CS 10:
Problem solving via Object Oriented
Programming

Winter 2017

Tim Pierson
260 (255) Sudikoff

Day 9 — Hierarchies Part 2

» 1. Binary search

2. Binary Search Trees (BST)
3. BST find analysis
4. Operations on BSTs

5. Implementation

Binary search can quickly find items if the

data is ordered

Binary search on an array

Index
Data| 1 5 9 14 25 53 | 107 | 214 | 512

ﬁ Max

Pseudo code
Looking for target = 53
Set min =0, max = n-1
While (min <= max) {
idx = (min + max)/2
If array[idx] == target
return idx
array[idx] > target
max = idx-1
else
min = idx +1

At each iteration half of the indexes are

eliminated

Binary search on an array

Index
Data| 1 5 9 14 25 53 | 107 | 214 | 512

ﬁ Max

Pseudo code Target 53
Looking for target = 53 Min =0
Max =8

Set min =0, max = n-1
While (min <= max) {
idx = (min + max)/2
If array[idx] == target
return idx
array[idx] > target
max = idx-1
else
min = idx +1

ldx = (0+8)/2 =4
Array[idx] = 25

At each iteration half of the indexes are

eliminated

Binary search on an array U U

Index
Data| 1 5 9 14 25 53 | 107 | 214 | 512

ﬁ Max

Pseudo code Target 53
Looking for target = 53 Min =5
Max =8

Set min =0, max = n-1
While (min <= max) {
idx = (min + max)/2
If array[idx] == target
return idx
array[idx] > target
max = idx-1
else
min = idx +1

ldx = (5+8)/2 =6
Array[idx] = 107

Binary search finds data generally faster

than linear search
Binary search on an array @

Index
Data| 1 5 9 14 25 53 | 107 | 214 | 512

Pseudo code Target 53
Looking for target = 53 Min =5
Max =5

Set min =0, max = n-1
While (min <= max) {
idx = (min + max)/2

ldx = (5+5)/2 =5
Array[idx] =53

If array[idx] == target Binary vs. linear search
return idx * Binary found item in 3 tries
array[idx] > target Linear search would have taken 6 tries
max = idx-1 * On large data sets binary search can make
else a huge difference
min = idx +1

We can extend binary search to find a key

and return a value

Key is Student ID, Value is student name

Index
StudentID| 1 5 9 | 14 | 25 | 53 | 107 | 214 | 512

lll
“Alice” “Charlie” ..

IIBObII

Implications

* Given a Student ID, can quickly find the student’s name
* Each entry must have a key and a value

e Value is an object (e.g. String or student record)

* Of course the keys must be sorted

* How do we do that?

1. Binary search

» 2. Binary Search Trees (BST)
3. BST find analysis
4. Operations on BSTs

5. Implementation

Binary Search Trees (BSTs) allow for binary

search by keeping keys sorted

Keys sorted in Binary Search Tree

Binary Search Tree property
Q e Letxbeanodeina

binary search tree
* left.key < x.key
° ° * right.key > x.key
 We will assume for now
° e e e duplicate keys are not

allowed

BSTs with same keys could have different

structures and still obey BST property

Two valid BSTs with same keys but different structure

Tree 1 Tree 2

BSTs make searching fast and simple

Find Key “C”

Search process
 Check root
° IIDI) > llcll’ SO go Ieﬂ

11

BSTs make searching fast and simple

Find Key “C”

Search process
 Check root

/ e “D”">"“C”, sogoleft
* Check “B”
f i e “B”<“C” sogoright

12

BSTs make searching fast and simple

Find Key “C”

/

é\

Search process

Check root
an S ”C”, SO go IEﬂ

Check “B”
“B” < “C”, so go right

Check “C”
Yahtzee! Found it

13

BSTs make searching fast and simple

Find Key “C”

/

é\

Search process

Check root
an S ”C”, SO go IEﬂ

Check “B”
“B” < “C”, so go right

Check “C”
Yahtzee! Found it

Would know by now if
key not in BST

14

1. Binary search

2. Binary Search Trees (BST)
» 3. BST find analysis

4. Operations on BSTs

5. Implementation

15

BST takes at most height+1 checks to find

key or determine the key is not in the tree
Find Key “C”

Search process
 Height h =2 (count

Height number of edges to leaf)
T
/ * (Can take no more than
h=2 h+1 checks, O(h)
\ |
3 é * Can we say anything
more specific about

search time? O(log n)?
Careful, it’s a trap!

16

BSTs do not have to be balanced! Can not

make tight bound assumptions! (yet)
Find Key “G”

Search process
* Height h =6 (count
number of edges to leaf)

e (Can take no more than
h+1 checks, O(h)

* Soon we will see how to
keep trees balanced

17

1. Binary search
2. Binary Search Trees (BST)
3. BST find analysis

» 4. Operations on BSTs

5. Implementation

18

Inserting a new key is easy (compared with

sorted array)

Inserting new node with key H

Comments
e Search for key (H)
* If found, replace value
* If hit leaf, add new node as left or right child of leaf

Inserting a new key is easy (compared with

sorted array)

Inserting new node with key H

Comments
e Search for key (H)

* If found, replace value
* If hit leaf, add new node as left or right child of leaf

Inserting a new key is easy (compared with

sorted array)

Inserting new node with key H

AN
:e ol

Comments
e Search for key (H)
* If found, replace value
* If hit leaf, add new node as left or right child of leaf _,

G is a leaf, add new node

Inserting a new key is easy (compared with

sorted array)

Inserting new node with key H

o ol

OO O | 00 O

Comments
e Search for key (H)

* If found, replace value

* If hit leaf, add new node as left or right child of leaf

Deletion is trickier, need to consider

children, but no children is easy
Deleting node A (no children)

Comments
e Search for parent of A
* |f found and A has no children, set appropriate left or right
to null on parent .

Deletion is trickier, need to consider

children, but no children is easy
Deleting node A (no children)

Comments
e Search for parent of A
* |f found and A has no children, set appropriate left or right
to null on parent)

Deletion is trickier, need to consider

children, but no children is easy
Deleting node A (no children)

Bis
parent

“@5@

Comments
e Search for parent of A
* |f found and A has no children, set appropriate left or right

to null on parent .

Deletion is trickier, need to consider

children, but no children is easy
Deleting node A (no children)

oorent / gé)
é@ ©

Comments
e Search for parent of A
* |f found and A has no children, set appropriate left or right

to null on parent .

Deleting with one child is not difficult

Deleting node B (1 child)

Comments
e Search for parent of B
* If found and B has 1 child, set appropriate left or right on
parent to B’s only child .

Deleting with one child is not difficult

Deleting node B (1 child)

Dis
parent
of B

Comments
e Search for parent of B
* If found and B has 1 child, set appropriate left or right on
parent to B’s only child e

Deleting with one child is not difficult

Deleting node B (1 child)

Dis
parent

G dg%@

Comments
e Search for parent of B
* If found and B has 1 child, set appropriate left or right on
parent to B’s only child .

Deleting node with 2 children requires

finding the node’s “successor”
Deleting node F (2 children)

Comments e e

* Search for F

e If found and F has 2 children, find successor (smallest on right)
e Successor will be greater than E and less than or equal to G

* May have to recurse down right child’s left descendants

e Delete successor, but save successor's key and value

* Replace F with key and value of successor

30

Deleting node with 2 children requires

finding the node’s “successor”
Deleting node F (2 children)

Comments 5%3)

* Search for F

e If found and F has 2 children, find successor (smallest on right)
e Successor will be greater than E and less than or equal to G

* May have to recurse down right child’s left descendants

e Delete successor, but save successor's key and value

* Replace F with key and value of successor

31

Deleting node with 2 children requires

finding the node’s “successor”
Deleting node F (2 children)

Found F
Successor is smallest on right (G here)

Comments é @

Search for F
e If found and F has 2 children, find successor (smallest on right)
e Successor will be greater than E and less than or equal to G
* May have to recurse down right child’s left descendants
e Delete successor, but save successor's key and value
* Replace F with key and value of successor

32

Deleting node with 2 children requires

finding the node’s “successor”
Deleting node F (2 children)

Found F
Successor is smallest on right (G here)
Delete successor

Comments é @

Search for F
e If found and F has 2 children, find successor (smallest on right)
e Successor will be greater than E and less than or equal to G
* May have to recurse down right child’s left descendants
e Delete successor, but save successor's key and value
* Replace F with key and value of successor

33

Deleting node with 2 children requires

finding the node’s “successor”
Deleting node F (2 children)

Found F

Successor is smallest on right (G here)
\ Delete successor

Replace F value with G key and value

Comments
* Search for F
e If found and F has 2 children, find successor (smallest on right)
e Successor will be greater than E and less than or equal to G
* May have to recurse down right child’s left descendants
e Delete successor, but save successor's key and value
* Replace F with key and value of successor

34

1. Binary search

2. Binary Search Trees (BST)
3. BST find analysis

4. Operations on BSTs

» 5. Implementation

35

Binary Search Tree nodes each take a key

and value, also have left and right children

Binary Search Tree declaration

public class BST<K,V> {
private K key;
private V value;
private BST<K,V> left, right;

}

Comments
e Key could be a String (e.g., name) and value could be

Bufferedimage (e.g., mugshot), both could be integers (key is
zip code, value is population), depends on use case

* Remember, generics need to be objects, so use wrapper
classes for primitives such as Integer and Double

36

We need a way to compare nodes, so the

Key must implement a Comparable

Extending Comparable interface

public class BST<K extends Comparable<K>, V> {
private K key;
private V value;
private BST<K,V> left, right;

}

Comments

 Comparable must implement compareTo(K compareKey) method

e compareTo() built in for primitive types and wrappers (e.g.,
String), no need to implement ourselves if Key is String

 compareTo() returns O if node and compareKey are the “equal”

* Return -1 if node’s key < compareKey

 Return 1 if node’s > compareKey

37

BSTs make searching fast and simple

BST.java

* Constructors set up trees as expected, just like last class in
BinaryTree.java
e public V find(K search)
 Compare search with node’s key
* If match then return node’s value
e If (compare <0 && haslLeft()) return left.find(search)
e If (compare >0 && hasRight()) return right.find(search)
 Throw exception if key not found (wasn’t match and no
left or right children)
* public void insert(K key, V value)
e Search key
* If key found, replace value
* else, insert as leaf

38

Code to delete nodes

BST.java
* delete(K search) at line 105
 Compare search to this node’s key
* If node’s key < search, set left = left.delete(search), return this
* If node’s key > search, set right=right.delete(search), return this
* |f keys are the same
* |f node has one child, return child
* If node has two children
* Find successor (smallest on right), may have to recurve
right child’s left children
* Delete successor, but save key and value
e Set this node’s key and value to successor’s key and
value
* Return this node

39

Can find min value in tree recursively or in

a loop

BST.java

Only need to traverse down left side, so like a linked list
 min() (line 66)
e |If left !=null, return left.min()
e Else return key (this will be the left most, smallest key)

 minlter() (line 74)
e Start from current node
* While (curr.left !=null) curr = curr.left
* Return curr.key

40

