty()) {
u = queue.extractMin () ;
for (each vertex v adjacent to u)
relax(u, v);

extractMin() now picks x (dist = 8)
Look at adjacent =

Do not relax z

Done!

24

Run time complexity is O(n log n + m log n)

Dijkstra’s algorithm
 Add and remove each vertex once in Priority Queue
* Relax each edge (and perhaps reduce key) once
 O(n*(insert time + extractMin) + m*(reduceKey))
* If using heap-based Priority Queue, then each queue
operation takes O(log n)
e Total=0O(nlogn+ mlogn)

* Can implement with a Fibonacci heap with O(n?)
* Take CS31 to find out how!

25

1. Shortest-path simulation
2. Dijkstra’s algorithm

» 3. A* search

4. Implicit graphs

26

A* can help find the best path between

two nodes faster than Dijkstra

A* algorithm from Hanover to Boston

Montpelier

Randolph
25 Hanover

Manchester

Boston

- = = = Estimated distance to goal

Actual distance to node

Estimate distance to goal
(maybe use Euclidean
distance)

Estimate must be < actual
distance (admissible)

Distances non-negative

(distance monotone
increasing)

27

A* can help find the best path between

two nodes faster than Dijkstra

A* algorithm from Hanover to Boston

Montpelier

Randolph
25 Hanover

Manchester

Boston

- = = = Estimated distance to goal

——— Actual distance to node

Keep Priority Queue using
distance so far + estimate
for each node (“open set”)

Keep “closed set” where

we know we already
found the best route

28

A* can help find the best path between

two nodes faster than Dijkstra
Step 1: Start at Hanover, add to Open set

Open set (Priority Queue)
Montpelier Hanover O + 60 = 60

Randolph
25 Hanover

Manchester Closed set

Boston

- = = = Estimated distance to goal

——— Actual distance to node

29

A* can help find the best path between

two nodes faster than Dijkstra

Step 2: select min from Open set and explore adjacent

Open set (Priority Queue)

Montpelier Rand0|ph 25+75=100
60 Manchester =65 + 45 =110
N Randolth
N 25 Hanover
N
130 >, \\
M, 75
\
\\\ \\\ Manchester Closed set

Hanover O + 60 = 60

Boston

- = = = Estimated distance to goal

——— Actual distance to node

30

A* can help find the best path between

two nodes faster than Dijkstra

Step 3: select min from Open set and explore adjacent

Open set (Priority Queue)
Montpelier Manchester =65 +45 =110

Montpelier =25+ 60 + 130 = 215
. 60 Randolph
\ ” 50 "Hanover

, 2
130\\ \\

Manchester Closed set
Hanover O + 60 = 60
Randolph 25 + 75 =100

Boston

- = = = Estimated distance to goal

——— Actual distance to node o

A* can help find the best path between

two nodes faster than Dijkstra

Step 4: select min from Open set and explore adjacent

Open set (Priority Queue)
Montpelier Boston =65 +55=120

Montpelier =25 + 60+ 130 =215
\& Randolph P

S 25 Hanover
130 >, \\
N7

Manchester Closed set

Hanover O + 60 = 60
Randolph 25 + 75 =100
Manchester =65 + 45 =110

- = = = Estimated distance to goal

——— Actual distance to node >

A* can help find the best path between

two nodes faster than Dijkstra

Step 5: select min from Open set and explore adjacent

Open set (Priority Queue)

Montpelier Montpelier =25 + 60 + 130 =215
< 60
% Rar£d50|thanover
130 >, \\
ST75 Closed set
\\\ \\\ Manchester Hanover O + 60 = 60
N Randolph 25 + 75 =100
h Manchester = 65 + 45 = 110
Boston =65 +55 =120
Found goal!
No need to check Montpelier — it
can’t be closer because a straight
- = = = Estimated distance to goal line would still be greater than

best path so far 33

Actual distance to node

1. Shortest-path simulation
2. Dijkstra’s algorithm

3. A* search

» 4. Implicit graphs

34

MazeSolver.java

* Run

* Load map 5

* Try with:
e Stack == DFS
* Queue =BFS

OA*

35

