CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

Synchronization

» 1. Threads and interleaving execution

2. Producer/consumer

3. Deadlock, starvation

Threads are a way for multiple processes

to run concurrently

Threads

MyThread 1

main() {

MyThread 2

MyThread n

MyThreadClass t = new MyThreadClass ()

//start thread at run method, main

thread keeps running
t.start ()

//halt main until thread finishes

t.join

Assume MyThread is a
class that extends
Thread

MyThread must a
implement a run
method

Execution begins by
calling start on a
MyThread object, run
method then executes

Can call 50in to halt
main program until
thread finishes

Concurrent threads can access the same

resources, this can cause problems

Concurrency

MyThread 1 total+=1

total+=1
MyThread 2

total+=1

MyThread n

 Threads can be interrupted at any time by the Operating System
and another thread may be run

* When each thread tries to increment total, it gets a current copy
of total, adds 1, then stores it back in memory

* What can go wrong? 4

Threads can be interrupted at any point,

this can cause unexpected behavior

Incrementer.java
total is static (shared by all of same class)
* Two threads of same Incrementer class started
* Main program execution blocked with joins
 Each thread increments total 1 million times
* Each thread may be interrupted at any point
* Incrementing total
* Get value of total from memory
e Add1
e Store new value back in memory
* Another thread might get value from memory between time
when first thread got value and time when first thread wrote
new value back

* Inthat case, the value of tota1l will only be incremented by 1
not 2 5

Threads can be interrupted at any point,

this can cause unexpected behavior

Incrementerinterleaving.java

* Almost the same as Incrementer.java

 Each thread now keeps track of its name

* Each thread now prints to console (causing more time for
interruptions for other thread)

 Two threads try to increment total 5 times

 Sometimes it works, sometimes it doesn’t, depends how
threads were executed by Operating System

e Causes tricky debugging issues!

* Run several times

Java provides the keyword synchronized to

make some operations “atomic”

IncrementerTotal.java

public class IncrementerTotal {

int total =0,
public(synchronizedyoid inc() {
totale+;

¥
h

synchronized keyword in front of inc method means only one
thread can be running this code at a time

* If multiple threads try to run synchronized code, one thread
runs, all others are blocked until first one finishes

* Once first thread finishes, another thread is selected to run
synchronized makes this code “atomic” (e.g., as if it were one
instruction)

* This synchronized approach is called a “monitor” (or mutex)

Java provides the keyword synchronized to

make some operations “atomic”

IncrementerTotal.java
* Class that provides a synchronized method inc to ensure
only one thread at a time can access inc method

IncrementerSync.java
* Uses synchronized code to make sure only one thread at a
time can update total
* Total is 2 million at completion because threads don’t step
on each other

1. Interleaving execution
» 2. Producer/consumer

3. Deadlock, starvation

Producers tell Consumers when ready,

Consumers tell Producers when done

Main idea
Producer: Consumer:
* Tell Consumer when item is e Block until woken up by
ready (notify Or notifyall) Producer that item ready (wait)
* Block until woken up by * Process item and tell Producer
Consumer that item handled when done (notify or
(wait) notifyAll)

* Tell Consumer when next item * Block until woken up by
is ready (notify Or notifyAll) Producer (wait)

10

Producers and Consumers synchronized

with wait, notify Orf notifyAll

wait

 Removes thread from synchronized method

* Tells Operating System to put this thread into a list of waiting threads
* Allows another thread to enter synchronized method

notify

* Tells Operating System to pick a waiting thread and let it run again
(not a FIFO queue, OS decides — take CS58 for more)

* Thread should check that conditions are met for it to continue

notifyAll
 Wake up all waiting threads
e Each thread should check that conditions are met for it to continue

11

Producer passing messages to Consumer

using semaphore

Example
3
m
Producers checks if Consumers checks for
MessageBox empty, wait message, wait if empty
it not empty MessageBox

null

12

Producer passing messages to Consumer

using semaphore

Example
S Consumer [
® |String msg = “message”; String msg;
MessageBox empty, Consumers wait for
Producer puts message in MessageBox notification

MessageBox object MessageBox

put(*message”)

S null

MessageBox put
method synchronized so
only one thread can be in
method at a time

13

Producer passing messages to Consumer

using semaphore

Example
- Consumer [
® |String msg = “message”; String msg;
Producers wait until Consumers wait for
MessageBox is empty MessageBox notification
MessageBox
‘message”

 MessageBox now holds message

* MessageBox notifies all threads
waiting for MessageBox access

v using notifyall

14

Producer passing messages to Consumer

using semaphore

Example

awil

Producer

String msg = “message”;
Producers wake up and
check to see if message

m
empty MessageBox

Not empty so all

Producers wait again| _ .
message

All waiting Consumers
try to access message

One succeeds and
removes message

others wait

| Consumer I

String msg;

15

Producer passing messages to Consumer

using semaphore

Example
: Consumer [
o String msg = “message”; String msg;
Producer waits until All waiting Consumers
MessageBox is empty try to access message
MessageBox One succeeds and

removes message

others wait
take()

message” | %

MessageBox take method synchronized so
only one thread can be in method at a time

take removes message from MessageBox

16

Producer passing messages to Consumer

using semaphore

Example
- Consumer [
® |String msg = "message”; String msg;
Producer waits until Consumers wait until
MessageBox is empty MessageBox if full
MessageBox

null

MessageBox notifies all threads

waiting for MessageBox access using
notifyAll

Producers may put message now // msg == "message’

17

Producer/Consumer example shows how

to use object as semaphore

ProducerConsumer.java
* Createa MessageBox, Producer and consumer
e Start producer and consumer running on different threads
* NOTE: no join, so main thread ends, while threads run

Producer.java

run method tries to put 5 messages into MessageBox
e Sleeps for random time between puts

Consumer.java

 Takes messages from MessageBox
* Prints message

18

Producer/Consumer example shows how

to use object as semaphore

MessageBox.java

* Actsasa Semaphore
* put

synchronized $0 only one thread runs method at a time
e (Causes threads to block with wait if message not empty
 NOTE: empty check in a while loop, just because notified,
doesn’t mean another thread hasn’t already put a message,
must make this check!

notifyall after setting message to wake up all Producers and

Consumers (see note above)
take

e Causes all Consumers to block with wait if message is null
* Makes check in while loop like put
 Nulls and returns message

notifyall to wake up all Producers and Consumers

19

1. Interleaving execution
2. Producer/consumer

» 3. Deadlock, starvation

20

Synchronization can lead to two problems:

deadlocks and starvations

Deadlock Starvation

 Objects lock resources * Thread never gets

 Execution cannot proceed resource it needs
because object need a * Thread A needs
resource another locked resource 1 to complete

 Object A locks resource 1 e Other threads always

* Object B locks resource 2 take resource 1 before

* A needs resource 2 to A can get it

proceed but B has it locked <+ As starved
* B needs resources 1to

proceed but A has it locked
* A and B are deadlocked

21

Dinning Philosophers explains deadlock

and starvation

Dinning Philosophers
Problem set up

P * Five philosophers (P,-P,) sit at
* N\ a table to eat spaghetti
* There are forks between each
/ of them (five total forks)
Each philosopher needs two
} forks to eat
e After acquiring two forks,
philosopher eats, then puts
. 1 both forks down
* Another philosopher can then
pick up and use fork previously
put down (gross!)

22

Dinning Philosophers explains deadlock

and starvation

Dinning Philosophers

Naive approach
* Each philosopher picks up fork
on left
* Then picks up fork on right
* Deadlock occurs if all
} philosophers get left fork, none
can get right fork

i

23

For deadlock to occur four conditions must

be met

Deadlock conditions

1. Mutual exclusion
At least one resource class must have non-sharable access. That is,

 Either one process is using that instance (and others wait), or
* thatinstance is free

2. Hold and wait
 Atleast one process is holding a resource instance, while also waiting to be

granted another resource instance. (e.g., Each philosopher is holding on to
their left fork, while waiting to pick up their right fork.)

3. No preemption
 Granted resources cannot be pre-empted; a resource can be released only

voluntarily by the process holding it (e.g., you can't force the philosophers to
drop their forks.)

4. Circular wait
* There must exist a circular chain of at least two processes, each of whom is

waiting for a resource held by the previous one. (e.g., each Philosopher]i] is
waiting for Philosopher[(i+1) mod 5] to drop its fork.)

24
From Coffman, 1971

We can break the deadlock by ensuring the

“circular wait” does not occur

Dinning Philosophers Eliminate circular wait

* Number each fork in circular
fashion

 Make each philosopher pick up
lowest numbered fork first

* All pick up right fork, except P,
who tries to pick up left fork O

* Either P, or P, get fork O

* If P,gets it, P, waits for fork O
before picking up fork 4, so P,
eats

* P, eventually releases both forks
and P, and P, eat

* Others eat after P, and P,

e Cannot deadlock

Could also force one of the

Philosophers to wait at first .

Dining Philosophers demonstration

DiningPhilosphers.java
* Create 5 philosophers and 5 forks
* Each philosopher has a left and right fork
Philosopher.java
* Each philosopher tries to eat three meals
 Work up appetite (random pause)
acquire left (random pause)
acquire right (random pause)
eat (random pause)
release right and left forks
Fork.java
 Keep record if available (not already acquired)
 Make philosopher wait if already acquired
* |f not acquired, mark fork as acquired
 Release —mark as not acquired and notifyall waiting 26

Another approach is to prevent “hold and

wait” by picking up both forks atomically

Dinning Philosophers Eliminate hold and wait
* Make picking up both forks an
P atomic operations
N P

* Forks no longer control their
destiny as in prior code

* Now we lock both with a monitor

* Could lead to starvation if one
philosopher always picks up
before another

P

1

-0

27

Monitored version avoids deadlocks by
picking up both forks atomically

MonitoredDiningPhilosphers.java
acquire and release moved here to get or release both forks

Philosopher.java
* Each philosopher tries to eat three meals
 Uses monitor to acquire and release both forks

Fork.java
* Simply tracks if available

28

