CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

Streams

» 1. Streaming data

2. Java streams

Streams allow us to process things “as they

come”

Stream movie vs. file

Stream (Netflix) File (Movie on DVD)

Data production Arrives as produced Pre-produced

Streams allow us to process things “as they

come”

Stream movie vs. file

Stream (Netflix) File (Movie on DVD)
Data production Arrives as produced Pre-produced
Data processing As it arrives All available, read as

desired

Streams allow us to process things “as they

come”

Stream movie vs. file

Data production

Data processing

Synchronization

Stream (Netflix)
Arrives as produced

As it arrives

Keep producers and
consumers in sync

File (Movie on DVD)
Pre-produced

All available, read as
desired

No need for
synchronization

Streams allow us to process things “as they

come”

Stream movie vs. file

Stream (Netflix) File (Movie on DVD)
Data production Arrives as produced Pre-produced
Data processing As it arrives All available, read as
desired
Synchronization Keep producers and No need for
consumers in sync synchronization

Memory use Not all in memory All in memory (or disk)

Streams allow us to process things “as they

come”

Stream movie vs. file

Stream (Netflix) File (Movie on DVD)
Data production Arrives as produced Pre-produced
Data processing As it arrives All available, read as
desired
Synchronization Keep producers and No need for
consumers in sync synchronization
Memory use Not all in memory All in memory (or disk)

Length Can be infinite Limited

Streams allow us to process things “as they

come”

Stream movie vs. file

Stream (Netflix) File (Movie on DVD)
Data production Arrives as produced Pre-produced
Data processing As it arrives All available, read as
desired
Synchronization Keep producers and No need for
consumers in sync synchronization
Memory use Not all in memory All in memory (or disk)
Length Can be infinite Limited
Fast forward/ Hard Easy

reverse

Operations can be chained together to

form a pipeline

Unix pipeline example

cat USConstitution.txt | tr 'A-Z' 'a-z' | tr -cs 'a-z' "\n' | sort | uniq | comm -23 - biggerSorted.txt

U NS BN T GUR N§ Qs

\/ U\

. cat outputs contents of file

. Pipe (‘|’) passes output to next command

. tr translates to lower case

. tr translate non-characters to new lines

. sort puts words in order

. unig removes duplicates

. com compares pipeline with another file, outputs only lines not

in biggerSorted.txt

1. Streaming data

» 2. Java streams

10

Streams are a sequence of elements from a

source that supports aggregate operations

Sequence of elements

* A stream provides an interface to a sequenced set of values of a
specific element type

* Streams don’t actually store elements; they are computed on
demand

Source
e Streams consume from a data-providing source such as collections,
arrays, or |/O resources

Aggregate operations

e Streams support SQL-like operations and common operations
from functional programing languages, such as filter, map, reduce,
find, match, sorted, and so on

11

http://www.oracle.com/technetwork/articles/java/mal4-java-se-8-streams-2177646.html

Two characteristics of streams make them

different from iterating over collections

Streams vs. iterating collections

1. Pipelining
* Many stream operations return a stream themselves
* Allows operations to be chained to form a larger pipeline
* Enables certain optimizations, such as laziness and short-
circuiting

2. Internal iteration
* In contrast to collections, which you explicitly iterate, stream
operations do the iteration behind the scenes for you

12

http://www.oracle.com/technetwork/articles/java/mal4-java-se-8-streams-2177646.html

Example: Make sorted list of transaction

IDs from collection of bank transactions

Usual approach

List<Transaction> groceryTransactions = new Arraylist<>();
for(Transaction t: transactions){
if(t.getType() == Transaction.GROCERY){
groceryTransactions.add(t);

}
}

Collections.sort(groceryTransactions, new Comparator(){
public int compare(Transaction t1, Transaction t2){
return t2.getValue().compareTo(tl.getValue());

Get Grocery
™ items from all
transactions

= Sort by value

} —
)k —
List<Integer> transactionlds = new ArrayList<>(); Get
for(Transaction t: groceryTransactions){ = transaction
transactionslds.add(t.getld()); IDs

} —

http://www.oracle.com/technetwork/articles/java/mal4-java-se-8-streams-2177646.html

13

Example: Make sorted list of transaction

IDs from collection of bank transactions

Using Java streams
Double colon

means call Sy

List<Integer> transactionslds = .)
, this function
transactions.stream()
filter(t -> t.getType() == Transaction.GROCERY) Data passe§ to
.sorted(comparing(Transactiof::getValue).reversed()) B n?xt is,tage n
.map(TransactiotId) pipeline
.collect(toList()); B
Pipeline
Predicate Comparator Function

Pl

transactions)

14

http://www.oracle.com/technetwork/articles/java/mal4-java-se-8-streams-2177646.html

Graphical depiction of grocery transaction

example

Grocery transaction example

TRANSACTIONS

STREAM Stream<Transaction>
Filter filter(t -> t getType() ==

Transaction.GROCERY) id: 3 id: 6 id: 10
data value: 8 R e Stream<Transaction>
Sort sorted(comparing(Transaction::getValue) ><
sreversed() id: 6 id: 3

data) alll

Extract map(Transaction::getld)
data

Return collect(toList())
not a
stream

15

http://www.oracle.com/technetwork/articles/java/mal4-java-se-8-streams-2177646.html

There are two types of operations,

terminal and intermediate

Types of operations

Terminal * Close a stream pipeline Example:
 Produce aresultsuchasa ¢ collect(toList())
List or Integer * count

* sum

16

There are two types of operations,

intermediate and terminal

Types of operations

Terminal

Intermediate

Close a stream pipeline
Produce a result such as a
List or Integer (any non-
stream type)

Output is a stream object
Can be chained together
into a pipeline

“Lazy”, do not perform any
processing until terminal
operation invoked

Pipeline can often be
merged into a single pass

Example:

e collect(toList())
e count

* sum

Examples:
 filter
e sorted
* map
e [imit
e distinct

17

Lazy computation allows short circuiting

where not all data is evaluated

Short circuiting

List<Integer> numbers = Arrays.aslList(1, 2, 3,4, 5, 6, 7, 8); Output

List<Integer> twoEvenSquares =
numbers.stream()

filter(n -> {
System.out.printIn("filtering " + n);
returnn % 2 ==0;
})
.map(n ->{

System.out.printIn("mapping " + n);
return n * n;

)
dimit(2)
.collect(toList());

filtering 1
filtering 2
mapping 2
filtering 3
filtering 4
mapping 4

Inputs greater than 4 not evaluated
because limit(2) short circuits
evaluation; no need to check more
items after two have been found

Can’t short circuit things like sorting
18

Examples

StringStreams.java

1. Initiate a stream with a fixed list of strings, terminate it by printing each out. Note the Java 8 syntax for passing a defined method, here
the println method of System.out, which takes a string and returns nothing, as appropriate for termination here.

2. Now we have an intermediate operation, consuming a string and produces a number (its length), passing the String member function
length to do that.

3. Adifferent intermediate, here a static method in this class, which consumes a string and produces a transformed string.

4. The intermediate passes forward only some of the things it gets, discarding those that don't meet the predicate. It uses an anonymous
function as we discussed in comparators and events.

5. Other predefined intermediates process the stream to sort it, eliminate duplicates, etc. Some of these can take arguments (e.g., how to
sort).

6. A reimplementation of the frequency counting stuff from info retrieval, now letting streams do all the work. "Collector" terminal
operations collect whatever is emerging from the stream, into a list, set, map, etc. Here we collect into a map, from word to count. The
first argument is a method to specify for each object a value on which to group (things with the same value are grouped). Here we
group by the word itself, so all copies of the word get bundled up. The second argument then says how to produce a value from the
group; here, by counting.

7. Similar, but now grouping by the first letter in the word.

8. Assuming we already have a list of words, now we want to count the letter frequencies. (For illustration, this doesn't count whitespace
frequencies, as the words are pre-extracted.) Split each word into characters. But now we've got a stream of arrays of characters, and
we want just a single stream of characters. So we make a stream of streams (characters within words), and "flatten" it into a single
stream (characters) by essentially appending the streams together.

9. Same thing could come directly from a file, producing a stream of lines that we flatten into a stream of words. Note another
intermediate operation keeps only the first 25 it gets.

10. A new final operation counts how many things ultimately emerged from the stream.

11. A comparator for sorting.

12. Partway through, we convert from a generic Stream to a specalized DoubleStream that deals with double values (not boxed Double

objects) and lets us do math. Interestingly, the average operation recognizes that it could be faced with an empty stream to average.
Rather than throwing an exception, it uses the Optional class to return something that may be a double or may be null. We could test,
but here, just force it to be a double (an exception will be thrown if it isn't). 19

Examples

NumberStreams.java

1. Rather than enumerating explicit objects to initiate a stream, we can implicitly enumerate numbers with a range. (Might be familiar
from other languages...). Note that this is the specialized IntStream, working on raw int values.

2. And we can do appropriate intermediate processing of the numbers.

3. lllustrates the very important general stream processing pattern reduce (the other keyword in the map-reduce architecture; we've
already done plenty of mapping). The idea is to "wrap up" all the elements in a stream, pair-by-pair. Reduce takes an initial value and a
function to combine two values to get a result. So sum essentially starts at 0, adds that to the first number, adds that result to the
second number, etc. Importantly, though, if the operation is associative (doesn't matter where things are parenthesized), it need not
be done sequentially from beginning to end, but intermediate results can be computed and combined. That's key in parallel settings.

4. See how general reduce is? Could also combine strings with appending, etc.

5. As mentioned, streams only evaluate something when there's a need to. It's like the demand comes from the end of the stream, and
that demand propagates one step up asking to produce something to be consumed, and so forth. Since there's a limit of 3 things being
produced, the demand for the rest of the range never comes, and the range isn't fully produced.

6. Aninfinite stream, with the iterate method starting with some number and repeatedly applying the transform to get from current to
next. So produce 0, from O iterate to 1 and produce it, from 1 to 2, from 2 to 3, etc. Since limited to 10, the whole iteration isn't
realized (fortunately!).

7. Exponentially increasing steps.

8. Filling the stream by generating random numbers "independently" each time.

9. Requesting parallel processing of a stream is as simple as inserting the method. Whether or not that's a good idea, and how it will play
out, depends very much on the processing. Here we do have a bunch of independent maps and filters, and as discussed above,
reducing with an associative operation (sum) can be done in parallel. Sorting would be a bottleneck, for example. Note from print
statements that the stuff is going on in non-sequential order.

10. Parallel beats sequential on my machine in this non-scientific test.

20

21

Filtering operations

filter (Predicate)

Takes a predicate (java.util.function.Predicate) as an argument
and returns a stream including all elements that match the given
predicate

distinct
Returns a stream with unique elements (according to the
implementation of equals for a stream element)

limit (n)
Returns a stream that is no longer than the given size n

skip (n)
Returns a stream with the first n number of elements discarded

22

Streams allow us to process things “as they

come”

Stream vs. file

Stream (Streaming movie)

Data arrives as it is produced
Consumers process data as it
arrives

Synchronization keeps
Producers and Consumers in
sync

Not all data in memory at once
(might cache some)

Can be content can be infinite
length

No way to fast forward or
rewind (ignoring caching)
without resending data

File (Movie on DVD)

Data pre-produced
Consumer reads data as
desired

No need for synchronization

All data in memory (or disk) at
once
Content is finite in length

Can easily fast forward to
rewind

23

Operations can be chained together to

form a pipeline
Unix pipeline example
cat USConstitution.txt | tr 'A-Z' 'a-z' | tr -cs 'a-z' "\n' | sort | uniq | comm -23 - biggerSorted.txt

\/

1. cat outputs contents to file Output
We the People of the United States, in

Order to form a more perfect Union,
establish Justice, insure domestic
Tranquility, provide for the common

24

Operations can be chained together to

form a pipeline

Unix pipeline example

cat USConstitution.txt | tr 'A-Z' 'a-z' | tr -cs 'a-z' "\n' | sort | uniq | comm -23 - biggerSorted.txt

\/

1. cat outputs contents to file

2. Pipe (‘|’) passes output to next
command

3. trtranslates to lower case

Output

we the people of the united states, in
order to form a more perfect union,
Establish justice, insure domestic
tranquility, provide for the common

25

Operations can be chained together to

form a pipeline

Unix pipeline example

cat USConstitution.txt | tr 'A-Z' 'a-z' | tr -cs 'a-z' "\n' | sort | uniq | comm -23 - biggerSorted.txt

\/

1. cat outputs contents to file

2. Pipe (‘|’) passes output to next
command

3. trtranslates to lower case

Output

we the people of the united states, in
order to form a more perfect union,
Establish justice, insure domestic
tranquility, provide for the common

26

