CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff




» 1. Webcam processing

2. Color tracking
3. Frame differencing
4. Recording a loop

5. Background subtraction



Previously manipulated a single image,

video is just multiple images over time

n images form a video

We can individually process each image (sometimes called a frame)
We just have to be done before the next image arrives!

Image: appocoda.com



Video brings together many concepts

we’ve previously seen with images

Webcam.java
* Wrapping OpenCV for Java
 Two set up parameters:
e scale -- down-size the image (useful for intensive processing)
* mirror -- flip the image left-right (feels more natural)
e Constructor prints out the native camera size so you can decide
what a good scale factor is to yield a sufficiently small image
* You don't really need to be familiar with the Webcam code. It's
built off DrawingGUI, so the same methods apply for handling
events and drawing
* One new method is processimage(), which we define in Webcam
subclasses to do something with each separate image as it comes
off the webcam
* Image itself is stored in an instance variable called “image”, to
which processimage has access, and which it can modify

4



Subclassing Webcam.java allows us to

easily process individual image frames
WebcamProcessing.java

Run — screen colored blue

Subclass of Webcam

Each frame grabbed by the camera in Webcam calls
processimage() in subclass, with image stored in Bufferedimage
image variable

Since result of camera grab is a Bufferedlmage, can apply any of
our previous image processing methods to it

Here we have a our previous image processor scale the color of
the image and display it in processimage()

Notice we did not have to make changes to the image processor



We can also override draw() to change

how things are rendered

WebcamRendering.java
* Run
* Press “m” for mosiac
* Press “p” for pointillism
* Press “i” for standard image
» style sets how image will be rendered, set on key press
* mosaic
e pointillism
* draw() overridden to choose how image rendered based on style
variable
* mosaic()
* Pick up color at x,y
* Draw rectangle of size pixel filled with color
* Draw black border



1. Webcam processing
» 2. Color tracking

3. Frame differencing

4. Recording a loop

5. Background subtraction



We can track a point as it moves,

essentially using the point as a mouse
WebcamColorTracking.java

Run, press mouse on color to track, move object with color

On mouse press, save color underneath mouse location in
trackColor

track() finds the pixel closest in color to the color saved; returns a
Point object (has both x and y values)

draw() then draws an oval around the point returned by track,
provided a color has been selected

Assumes the object moves smoothly and doesn’t change color too
much (e.g., lighting, orientation changes)

Not too sophisticated, but generally works



1. Webcam processing
2. Color tracking

» 3. Frame differencing
4. Recording a loop

5. Background subtraction



To detect movement, we can subtract one

frame from the next
WebcamDiff.java

e Run, move hand in front of camera
e processimage() each frame, make a copy of the current image to
save what came in from the camera, store in Bufferedimage curr

* Then simply subtract RGB values for corresponding pixels from the
current frame and the previous frame
 Compute the absolute value of the difference
* Can't have negative color values
* Direction of the difference doesn't matter anyway for this
purpose
* Write difference to current image with setRGB()
e Set prev frame to curr

10



1. Webcam processing
2. Color tracking
3. Frame differencing

» 4. Recording a loop

5. Background subtraction

11



If we can keep track of one frame, we can

keep track of many frames and play back
WebcamLoop.java
* Run, wave hand, click mouse to play back video in reverse order

* Add instance variables to keep track of:

* Recording vs. playback state
 Frame buffer called “frames”
e Current frame number

* processimage() — if recording, add this frame to frame buffer

* draw()—if recording, just draw image, else play “frame” frame in
buffer

* handleMousePress()
* Toggle recording state

* Erase frame buffer or set current frame number (depending on
recording state)

12



1. Webcam processing
2. Color tracking

3. Frame differencing
4. Recording a loop

» 5. Background subtraction

13



We can now add concepts together to do

“green screen” like background subtraction
WebcamBg.java

* Run, get out of frame, click mouse, come back in frame in
* Constructor saves image we want as background in “scenery”
instance variable (e.g., Baker tower)
* handleMousePress() sets background image as frame coming from
camera (this is what we want to subtract)
* processimage()
* Look at each pixel in current camera image
* If pixel color close to background image pixel in same location,
then replace image pixel with scenery pixel at that location
 Works best under controlled lighting and if your webcam isn't
trying to be too fancy itself by adjusting brightness, etc.
* Scale the webcam image down to the size of the background

scenery (the setup scale, stored in a static final variable in
DrawGUI). o




