CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

Day 21 — Web Services

Big picture: query Flickr and display results

Overview

cccccccccc

Give me pictures of cats

Your
computer
N
N A
Flickr photo
database
N A

Ok, here you go

Click next...

» 1. Graphical user interface

2. Getting stuff from the web
3. Web services
4. Processing XML

5. Finished product

Creating Graphical User Interfaces (GUIs)

involves graphical elements and listeners

1. Graphical elements are items on the screen the
user can interact with
 Found in Abstract Window Toolkit (AWT) and
Swing libraries
* Provide a wide variety of items such as
outtons, text fields, combo boxes
* Platform (e.g., Windows, Mac) and device
independent

2. Listeners respond to user input such as clicking
or entering text .

Java graphical elements consists of

Containers and Components

Containers Components
JFrame —s JTextField JComboBox JButton
._':'_._ _ ¢[__________ tlic_kriea_rch_ R =f=\;xr\; .
Jpanel_)rcats | releMhce t| | sech N prev | _ni(t_ u

* Containers
can hold
other
containers or
components

JComponent

 May be
nested

Listeners allow us to capture user

interaction with graphical elements

// create button control
JButton search = new JButton("search");

//add listener if action taken on button (e.g., clicked)

search.addActionListener(new AbstractAction() {
public void actionPerformed(ActionEvent e) {
// this will run if action taken on button
System.out.println("search button”);

}
1)

Listeners are called back when event fires
Located in awt.event.* (import this)

Events call back listeners

Event life cycle Nt ‘

‘ 3. Construct an
XxxEvent obje

XxxListener
4. Invoke listener(s) <<interface>>
2. Trigger event-handler wi-th
the source the XxxEvent object 4&
. implements
Source '

i:::> Listener(s)
| 1|

Listener List 1. Source registers listener(s) which |

implements the appropriate
Xxxlistener interface
src.addXxxListener(listener)

event-handler(s)

// create button control
JButton search = new JButton("search");

//add listener if action taken on button (e.g., clicked)
search.addActionlListener(new AbstractAction() f{
public void actionPerformed(ActionEvent e) { //must be implemented to get call back
// this will run if action taken on button
System.out.printin("search button?”);
ks
s /

Image: http://www3.ntu.edu.sg/home/ehchua/programming/java/j4a_gui.html

Creating a Graphical User Interface in Java

is tedious without a GUI development tool
FlickrSearchCore.java

Run to show what we are trying to accomplish — windows with a
few buttons, text entry, and drop down box (otherwise window is
blank, photos from Flickr will go in main window portion)
Moving away from prawingGcuI, putting GUI development in this
file

You can hand code GUI layouts, but *far* easier to use a GUI
design tool, here we do it by hand

FlickrSearchCore extends grrame, Java’s graphical window class
Constructor creates a new canvas of type Jcomponent, point out
the use of anonymous class inside new Jcomponent

ContentPane IS the main container, canvas holds the pictures
from Flickr in the container, gui holds buttons, etc at the top
Most setup occurs in setupcur method

Creating a Graphical User Interface in Java

is tedious without a GUI development tool
FlickrSearchCore.java — setupGUI method

Creates button called prevs and adds a listener for button events
Same thing for nextB

Creates JcomboBox With sorts options with listener for events to
allow user to specify how to sort images (relevance, date, etc)
Creates grextField to allow user to input search criteria

Adds search button with listener

Package above components into a panel

FinaIIy, add canvas and gui to contentpane for window

1. Graphical user interface
» 2. Getting stuff from the web

3. Web services

4. Processing XML

5. Finished product

10

To transfer data between computers we

use pre-defined protocols

Network protocols
* Protocols define up front how data will be exchanged so everyone

knows the “rules”

* There are dozens of protocols used for different purposes:
 TCP/IP, FTP
 Wi-Fi, Bluetooth
 HyperText Transfer Protocol (HTTP) is the protocol commonly
used by the World Wide Web to get HyperText Markup Language
(HTML) documents that describes how to render a web page
 We use a Uniform Resource Location (URL) to specify what page
we want to get:

http://www.cs.dartmouth.edu/~tjp/cs10/index.php

L\ A J\)
| | | |

Protocol Computer Directory where File (assume index.html or
how we will talk that has data data located index.php if not provided) |,

Client makes a request for a resource to a

Server; Server responds to request

Process

Give me this file:
http://www.cs.dartmouth.edu/~tjp/cs10/index.php

Your browser

AN
M

nnnnnnnn

mmmmmmmmmmmmmmmmmm

Web server

Browser interprets
HTML data and

displays page

N

Sure, | have that file, here you go:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlIns="http://www.w3.0rg/1999/xhtml|" xml:lang="en" lang="en">

<head>

<meta http-equiv="content-type" content="text/html;charset=utf-8" />

<title>CS 10 | Problem solving | Winter 2017</title>

</head>

<body>
<div id="page">
<div id="header">
<div id="title">CS 10, Winter 2017</div>
<div id="subtitle">Problem Solving via Object Oriented Programming</div>
</div> ...

12

Java makes it easy to get HyperText

Markup Language (HTML) from the web

Getting HTML from the web

public class WWGetTry {
public static void main(String[] args) {

try {
// Create the URL; can throw MalformedURL
URL url = new URL("http://www.cs.dartmouth.edu/~tjp/csl@/index.php");
System.out.println("*** getting " + url);

// Create the reader for the stream; can throw IO
BufferedReader in = new BufferedReader(new InputStreamReader(url.openStream()));

// Read the 1lines; can throw IO

try {
String line;
while ((line = in.readLine()) != null) {
System.out.printin(line);
}
}

// Be sure to close the reader, whether or not reading was successful
finally {

in.close(Q);
}

catch (MalformedURLException e) {

System.err.println("bad URL");
catch (I0Exception e) {

System.err.println("problem opening/reading/closing");
}

System.out.println("*** done");

1. Graphical user interface

2. Getting stuff from the web
» 3. Web services

4. Processing XML

5. Finished product

14

We can use web services to get data (as

opposed to HTML) from a server

Web service process _ _
Give me this data:

http://www.cs.dartmouth.edu/~tjp/cs10/hello.php?name=tim&color=blue
! J J | J
I I I

Location Web service end Parameters in
point query string

AN
M

Web server
S REST
N— __“ Your (Representational
computer State Transfer) uses
Sure, | have that data, here you go: HTTP to transfer data
XML OR JSON
<Person> {“Person”:
<name>Tim</name> “name”:”"Tim”,
<class>2021</class> “class”:2021} e

</Person> }

REST web service example

Enter the following addresses in web browser
e http://cs.dartmouth.edu/~tjp/cs10/hello.php?name=tim
* http://cs.dartmouth.edu/~tjp/cs10/hello.php?
name=tim&color=blue

<?php
Sname =S_GET['name'];
Scolor =S_GET['color'];
if (isset(Scolor)) {
echo 'Hello there '.Sname.', thanks for stopping by. My favorite color is '.Scolor. ' too! ';
}
else {
echo 'Hello there '.Sname.', thanks for stopping by!';

}

>

16

1. Graphical user interface
2. Getting stuff from the web
3. Web services

» 4. Processing XML

5. Finished product

17

eXtensible Markup Language (XML) is a

popular way to representing data

Sample XML for course enrollment

- Start of enrollment tag

<enrollment> €=
<course department="CS" number="1" term="17W">
<student name="Alice" year="20" />
<student name="Bob" year="19" />
<student name="Charlie" year="18" />
</course>
<course department="CS" number="10" term="17W">
<student name="Delilah" year="19" />
<student name="Elvis" year="00" />
<student name="Flora" year="20" />
</course>
</enrollment><&_

= End of enrollment tag

XML
* XML groups data with an opening and closing tag

18

eXtensible Markup Language (XML) is a

popular way to representing data

Sample XML for course enrollment

- Start of enrollment tag

<enrollment> €=

<course department="CS" number="1" term="17W"> |
<student name="Alice" year="20" />
<student name="Bob" year="19" />
<student name="Charlie" year="18" />

</course>

<course department="CS" number="10" term="17W">"
<student name="Delilah" year="19" />
<student name="Elvis" year="00" />
<student name="Flora" year="20" />

—

™ Nested tag called “course”

| Another nested tag called
“course”

</course> —
</enrollment><&_

= End of enrollment tag

XML
* XML groups data with an opening and closing tag
e Tags can be nested

19

eXtensible Markup Language (XML) is a

popular way to representing data

Sample XML for course enrollment

Course tag attributes: department = “CS”, number =1, term=“17W"

<enrollment> |
<course department="CS" number="1" term="17W">
<student name="Alice" year="20" />
<student name="Bob" year="19" />
<student name="Charlie" year="18" />
</course>
<course department="CS" number="10" term="17W">
<student name="Delilah" year="19" />
<student name="Elvis" year="00" />
<student name="Flora" year="20" />
</course> ! J
</enrollment> I

Student tags attributes: name="“Flora”, year=“20"

XML
* XML groups data with an opening and closing tag
e Tags can be nested

* Tags can have attributes
20

eXtensible Markup Language (XML) is a

popular way to representing data

Sample XML for course enrollment

<enrollment>
<course department="CS" number="1" term="17W">
<student name="Alice" year="20" />
<student name="Bob" year="19" />
<student name="Charlie" year="18" />
</course>
<course department="CS" number="10" term="17W">
<student name="Delilah" year="19" />
<student name="Elvis" year="00" />
<student name="Flora" year="20" />
</course>
</enrollment>

XML

* XML groups data with an opening and closing tag
e Tags can be nested

* Tags can have attributes

e Typically web services provide documentation to help you interpret the attributes

Flickr uses XML to return information

about photos it stores
Simplified Flickr XML data from search 8/‘\

Querying Flickr for “dartmouth”

https://api.flickr.com/services/rest/?
method=flickr.photos.search&api_key=KEYHERE&text=dartmouth&sort=relevance&per_page=10

22

Flickr uses XML to return information

about photos it stores
Simplified Flickr XML data from search 8/‘\

Querying Flickr for “dartmouth”

https://api.flickr.com/services/rest/?
method=flickr.photos.search&api_key=KEYHERE&text=dartmouth&sort=relevance&per_page=10

Returns XML with information about photos of Dartmouth
<rsp stat="ok">
<photos page="1" pages="1111" perpage="10" total="11106">
<photo 1d="3839269905" secret="5513273158" server="3245" farm="4" />
<photo 1d="3840057696" secret="c9428b8fb3" server="3434" farm="4" />

</photos>
</rsp>

23

Flickr uses XML to return information

about photos it stores
Simplified Flickr XML data from search 8/‘\

Querying Flickr for “dartmouth”

https://api.flickr.com/services/rest/?
method=flickr.photos.search&api_key=KEYHERE&text=dartmouth&sort=relevance&per_page=10

Returns XML with information about photos of Dartmouth

<rsp stat="ok">
<photos page="1" pages="1111" perpage="10" total="11106">
<photo 1d="3839269905" secret="5513273158" server="3245" farm="4" />
<photo 1d="3840057696" secret="c9428b8fb3" server="3434" farm="4" />

</photos>
</rsp>

Response status is ok
Photos grouped into photos tag
Each photo in its own tag with information describing photo and

where to find it
24

Flickr uses XML to return information

about photos it stores

Simplified Flickr XML data from search 8/‘\

Querying Flickr for “dartmouth”

https://api.flickr.com/services/rest/?
method=flickr.photos.search&api_key=KEYHERE&text=dartmouth&sort=relevance&per_page=10

Returns XML with information about photos of Dartmouth

<rsp stat="ok">
<photos page="1" pages="1111" perpage="10" total="11106">
<photo 1d="3839269905" secret="5513273158" server="3245" farm="4" />
<photo 1d="3840057696" secret="c9428b8fb3" server="3434" farm="4" />

</photos>
</rsp>

Flickr documentation says that photos can be retrieved with:
http://farm{farm-id}.staticflickr.com/{server-id}/{id} {secret}.jpg

http://farm4.staticflickr.com/3245/3839269905 5513273158.jpg

25

1. Graphical user interface

2. Getting stuff from the web
3. Web services

4. Processing XML

» 5. Finished product

26

Finished product is in FlickrSearch.java

FlickrSearch.java
* Run to show what we are trying to accomplish
* Get Flickr key from course web page — don’t abuse it!
* Most of the action is in 1oadImages
e Build Flickr query
 Use Bufferedreader to read XML data from Flickr server
* Use Java’s XML parser to handle data
* Loop over all photos
 Read photo in BufferedImage
e Storein images instance variable
e Search button reads from text box and queries Flickr
* Repaint causes canvas to display cur image

27

