CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

Day 19 — Pattern Matching

» 1. Regular expressions

2. Finite automata
3. Validating input

4. Modeling a complex system

Sometimes it is useful to be able to detect

or require patterns

Email addresses follow a pattern:
mailbox@domain.TLD
example: tjp@cs.dartmouth.edu

We can specify a pattern or rules for email addresses:
<characters> @ <characters>.<com | edu | org | ...>

I A T A I
One or more One or Followed by one of a set
more .
characters predefined of values
characters
Followed Followed

by @ by . 3

Regular expressions (RegEx) are a common

way of looking for patterns in Strings

Regular expressions (regex)

* Most programming languages have support for regex
* Can be really complex and messy, but there are basic patterns

Character Match a character next “aQ” matches “a”

Regular expressions (RegEx) are a common

way of looking for patterns in Strings

Regular expressions (regex)

* Most programming languages have support for regex
* Can be really complex and messy, but there are basic patterns

Character Match a character next “aQ” matches “a”

Concatenation: One after the other “cat” matches “c” then “a” then “t”
Rl R2

Regular expressions (RegEx) are a common

way of looking for patterns in Strings

Regular expressions (regex)

* Most programming languages have support for regex
* Can be really complex and messy, but there are basic patterns

Character Match a character next “a” matches “a”
Concatenation: One after the other “cat” matches “c” then “a” then “t”
Rl R2

Alternative: R; | R, One or the other ale|il|o|u matches any vowel

Regular expressions (RegEx) are a common

way of looking for patterns in Strings

Regular expressions (regex)

* Most programming languages have support for regex
* Can be really complex and messy, but there are basic patterns

Character Match a character next “a” matches “a”

Concatenation: One after the other “cat” matches “c” then “a” then “t”
Rl R2

Alternative: R; | R, One or the other ale|il|o|u matches any vowel
Grouping: (R) Establishes order; allows c(a]o)t matches “cat” or “cot”

reference/extraction

Regular expressions (RegEx) are a common

way of looking for patterns in Strings

Regular expressions (regex)

* Most programming languages have support for regex
* Can be really complex and messy, but there are basic patterns

Character Match a character next “a” matches “a”

Concatenation: One after the other “cat” matches “c” then “a” then “t”

Rl R2

Alternative: R; | R, One or the other aleli]o]u matches any vowel

Grouping: (R) Establishes order; allows c(a]o)t matches “cat” or “cot”
reference/extraction

u_”n llb” a_n

Character classes Alternative characters and [a-c] matches “a” or or “c”,
[c;-¢,] and [*c;-¢c,] excluded characters while [*a-c] matches any but abc

Regular expressions (RegEx) are a common

way of looking for patterns in Strings

Regular expressions (regex)

* Most programming languages have support for regex
* Can be really complex and messy, but there are basic patterns

Character Match a character next “a” matches “a”

Concatenation: One after the other “cat” matches “c” then “a” then “t”

Rl R2

Alternative: R; | R, One or the other aleli]o]u matches any vowel

Grouping: (R) Establishes order; allows c(a]o)t matches “cat” or “cot”
reference/extraction

Character classes Alternative characters and [a-c] matches “a” or “b” or “c”,

[c;-¢,] and [*c;-¢c,] excluded characters while [*a-c] matches any but abc

Repetition: R* Matches O or more times “ca*t” matches “ct”, “cat”, “caat”

Regular expressions (RegEx) are a common

way of looking for patterns in Strings

Regular expressions (regex)

* Most programming languages have support for regex
* Can be really complex and messy, but there are basic patterns

Character Match a character next “a” matches “a”

Concatenation: One after the other “cat” matches “c” then “a” then “t”

Rl R2

Alternative: R; | R, One or the other aleli]o]u matches any vowel

Grouping: (R) Establishes order; allows c(a]o)t matches “cat” or “cot”
reference/extraction

Character classes Alternative characters and [a-c] matches “a” or “b” or “c”,

[c;-¢,] and [*c;-¢c,] excluded characters while [*a-c] matches any but abc

Repetition: R* Matches O or more times “ca*t” matches “ct”, “cat”, “caat”

Non-zero Matches 1 or more times “ca+t” matches “cat” or “caat” or

repetition: R+ “caaat”, but not “ct”

We can use RegEx to see if an email

address is valid

Email addresses follow a pattern:
mailbox@domain.TLD
example: tjp@cs.dartmouth.edu

We can specify a pattern or rules for email addresses:
<characters> @ <characters>.<com | edu | org | ...>

As a simple RegEx: [a-z]+@[a-z.]* [a-z]+. (com | edu | org ...)

Check:
tip@cs.dartmouth.edu -- valid

Blob.x -- invalid

A Graph can implement a RegEx

Email addresses follow a pattern:
mailbox@domain.TLD
example: tjp@cs.dartmouth.edu

Start

G

We can specify a pattern or rules for email addresses:
<characters> @ <characters>.<com | edu | org | ...>

A Graph can represent the pattern for email addresses .
Sample addresses can be easily verified if in correct form

1. We can define a set of rules that must
be followed

2. We can represent those rules with a
graph

13

1. Regular expressions
» 2. Finite automata
3. Validating input

4. Modeling a complex system

14

Finite Automata (FA) can be used for many

problems, two uses are common

Common Finite Automata use cases

1. Validating input

2. Tracking the state of a system, changing state
as a response to events

15

We can model States as vertices and

Transitions as edges in a directed graph

Finite Automata validating input Set of labels called
Transition from A to B alphabet

Start if input O, else C 0'1 Double circle

0 indicates valid end
states

0.1 Stay in C
States as "™ regardless if What does
vertices given O or 1 this do?
Accepts any
\ Edges can Input starting
Edges as loop back to with 0

transitions same vertex 16

1. Regular expressions
2. Finite automata
» 3. Validating input

4. Modeling a complex system

17

Finite Automata can validate input

Finite Automata validating input

Input Result
00 a

Assume leaves represent valid end states
Can loop back to root from leaf

Invalid if input ends and not at end state
Extension of Huffman, go back to root after finding leaf

Finite Automata can validate input

Finite Automata validating input

Input Result
00 a
01 b

Assume leaves represent valid end states
Can loop back to root from leaf

Invalid if input ends and not at end state
Extension of Huffman, go back to root after finding leaf

Finite Automata can validate input

Finite Automata validating input

Input Result
00 a
01 b
1 C

Assume leaves represent valid end states

Can loop back to root from leaf

Invalid if input ends and not at end state

Extension of Huffman, go back to root after finding leaf

Finite Automata can validate input

Finite Automata validating input

Input Result
00 a
01 b
1 C
0 invalid

Assume leaves represent valid end states

Can loop back to root from leaf

Invalid if input ends and not at end state

Extension of Huffman, go back to root after finding leaf

Finite Automata can validate input

Finite Automata validating input

Input Result
00 a

01 b

1 C

0 Invalid
001100 acca

Assume leaves represent valid end states

Can loop back to root from leaf

Invalid if input ends and not at end state

Extension of Huffman, go back to root after finding leaf

Finite Automata come in two flavors,

Deterministic and Nondeterministic

Deterministic Finite Nondeterministic Finite
Automaton (DFA) Automaton (NFA)

Start 0,1 Sta rt O 1
20’ S04
1

May have 0, 1, or more

0,1 choices for transition from
each state
Exactly one choice for
each possible input These both do the same
thing

23

No ambiguity

With DFAs we have to specify each State

transition, with NFAs we do not
NFA validating input

Valid inputs:
cot or cat

All else invalid

There are 0, 1, or
more choices for
each letter

With NFAs we can have 0, 1 or more

choices for each input
NFA validating input

coat or cot

coat or cot

Sometimes we cannot map from a State a

single next State

NFAs can have multiple next States

Key Input Paths
Start 0 A 0 {B,C}

0

On0,

0

26

Sometimes we cannot map from a State a

single next State

NFAs can have multiple next States

Key Input Paths

Start 0 A 0 {B,C}
Y s 1 @
oToToHEl
B 1 {E}

0

On0,

0

27

Sometimes we cannot map from a State a

single next State

NFAs can have multiple next States

Key Input Paths
{B,C}
{B}
{A}
{E}

{}

(e,

0

Start 0

orore

0

O O W W > >
L O L O K,k O

28

Sometimes we cannot map from a State a

single next State

NFAs can have multiple next States

Key Input Paths
Start 0 A 0 {B,C}
Y A
oToCoHEl
B 1 {E}
0 C 0 0
C 1 {D}
ocoNER"
J D 1 {}

0

29

Sometimes we cannot map from a State a

single next State

NFAs can have multiple next States

Start 0

orore
Oa0)

Key

m m O O O O @ @™ >» >

Input

-_- oo — O = O = O +—» O

Paths
{B,C}
{B}
{A}
{E}

{}
{D}
{B,D}
{}

{}

{}

30

In that case, must keep track of all possible

States

NFAs can have multiple next States

Input Possible

Sta rt States

31

In that case, must keep track of all possible

States

NFAs can have multiple next States

Input Possible
>ta rt States

=@ = -
{B,C}

32

In that case, must keep track of all possible

States

NFAs can have multiple next States

Input Possible
>ta rt States

=@ ¢
{B,C}
{E,D}

33

In that case, must keep track of all possible

States

NFAs can have multiple next States

Input Possible
>ta rt States

=@ ¢
{B,C}
{E,D}

0 {B,D}

34

In that case, must keep track of all possible

States

NFAs can have multiple next States

Input Possible
>ta rt States

=@ ¢
{B,C}
{E,D}

0 {B,D}

35

In that case, must keep track of all possible

States

NFAs can have multiple next States

Input Possible
>ta rt States

=@ ¢
{B,C}
{E,D}

0 {B,D}

36

What does this NFA do?

1. Regular expressions
2. Finite automata
3. Validating input

» 4. Modeling a complex system

38

Finite Automata are also used to track the
State of a system as event occur

Sensors detect arrival and departure of cars in spaces

Finite Automata are also used to track the
State of a system as event occur

Parking meters detect payments and payment expirations
| 2l
’

\ 1}
2\

Combine data for all spaces on a block to

show drivers where they can find parking

Fisherman’s Wharf in San Francisco, CA

ed
sl % 00% 3 !
o D , Q E RS
= USS Pampanito %, Aot
: \”///O Se
L+ San Francisco P;grl.?:f{" 47 Pier N
= Pier 41 Y
Musée Mécanique
@ Pierd431/2
- Choy
Q The Embarcaders
- Scoma's NoayRolnt Only In San Franci
Boudin Bakery & Cafe jefferson St & Powell St (3
- _'@EL_@—’ Gallery 55

i it Madame Tuss
50N Hieve It gan Francisco
Jefiers useum

HoP (]) ~ Pier 39 Parking Garag
Stockton & Beach &

In-N-Out Burger
- Argonaut o
. The Cannery

oFisherman's %
Beach & Jones G Wharf Parking | 51

Shopping Center Longshoremen Sheraton ‘
90 gle Lot - Lot #341 herman's Wharf p——
’.',._;"1“’.. -
. Mapdata ®2017 Google ——— """ Report a map error

Image: sfpark.org

41

Combination of occupancy and payments

leads to four states for each space

Simplified automobile parking

Occupancy
Vacant Occupied
Not Paid | Vacant Occupied
Payment Not paid Not paid
status paid Vacant Occupied
Paid Paid

42

Occupancy and payment events can occur

and change the state of the space

Simplified automobile parking

Occupancy
Vacant Occupied
Not Paid | Vacant Occupied
Payment Not paid Not paid
status Paid Vacant Occupied
Paid Paid
Occupancy event raised by sensor: Events
* Vehicle arrives cause the
* Vehicle departs system to
Payment events raised by parking meter: transition
« Payment made between

 Time expires States .

The parking space could be modeled with a

complicated if-then structure

Simplified automobile parking

Occupancy
Vacant Occupied
Not Paid | Vacant Occupied
Payment Not paid Not paid
status paid Vacant Occupied
Paid Paid

void handleEvent(Event e) {
if (event==“Payment”) {
if (occupancy=="Occupied” && payment==“Not Paid”) {
//add time on meter
elseif (occupancy="“Occupied” && payment=="Paid”) {
//increment time on meter

44

The parking space could be modeled more

simply with a Finite Automata

Simplified automobile parking

Star

Sensor detects
vehicle arrival

Occupied,
Not Paid

Vacant,
Not Paid

Sensor detects
vehicle departure

Payment Payment

: _ Meter paid
expired expired

Meter paid

Sensor detects
vehicle departure Occupied,

Paid

Vacant,
Paid

Sensor detects
vehicle arrival

45

The parking space could be modeled more

simply with a Finite Automata

Simplified automobile parking

Star

Sensor detects
vehicle arrival

Vacant,
Not Paid

Occupied,
Not Paid

Sensor detects
vehicle departure

Payment Payment

Meter paid : :
expired expired

Meter paid

Sensor Sensor detects
pr.ObabW Vacant, vehicle departure Occupied,
missed , '

> Paid Paid
ve .IC e Sensor detects
arrival, go vehicle arrival
figure out

why!

46

Code review

DFA.java
* Store start as String
e Store ends as a Set (could be multiple ends)
* Constructor
* Takes set of States (with Start and Ends labeled) and
transitions (A,B,0 means from A go to B if given 0)
* Track start and end vertices
* Track transitions as Map (state-> Map(character, next state))
* match
e Start with current = start
* For each input
* Ensure transition to next state is valid
* Move to next state
e Return final state

47

Code review

NFA.java

Store start as String
Store ends as a Set (could be multiple ends)
Transitions now store list of possible states
Constructor
e Takes set of States (with Start and Ends labeled) and
transitions (A,B,0 means from A go to B if given 0)
* Track start and end vertices
* Transactions: Map (state-> Map(character, List(String)))
match
e Start with currentStates = start (could be multiple valid
current states!)
* For each input
* Check possible next states from all valid current states

48

