CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

» 1. Manipulating individual pixels

2. Accounting for geometry
3. Interaction

4. Puzzle

Today we will look at processing images as

a step toward more sophisticated OOP

Turn this image... .. into this image

Starting with skeleton code

ImageProcessor0.java
* Stores an image with getter/setter methods

* Will enhance to include more sophisticated
functionality

ImageProcessingGUI0.java

e Constructor sets up instance variable called “proc” to
hold ImageProcessor0 object

* draw() calls proc.getimage() to display proc’s image

* handleKeyPress() has option to save image to disk;
calls proc.getimage() then repaints

* The bigidea is that ImageProcessor0 object proc will
manipulate the image and GUI just uses it

4

Pixel colors are made up of Red, Green,

and Blue components of varying intensity

RGB color values determine color displayed

Red Green Blue Result
255 255 255 White

Each pixel color is a 24-

0 0 0 Black bit integer where bits:

255 0 0 Bright red 16-23 = red component

0 255 0 Bright green 8-15 = green component

0 0 255 Bright blue 0-7 = blue component

128 0 0 Not-as-bright-red So each R.G, or B

0) 128 0) Not-as-bright green components has 8 bits

0 0 128 Not-as-bright-blue to control color intensity
More colors:

http://www.cs.dartmouth.edu/~tjp/cs10/notes/4/colors.html 5

We can pick up the color of a pixel, modify

it, and write it back to the image

Example: dim a pixel’s color

//pick up color of pixel at x,y location
Color color = new Color(image.getRGB(x, y));

//extract red, green, blue components and dim them
int red = color.getRed() / 2; //divide by 2 dims intensity
int green = color.getGreen() / 2;

int blue = color.getBlue() / 2;

//write dimmed color back to image
Color newColor = new Color(red, green, blue);
image.setRGB(x, y, newColor.getRGB());

With a nested loop we can dim all pixels in

an image
Example: dim all pixel colors

for (inty = 0; y < image.getHeight(); y++) { //loop over all y
for (int x = 0; x < image.getWidth(); x++) { //loop over all x
// Get current color; scale each channel; put new color

Color color = new Color(image.getRGB(x, vy));
int red = color.getRed() / 2; //first 8 bits

int green = color.getGreen() / 2; //second 8 bits
int blue = color.getBlue() / 2; //third 8 bits
Color newColor = new Color(red, green, blue);
image.setRGB(x, y, newColor.getRGB());

More functional ImageProcessor

ImageProcessor.java

dim() implements code from last slide

brighten() does the opposite of dim, but must check
max color value

scaleColor() allows each RGB component to scale
individually, must cast doubles to ints with (int)
noise()

* adds random noise to each color channel

* random() returns number [0,1)

 multiply random() * 2 then -1 to get range -1..1

 multiply that -1..1 number by scaling factor to
increase range as desired

constrain() method check values to ensure
they do not exceed min/max bounds

constrain() function
private static double constrain(double val, double min, double max) {
if (val < min) {
return min;
}
else if (val > max) {
return max;

}

return val;
}
Comments

* Will be called often, so to avoid duplicating same bounds checks,
create a helper method and call it where needed

constrain() method is of type static

constrain() function
private static double constrain(double val, double min, double max) {
if (val < min) {
return min;
}
else if (val > max) {
return max;

}

return val;
}
Comments

* static means method is same one for all objects created of this class
* exists outside each specific object

* called “class variable”, not instance variable

e call with ClassName.method() example Math.random(), also main()

1. Manipulating individual pixels
» 2. Accounting for geometry
3. Interaction

4. Puzzle

11

Flipping an image requires track where we

are and where we want to write

ImageProcessor.flip()
* Create a new blank image “result” with
createBlankResult()

* Nested loop over each row (y) and each column (x)
* Account for geometry where original row written to
different row in new image (e.g., when y =0 then

original row O written to image.getHeight()-0-1)
 Update pixel in “result” image
 When loops finish, set object’s image variable to new
image (original image will be garbage collected)
 What would happen if we did not create a new
image?

12

We can also alter pixels based on

neighboring pixels
ImageProcessor.scramble()

Create a new blank image “result” with
createBlankResult()

Nested loop over each row (y) and each column (x)
Account for geometry where we pick a random pixel
+/- 1 pixel from current location (but not off screen)
Update pixel in “result” image

When loops finish, set object’s image variable to new
image (original image will be garbage collected)

13

Sometimes we want to operate on a pixel’s

neighbors

Blur image by averaging around each pixel’s neighbors

Pixel and neighbors Averaging can
smooth outliers

oo e 10 | 12 | 13 ?:ﬁ'::?;::ew
o|x|® 12 | 34 |11 [mereotan
nnu 10 13 11 neighbors

Average =
(10+12+13+12+34+11
+10+13+11)/9 = 14

14

Average() examines neighbors to smooth

(blur) and image
ImageProcessor.java

average() implements code from last slide

Create a new image to hold result

Loop over all pixels (nested loop)

Loop over all neighbors of each pixel (“radius” away
above, same level, below) NOTE: whitespace

Make sure not to go off screen, use constrain()
Calculate average for all color components

Write average to pixel at (x,y) location in new image
Set image to resulting image

Do not make radius too big or you’ll have a wait!
What would happen if we did not use a new image to
store results, but instead used the original? -

sharpen() works similarly to average(), but

subtracts neighbors weights

Sharpen image by subtracting each pixel’s neighbors
* Replace all

Pixel and neighbors Subtract neighbor values in new
weights image with

nun 4 4 4 ‘c’:Ir::uted
x -1 9 | -1 W thisi
EEE 1 1 1 I: ;svtlﬁiilcl)end

 Usedin deep

Result= pixel * 9 - learning and
sum(neighbors) signal

processing

16

1. Manipulating individual pixels
2. Accounting for geometry

» 3. Interaction

4. Puzzle

17

Adding some interactivity by handling key

and mouse Presses

ImageProcessorGUl.handleKeyPress()
* Get key pressed
e Call appropriate function on processor (named proc)
e Can control radius for average() and sharpen()
* repaint() at end

ImageProcessorGUl.handleMousePress()
* Add ability to pick up the color at mouse location x,y
when press “p” key, and then press mouse store in
color in “pickedColor” instance variable
* Add ability to drawSquare() of pickedColor and radius
when press “q” then press mouse at location (x,y)
* repaint() at end

18

1. Manipulating individual pixels
2. Accounting for geometry

3. Interaction

» 4. Puzzle

19

Puzzle breaks an image into multiple pieces

and stores pieces in an ArrayList

Original image
4 x 3 puzzle pieces

Piece O | Piece 1| Piece 2 |Piece 3

Piece 4 | Piece 5| Piece 6 |Piece 7
Piece 8 | Piece 9 | Piece 10 | Piece 11

20

Puzzle.java

Puzzle.java

Creates pieces from original image and stores them
in an ArraylList

getPiece(r,c) calculates index into ArrayList for given
row and column, returns that image piece
createPieces() splits original image into pieces
getSublmage() creates new Bufferedimage of pixels
from original image

swapPieces() swaps piece in ArrayList at r1,c1 with
piece at r2,c2, using temp variable

shufflePieces() loops over each row and column and
swaps with a random (possibly same) piece

21

