CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

Day 7 — Lists Part 2

» 1. Growing array list implementation

2. Orders of growth
3. Asymptotic notation
4. List analysis

5. Iteration

Last time we implemented a List with a

linked list, now we will use an array

Arrays
* Ordered set of elements of fixed total length
* Each element in array is of fixed length
e Can’t easily add/remove elements
* |Indexed starting at O (Matlab starts at 1) to n-1
 Random access to elements (linked list required march down
list to find desired element)
* Easy to get/set any element in an array
* One big chunk of memory

* InJava, access arrays with square brackets []
int[] numbers = new int[10]; //arrayofint0..9 (NOT 10!)
for (int 1=0;1<10;i++) {
numbers[i] = 1*2; //seteachelementtoi*2

}

The trick to using an array to represent a

List is to grow the array size when needed

Using an array to implement List

* Allocate array of starting maxSize (say 10 items)

* Add items as required

* If size grows to maxSize then
* Allocate larger array (say 2 times current maxSize)
e Copy items from old array into new array
e Set array instance variable to new array
* (old array will be garbage collected)

* add () /remove () may require moving elements to

make or close hole in array

With the growing trick, we can implement

the List interface with an array

GrowingArray.java
* Create array of <T> to hold elements, size=0, and initial
capacity=10
e Constructor, new the array to allocate space
* size() —return size variable as in linked list
e add(intidx, T item)
* Check idx bounds
* If size == array.length
* Create new array 2 times larger than size
 Copy elements from old array to new
* Set array to new array
* Loop backward from last to idx to move elements right
one space
* Set array[idx] = item
* Increment size

With the growing trick, we can implement

the List interface with an array

GrowingArray.java
* remove(int idx)
* Check idx bounds
* Loop from item O to idx-1, move items left one space
e get(intidx)
* Check idx bounds
e Return arraylidx]
e set(intidx, T item)
* Check idx bounds
e Setarraylidx] = item
e toString()
* Return String representation of List
* Notice how fast get/set are in relation to linked list where we
had to march down the list to get/set the element we wanted

6

1. Growing array list implementation
» 2. Orders of growth

3. Asymptotic notation

4. List analysis

5. Iteration

Often run-time will depend on the number

of elements an algorithm must process

Consider an array of length n
* Returning the first element takes a constant amount of time,
irrespective of the number of elements in the array
e Binary search runs in log(n) time
* Sequential search runs in time proportional to n
* Many sorting algorithms run in time proportional to n? (think
of “round-robin” tournament)
* Given array with {1,2,3,4,5}
* Compute:
1+1, 2+1, ... 5+1 ™
1+2, 2+2, ... 5+2
1+3, 2+3, ... 5+3
1+4, 2+4, ... 5+4
1+5, 2+5, ... 5+5 |

n rows and n columns
means n *n = n% operations

Often run-time will depend on the number

of elements an algorithm must process

Consider an array of length n
* Computing all possible combinations of items runs in 2" time
1) 1,2,3,4,5
2) 1+2,143,1+4,1+5,2+3,2+4,2+5,3+4,3+5,4+5
3) 142+3,14+2+4,1+2+5, ...
4) 1+2+43+4, ...
5) 1+2+3+4+5, ...

* Think of all possible moves in chess

For small numbers of items, run time does

not differ by much

7))}
c
@)
5
©
| &
()]
Q.
@)
‘5 10
| &
)
o
&
-
—

n
O

—log, x|

—
h

il

10

As n grows, number of operations between

different algorithms begins to differ

300,

no
O
o

N
o
=

—_
o
Q

Number of operations
o o
o o

11

Even with only 60 items, there is a large

difference in number of operations

300

N
o
=2

n
o
O

—_
o
Q

Number of operations
o o
o o

12

Eventually, even with speedy computers,

some algorithms become impractical

300

N
o
=2

n
o
O

—_
o
Q

U
Q

Number of operations
o
o

20 40 60 80 100 120
n

13

Sometimes complexity can hurt us,
sometimes it can help us

OTBT0RT1 11117, 0TI o1 18
100nt L8 CIET !
011011 ,

1) 110111000

1101010101101
D180 ‘uml;t J10,

‘ mjim mmm
0101010101011
010110101019

Hurts us Helps us
Can’t brute force chess Can’t crack password
algorithm 2" algorithm 2"

14
Images: thechessstore.com; studyoffice

1. Growing array list implementation
2. Orders of growth

» 3. Asymptotic notation
4. List analysis

5. Iteration

15

Computer scientists describe upper bounds

on orders of growth with “Big Oh” notation

O gives an asymptotic upper bounds

ocn

running
time

> 1

ny

Run time is O(n) if there

exists constants nyand c

such that:

* Vn2n,

* runtime of size nis at
most cn, upper bound

* O(n) is the worst case
performance for large
n, but actual
performance could be
better

* O(n) is said to be
“linear” time

 O(1) means constant
time

16

We can extend Big Oh to any, not

necessarily linear, function

O gives an asymptotic upper bounds

c fin)

running
time

> n

]
)

Run time is O(f(n)) if
there exists constants ng
and c such that:

* Vnz2n,

* run time of size n is at
most cf(n), upper
bound

* O(f(n)) is the worst
case performance for
large n, but actual
performance could be
better

e f(n) can be a non-
linear function such as
n2

17

We focus on upper bounds (worst case) for

a humber of reasons

Reasons to focus on worst case
* Worst case gives upper bound on any input
* Gives a guarantee that algorithm never takes any longer
* We don’t need to make an educated guess and hope that
running time never gets much worse

Why not average case instead of worst case?

 Seems reasonable (sometimes we do)

* Need to define what is the average case: search example
* Video database might return most popular items first, so

might find popular items before obscure items

* Incases like linear search, might find item half way (n/2)
 Sometimes never find what you are looking for (n)

 Average case often about the same as worst case

18

Run time can also be Q (Omega), where

run time grows at least as fast

Q gives an asymptotic lower bounds

Run time is Q(n) if there
A c2fin) exists constants nyand c,
such that:
. * Vnz2zn,
running]] .
time * runtime of size nis at
least c,n, lower bound
Q(n) is the best case
performance for large
, n, but actual
. ’jo > n performance can be
worse

c) fin) .

19

We use O (Theta) for tight bounds when

we can define O and Q

O gives an asymptotic tight bounds

a2 fin)

running
time

c) fin)

]
)

> n

Run time is ©(n) if there
exists constants nyand c,
and ¢, such that:

* Vn2n,

* run time of size nis at
least c,n and at most
c,n

* O(n) gives a tight
bounds, which means
run time will be within
a constant factor

* Generally we will use
either O or O, called
asymptotic notation

20

We ignore constants and low-order terms

In asymptotic notation

Constants don’t matter, just adjust ¢, and c,
* Constant multiplicative factors are absorbed into ¢, and c,
* Example: 1000n?is O(n?) because we can choose c, and c, to be
1000 (remember bounded by c,n and c,n)
* Do carein practice — if an operation takes a constant time, O(1),
but more than 24 hours to complete, can’t run it everyday

Low order terms don’t matter either
* If n2+1000n, then choose ¢, = 1, so now n? +1000n > c,n?
* Now must find c, such that n? +1000n < c¢,n?
* Subtract n? from both sides and get 1000n < c,n%- n?=(c,-1)n?
* Divide both sides by (c,-1)n gives 1000/(c,-1) < n
* Pickc,=2and n,=1000, then Vn=n, 1000 <n
* So, n%?+1000n < c,n?, try with n=1000 get n? + 10002 = 2*n?
* In practice, we simply ignore constants and low order terms

21

1. Growing array list implementation

2. Orders of growth
3. Asymptotic notation

» 4. List analysis

5. Iteration

22

Linked list is O(n), Growing array is O(1)

based on amortized analysis

Linked list Growing array

 add/remove/get/set « get/set O(1)
from front of list, O(1)
constant time « add might cause 2*n memory

allocation and copy

* add/remove/get/set operation, O(n), or have to
not at front, might have move subsequent items O(n)
to march down entire
list to find item we « remove () first element
want, O(n) causes all elements to move

left to fill hole, O(n)
* So worst case is O(n)
e Linked list looks better, but is
it?

23

Amortized analysis shows growing array is
actually only O(1)!

Amortized analysis

Imagine for each add operation, we charge 3 “tokens”, not 1
One token pays for the current add, and two go “in the bank”
After n add operations, we will have 2n tokens in the bank (say
n=10, then 20 tokens in the bank)

We will then have to grow the array size by 2n, and copy n items
to the new array (last n positions in new array are empty)

We charge n tokens to copy the n items to the new array (e.g.,
10 tokens subtracted from 20 leaves 10 tokens and 10 empty
spots)

So, already “paid” for the empty spaces by charging the 2 extra
tokens — one token paid for the copy, one for the empty space
In the end, we have O(3) for each add operation which is O(1)
Java ArraylList expands 3/2 times, but same result with 4 tokens

24

1. Growing array list implementation
2. Orders of growth
3. Asymptotic notation

4. List analysis

» 5. Iteration

25

Its so common to march down a list of

items that Java makes it easy with iterators

Traditional for loop Iterator

for (int 1=0; For (Blob b : blobs) {
i<blobs.size () b.step()
i++) | }

blobs.get (1) .step();

Comments Comments

* iserves no real purpose, e Easier to read?
don’t !’eally care what Its « Keeps track of where it left off
Yalue 's atany point e [terator has two main methods:

° llisresetevery time, * hasNext () can advance?
doesn’t keep track of « next () doadvance

where it was last
* Could lead to O(n?) %

We can add our own iterator to the List we

previously created

Simplelterator.java
* |nterface for own iterator

SimplellList.java
* Note the |l in the class title
e Same as previous List interface, but adds iterator as public
method newilterator()

ISinglyLinked.java
* Creates new class called IterSinglyLinked that implements
Simplelterator from SimplelList.java
* Instance variable curr tracks current position
* Otherwise same as linked list version in SinglyLinked.java

IGrowingArray.java
* Similar to ISinglyLinked.java, but with array implementation

We can add our own iterator to the List we

previously created

IterTest.java
* Commented out with Linked list or Growing array
 Add items to 2 different lists of whichever list type is not
commented out
* Prints elements using an index (still can do that)
* Checks to see if each element is equal (ugly syntax)
* Prints elements using iterator and hasNext(), next() methods
* Checks to see if two lists are equal using iterators
* Run with Linked list
 Run with Growing array
* Book has a fancier version

28

