CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

Day 6 — Lists

» 1. Defining an ADT

2. Generics
3. Singly linked list implementation
4. Exceptions

5. Visibility: public vs. private vs.
protected vs. package

Abstract Data Types specify operations on

a data set that defines overall behavior
Abstract Data Types (ADTs)

* ADTs specify a set of operations (insert, remove, etc) that define
how the ADT behaves on a collection of data

e At the ADT level we don’t know (and don’t really care) how data
elements are stored (e.g., linked list or array, doesn’t matter) or

what kind of data they hold (e.g., Strings, integers, objects). This
is the Abstract in Abstract Data Type

* |deais to hide the way the data are represented while allowing
others to work with the data in a predictable manner

The same operation can act differently in

different ADTs, defining unique behavior

Examples of List, Stack, and Queue ADTs

List Stack Queue
“Alice” “Bob” “Charlie” “Charlie” “Alice” “Bob” “Charlie”

llBOb”
“Alice”

Behavior

* Insert anywhere Insertonlyattop < Insertonlyatend

* Remove from * Remove only * Remove only from

anywhere from top front
 Keeps elements in e “LIFO” “FIFO”

order ,

An Interface defines the set of operations

required to implement an ADT

Interface
* Defines a set of operations that MUST be implemented (if you're

going to be an ADT of a particular type, you’ll have to implement
these functions)

* Does not specify HOW to implement the functionality (use an
array, use a linked list —its all up to you, Interface doesn’t care)

* Cannot “new” an Interface -- it has not implementation!

* Today we focus on the List ADT implemented as linked list, soon
will cover other ADTs such as stacks, queues, trees, and graphs.

 Tomorrow we will look at an array implementation

The List Interface describes several

operations, but not implementations

List ADT
Operation Description
size () Return number of items in List
1sEmpty () True if no items in List, otherwise false
get (i) Return the item at index i
set (i,e) Replace the item at index / with item e
add (i, e) Insert item e at index i, moving all subsequent
items one index later
remove (i) Remove and return item at index i, move all

subsequent items one index earlier

These operations MUST be implemented to complete the ADT
Free to implement other methods, but must have these
Notice the familiar look from Java’s ArrayList

Interfaces go in one file, implementations

go in another file

Interface file
Specifies required
operations
SimplelList.java

Uses keyword
interface

111

Linked list

implementation
SinglyLinked.java

OR

111

Array
implementation

Implementation file
Actually implements
required operations
using a specific data
structure

Same interface could
be implemented in
different ways (e.g.,
linked list or array)

Class uses keyword
implements

The List ADT could be implemented with a

singly linked list or an array; either works

Examples of List implementation

Singly linked list

data next data next data next

head —— —t— —— M
l l l

“Alice” “Bob” “Charlie”

Array
0 1 2 n-1

“Alice” “Bob” “Charlie”

1. Defining an ADT

» 2. Generics
3. Singly linked list implementation
4. Exceptions

5. Visibility: public vs. private vs.
protected vs. package

Generics allow a variable to stand in for a

Java type

Interface declaration
public interface SimpleList<T> {

public T get(int 1ndex) throws Exception;
public void add(int index, T item) throws Exception;

}

* T stands for whatever object type we instantiate

* SimplelList<Blob> then T always stands for Blob

 Simplelist<Point>then T always stands for Point

* Allows us to write one implementation that works regardless of
what kind of object we store in our data set

* Must use class version of primitives (Integer, Double, etc)

* Typically name type variables with a single uppercase letter, often
T for "type", but sometimes E for "element”, or as we'll see later K
and V for "key" and "value", and V and E for "vertex" and "edge” .,

1. Defining an ADT
2. Generics

» 3. Singly linked list implementation
4. Exceptions

5. Visibility: public vs. private vs.
protected vs. package

11

Singly linked list review: elements have

data and a next pointer
Singly linked list

data next data next data next

head —> —— —r— M
l l l

“Alice” “Bob” “Charlie”

Finding data in Singly Linked List

* Keep pointer to head

* To find item, must start at head and march down until get to
desired index (or in other implementations find object with
matching data — find “Charlie” vs. get at index 2)

12

Insert “splices in” a new object anywhere

in the list by updating two pointers

Insert item at index 1

data next data next data next

head —>) 1 M
l l l

“Alice” “Bob” “Charlie”

data ne

IIBi”H

13

Remove takes an item out of the list by

updating one pointer

Remove item at index 1

data next data next data next

Y Readt

“Alice” “Bob” “Charlie”

data ne

IIBi”H

14

Simplelist.java defines a List Interface

SinglyLinked.java implements as linked list

Simplelist.java defines Interface

- size() return number of elements stored in the list
 add(int idx, T item) addsitem atindex position idx

« remove (int idx)removes item atindex position idx

« get(int idx)return the item atindex idx

« set(int idx, T item)replace item atindex idx with item

SinglyLinked.java implements Interface as a linked list

* Implements SimplelList Interface as a singly linked list, so must
implement all methods in Interface; can add more methods

 Defines a nested class for elements in list

 Each element has a data instance variable of type T and a next
pointer

* Keeps a pointer to head, uses advance (int n)to gettoitemn

e add(),remove () use advance () to find previous item

« toString () for println

15

ListTest.java uses implementation to keep

track of items

ListTest.java
* Create new SinglyLinked to hold strings, so T stands for
String in SinglyLinked
e Add items (Strings)
* Printlist (remember: println calls tostring (), implemented
in SinglyLinked.java)
* Run

16

1. Defining an ADT
2. Generics

3. Singly linked list implementation

» 4. Exceptions

5. Visibility: public vs. private vs.
protected vs. package

17

An exception indicates that something

unexpected happened at run-time

Cannot check for all errors at compile time

What if we ask for element at index -1 of an array?
* There is no clear, “always-do-this”, answer
 Maybe we should return null
* Maybe we should stop program execution

Exceptions provide a way to show something is amiss, and let calling
functions deal with error (or not)

“Throw” error with throw new Exception (“error description”)

Java provides structured error-handling via try/catch blocks
e (Catch block specifies type of error it handles
* (Catch executes only if error in try body
e Can have multiple catch blocks for each try
* Finally block executes regardless whether try succeeds or fails
* Exceptions not handled before main () kill execution N

Exceptions can be handled at run time with
try/catch/finally blocks

ListExceptions.java

* Create new SinglyLinked

* Add items to list

* Before remove calls, list contains z->a->b->e->[/]

* NOTE the set at line 13, not an add!

» After removes list contains a->[/]

e (Cause errors and see catch in action

* Finally always called

e Exceptions thrown by SinglyLinkedList.java (e.g., line 49)

* |f method throws exception, must by in try/catch block from
caller (see line 49 in SinglyLinked.java and any add in
ListExceptions.java)

* Try adding list.add(1,”f”) on line 24 (outside try/catch)

19

1. Defining an ADT

2. Generics

3. Singly linked list implementation
4. Exceptions

» 5. Visibility: public vs. private vs.
protected vs. package

20

Java allows us to break up major portions

of code into Projects, Packages and Classes

Example of master project for a company

Main Project

Packages
within Accounting
Project Package
Classes Accounting
within G
Package

Accounting

Class n

Manufacturing
Class 1

Manufacturing

Package

Manufacturing
Class n

Marketing
Class 1

Marketing
Class n

21

Visibility depends on modifier applied

Example: Visibility of Alpha class

Packages Accounting
(Pkg) Package

Subclass
Alpha € " AlphaSub
Classes
Beta Gamma Y = can access
N = cannot access
Accounting Pkg Marketing Pkg

If Alphais: Access by: Alpha Beta AlphaSub Gamma
public Any class Y Y Y Y
protected Pkg + Subclass Y Y Y N
No modifier | Pkg - Subclass Y Y N N
private This class only Y N N N .,

Visibility depends on modifier applied

Example: Visibility of Alpha class

Packages Accounting
(Pkg) Package

Subclass
Alpha € " AlphaSub
Classes
Beta Gamma Y = can access
N = cannot access
Accounting Pkg Marketing Pkg

If Alphais: Access by: Alpha Beta AlphaSub Gamma
public Any class Y Y Y Y
protected Pkg + Subclass Y Y Y N
No modifier | Pkg - Subclass Y Y N N
private This class only Y N N N

24

