CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

Day 22 — Client/Server

3. Multithreaded server

4. Chat server

Sockets are a way for computers to

communicate

IP:1.2.3.4
HTTP
Port: 80

Server

Server is listening on
a socket
(socket = IP address
+ protocol
+ port)

Port 80 = HTTP

Client 1

Client 1 makes
connection over
socket

Server receives

connection, moves
communications
to own socket

Sockets are a way for computers to

communicate

* (Client 1 makes

/ connection over
socket

IP:1.2.3.4 —

HTTP @ Client 1 _

Port: 80 * Server receives
1 connection, moves

Server communications

to own socket
Server is listening on

a socket e Server returns to
(socket = IP address listening

+ protocol

+ port) « Server talking to

Client 1 and ready
Port 80 = HTTP for others

Sockets are a way for computers to

communicate

* (Client 2 makes

/ connection over
socket
IP:1.2.3.4 -

HTTP Client 1
Port: 80

Server

Server is listening on
a socket

(socket = IP address
+ protocol
+ port)

Client 2

Port 80 = HTTP)

Sockets are a way for computers to

communicate

* (Client 2 makes

/ connection over
socket

IP:1.2.3.4 —

HTTP @® Client 1 _

Port: 80 e Server receives
connection, moves

Server communications

to own socket
Server is listening on

a socket e Server returns to
(socket = IP address Client 2 listening

+ protocol

+ port) « Server talking to

client 1 and 2 6
Port 80 = HTTP readyv for others

Java provides a convenient Socket class

WWWSocket.java
* Run, type ~tjp/cs10/index.php
e Qutput stream = from your computer to somewhere else
out.println sends data to another computer
* Input stream = from another computer to your computer
in.readLine reads data sent to your computer

1. Sockets

» 2. Server

3. Multithreaded server

4. Chat server

We can create our own server

HelloServer.java

public static void main(String[] args) throws IOException {
// Listen on a server socket for a connection
System.out.printin("waiting for someone to connect");
ServerSocket listen = new ServerSocket(4242);

// When someone connects, create a specific socket for them
IP: localhost Socket sock = listen.accept();

System.out.println("someone connected");
Port: 4242 // Now talk with them

PrintWriter out = new PrintWriter(sock.getOutputStream(), true);
BufferedReader in = new BufferedReader(new InputStreamReader(sock.getInputStream()));
—_—— out.println("who is it?");
String line;
SSEEr\/EEr while ((line = in.readLine()) != null) {
System.out.printin("received:" + line);
out.println("hi " + line + "! anybody else there?");

}
System.out.printin("client hung up");

// Clean up shop
out.close();
in.close(Q);
sock.close();
listen.close();

Run, then from terminal type telnet localhost 4242

We can also create our own client too

HelloServer.java and HelloClient.java

HelloServer

Socket: in-stream A out-stream

Server-Side
Client-Side

Socket: out-stream y [n-stream

HelloClient or

Telnet Client

10

We can create our own client too

HelloClient.java

public class HelloClient {
public static void main(String[] args) throws Exception {
Scanner console = new_Scanner(System.in);

// Open the socket with the server, and then the writer and reader
System.out.println("connecting. .)

Socket sock = new Socket("localhost" 4242); //new Socket("129.170.212.159", 4242);
PrintWriter out = new PrintWriter(sock.getOutputStream(), true);

BufferedReader in = new BufferedReader(new InputStreamReader(sock.getInputStream()));
System.out.printin("...connected"”

// Now listen and respond

. String line;
Client while (Cline = in.readLine()) != null) {
// Output what you read
System.out.printin(line);

// Get some more input (from the user) to write to the open socket (server)
String name = console.nextlLine();
out.println(name);

}

System.out.println("server hung up"

// Clean up shop
out.close();
in.closeQ);
sock.close();

}

Run HelloServer.java

Then run HelloClient.java =

Friends can connect to your server if they

connect to the right IP address
Run MylPAdressHelper.java to get your address, edit HelloClient.java

Local Network

-
...............
.....
.....

- -

- -
- e
Phd L4

- Use: Public (global) IP Address
‘\ of SERVER to connect clients
outside the local network

i
Use: Private (local) IP Address
of SERVER to connect clients
within the local network

Use: “localhost” to connect
clients running locally
to the SERVER

o"
.....

- -
- -

- -

. -

........
.............

12

Connecting from another machine

HelloServer.java and HelloClient.java
* Run MylPAddressHelper on server to get IP
» Start HelloClient.java on server
* Edit HelloClient.java to change localhost to server IP address
 Run HelloClient on client machines and make connection
* Connect from student machine?

13

1. Sockets
2. Server
» 3. Multithreaded server

4. Chat server

14

Currently our server can only handle one

client at a time

Using Java’s Thread mechanism to overcome single client issue

We would like our server to talk to multiple clients at a
time

Trick is to give each client its own socket

That way the server can talk “concurrently” with multiple
clients

Java provides a Thread class to handle concurrency
(multiple processes running at same time)

Threads are much lighter than running multiple instances
of a program (more on threads next class)

Inherit from Thread class and override run method

Start thread using start method

15

We can create a “Communicator” on a

separate thread for each connection

One Communicator allocated for a single client

HelloServer

HelloServer /
Communicator

Socket: in-stream A out-stream

Thread

Socket: out-stream y n-stream

HelloClient or
Telnet Client
16

We can create a “Communicator” on a

separate thread for each connection

Multiple Communicators allocated for multiple clients

HelloServer

lu..-.-.-.-.-.-.-.-.-.-.-.............l....-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.-.\'g-.-.----.-.-.-.-.-.-.-.-..................-.-.-.-.-.-.-.-.-.-.-..............-:

HelloServer

eeoee :
Communicator

A

Client-Side

HelloClient or HelloClient or HelloClient or HelloClient or

Telnet Client Telnet Client Telnet Client Telnet Client

We can create a “Communicator” on a

separate thread for each connection

HelloMultithreadedServer.java

* Starts new thread with new HelloServerCommunicator on each
connection

HelloServerCommunicator.java
* Extends Thread
* Override run
* Tracks thread ID
 Otherwise the same as single threaded version

Run HelloMultithreadedServer.java with multiple telnets

18

1. Sockets
2. Server
3. Multithreaded server

» 4. Chat server

19

Goal: Chat server allows communication

between multiple clients

ChatServer

Client sends message
to server

ecee
ChatClient (0) ChatClient (1) ChatClient (2) ChatClient(n-1)
20

Goal: Chat server allows communication

between multiple clients

ChatServer

Server broadcasts
message to all clients

Message

o
V)
(N
%
I\

ecee
ChatClient (0) ChatClient (1) ChatClient (2) ChatClient(n-1)
21

Client listens for keyboard on main thread

creates Communicator on second thread

Client
ChatServer

Client-Side

Client uses two threads:

Sl 1. Listen for keyboard input

Communicator

= (blocks in between entries)
2. Communicates with server
ChatClient
22

ChatServer creates a Communicator for

each client

Server

ChatServer

ChatServer
Communicator

l .“""..

— — — — — — — o — — - - - -

ChatClient
Communicator

ChatClient

23

ChatServer handles multiple clients and

broadcasts message to each client

Client and server

ChatServer

ChatServer ChatServer ChatServer —— ChatServer
Communicator Communicator Communicator Communicator
A

Server-Side
Client-Side

4
ChatClient
Communicator

ChatClient(n-1)

\ 4 v \ 4
ChatClient ChatClient ChatClient
Communicator Communicator Communicator

ChatClient (0)

ChatClient (1)

ChatClient (2)
24

ChatServer handles multiple clients and

broadcasts message to each client
ChatServer.java

Starts thread with chatservercommunicator on each connection

Tracks all new threads in comms ArraylList of
ChatServerCommunicators

CaIIs send method on each ChatServerCommunicator when
messages arrive from any client (except self)
Provides add and removeCommunicator methods for

ChatServerCommunicator to call

ChatServerCommunicator.java

Similar to MultithreadedServerCommunicator

Tracks chatserver that started it

Has send method to output messages sent by Server

Calls broadcast on chatserver when new message typed

Calls remove on chatserver when client hangs up 2

ChatServer handles multiple clients and

broadcasts message to each client

ChatClient.java
e Starts thread with chatclientCommunicator
* Listens for keyboard input on main thread
e Gets name as first input

* Sends subsequent keyboard input to Server via
ChatClientCommunicator send method

ChatClientCommunicator.java
* Tracks c1ient that created it
e Listens for incoming messages and outputs to console in run

send method sends console text entered by keyboard to Server
for broadcast

26

27

We can build a Chat server that will

broadcast messages to all clients

Chat server

* Client connects to server and gives name

* Server now broadcasts messages to all clients, attributing message
to client name

e Server side works similarly to HelloMultithreadedServer.java, but

keeps track of all threads it creates using comms ArraylList of
Communicators

 Communicators are removed if client hangs up

 Each communicator has a send method that the server can call to
send a message to it

* Adding and removing communicators use synchronized to make
sure only one talks at a time (more about this next class)

28

Clients must listen for both keyboard input

and message from server
Chat client

* Clients use two threads

* Main thread listens for keyboard input

* Second thread listens for messages from Server
* Create a “communicator” for the client side

29

