CS 10: Problem solving via Object Oriented Programming Winter 2017

> Tim Pierson 260 (255) Sudikoff

Day 9 – Hierarchies Part 2

1. Binary search

- 2. Binary Search Trees (BST)
- 3. BST find analysis
- 4. Operations on BSTs
- 5. Implementation

Binary search can quickly find items if the data is ordered

Binary search on an array

Pseudo code

```
Looking for target = 53
```

```
Set min = 0, max = n-1
While (min <= max) {
    idx = (min + max)/2
    If array[idx] == target
        return idx
    array[idx] > target
        max = idx-1
    else
        min = idx +1
```

At each iteration half of the indexes are eliminated


```
min = idx + 1
```

At each iteration half of the indexes are eliminated


```
min = idx + 1
```

Binary search finds data generally faster than linear search

Pseudo code

```
Looking for target = 53
Set min = 0, max = n-1
While (min \le max) {
```

$$idx = (min + max)/2$$

```
return idx
```

```
array[idx] > target
```

```
max = idx-1
```

else

```
min = idx + 1
```

Min = 5Max = 5Idx = (5+5)/2 = 5Array[idx] = 53

Binary vs. linear search

- Binary found item in 3 tries
- Linear search would have taken 6 tries •
- On large data sets binary search can make • a *huge* difference

We can extend binary search to find a key and return a value

Key is Student ID, Value is student name

Implications

- Given a Student ID, can quickly find the student's name
- Each entry must have a key and a value
- Value is an object (e.g. String or student record)
- Of course the keys must be sorted
- How do we do that?

- 1. Binary search
- 2. Binary Search Trees (BST)
 - 3. BST find analysis
 - 4. Operations on BSTs
 - 5. Implementation

Binary Search Trees (BSTs) allow for binary search by keeping keys sorted

Keys sorted in Binary Search Tree

Binary Search Tree property

- Let x be a node in a binary search tree
- left.key < x.key
- right.key > x.key
- We will assume for now duplicate keys are not allowed

BSTs with same keys could have different structures and still obey BST property

Two valid BSTs with same keys but different structure

Find Key "C"

- Check root
- "D" > "C", so go left

Find Key "C"

- Check root
- "D" > "C", so go left
- Check "B"
- "B" < "C", so go right

Find Key "C"

- Check root
- "D" > "C", so go left
- Check "B"
- "B" < "C", so go right
- Check "C"
- Yahtzee! Found it

Find Key "C"

- Check root
- "D" > "C", so go left
- Check "B"
- "B" < "C", so go right
- Check "C"
- Yahtzee! Found it
- Would know by now if key not in BST

- 1. Binary search
- 2. Binary Search Trees (BST)
- 3. BST find analysis
 - 4. Operations on BSTs
 - 5. Implementation

BST takes <u>at most height+1</u> checks to find key or determine the key is not in the tree Find Key "C"

 $\frac{\text{Height}}{h=2}$ A C F F F F F

- Height h = 2 (count number of edges to leaf)
- Can take no more than h+1 checks, O(h)
- Can we say anything more specific about search time? O(log n)? Careful, it's a trap!

BSTs do not have to be balanced! Can not make tight bound assumptions! (yet)

Find Key "G"

Search process

G

- Height *h* = 6 (count number of edges to leaf)
- Can take no more than h+1 checks, O(h)
- Soon we will see how to keep trees balanced

- 1. Binary search
- 2. Binary Search Trees (BST)
- 3. BST find analysis
- 4. Operations on BSTs
 - 5. Implementation

Inserting new node with key H

- Search for key (H)
 - If found, replace value
 - If hit leaf, add new node as left or right child of leaf

Inserting new node with key H

- Search for key (H)
 - If found, replace value
 - If hit leaf, add new node as left or right child of leaf

Inserting new node with key H

G is a leaf, add new node

- Search for key (H)
 - If found, replace value
 - If hit leaf, add new node as left or right child of leaf

Inserting new node with key H

- Search for key (H)
 - If found, replace value
 - If hit leaf, add new node as left or right child of leaf

Deleting node A (no children)

- Search for parent of A
 - If found and A has no children, set appropriate left or right • to null on parent 23

Deleting node A (no children)

- Search for parent of A
 - If found and A has no children, set appropriate left or right • to null on parent 24

Deleting node A (no children)

- Search for parent of A
 - If found and A has no children, set appropriate left or right \bullet to null on parent 25

Deleting node A (no children)

- Search for parent of A
 - If found and A has no children, set appropriate left or right ulletto null on parent 26

Deleting with one child is not difficult

Deleting node B (1 child)

- Search for parent of B •
 - If found and B has 1 child, set appropriate left or right on • parent to B's only child 27

Deleting with one child is not difficult

Deleting node B (1 child)

- Search for parent of B •
 - If found and B has 1 child, set appropriate left or right on • parent to B's only child 28

Deleting with one child is not difficult

Deleting node B (1 child)

- Search for parent of B •
 - If found and B has 1 child, set appropriate left or right on ulletparent to B's only child 29

Deleting node with 2 children requires finding the node's "successor"

Deleting node F (2 children)

- Search for F
- If found and F has 2 children, find successor (smallest on right)
- Successor will be greater than E and less than or equal to G
- May have to recurse down right child's left descendants
- Delete successor, but save successor's key and value
- Replace F with key and value of successor

Deleting node with 2 children requires finding the node's "successor"

Deleting node F (2 children)

- Search for F
- If found and F has 2 children, find successor (smallest on right)
- Successor will be greater than E and less than or equal to G
- May have to recurse down right child's left descendants
- Delete successor, but save successor's key and value
- Replace F with key and value of successor

Deleting node with 2 children requires finding the node's "successor"

Deleting node F (2 children)

- **Comments**
 - Search for F
 - If found and F has 2 children, find successor (smallest on right) •
 - Successor will be greater than E and less than or equal to G •
 - May have to recurse down right child's left descendants
 - Delete successor, but save successor's key and value •
 - Replace F with key and value of successor ۲

Deleting node with 2 children requires finding the node's "successor"

Deleting node F (2 children)

- Search for F
- If found and F has 2 children, find successor (smallest on right)
- Successor will be greater than E and less than or equal to G
- May have to recurse down right child's left descendants
- Delete successor, but save successor's key and value
- Replace F with key and value of successor

Deleting node with 2 children requires finding the node's "successor"

Deleting node F (2 children)

Found F Successor is smallest on right (G here) Delete successor Replace F value with G key and value

- Search for F
- If found and F has 2 children, find successor (smallest on right) •
- Successor will be greater than E and less than or equal to G •
- May have to recurse down right child's left descendants
- Delete successor, but save successor's key and value •
- Replace F with key and value of successor ۲

- 1. Binary search
- 2. Binary Search Trees (BST)
- 3. BST find analysis
- 4. Operations on BSTs
- 5. Implementation

Binary Search Tree nodes each take a key and value, also have left and right children

Binary Search Tree declaration

```
public class BST<K,V> {
    private K key;
    private V value;
    private BST<K,V> left, right;
}
```

- Key could be a String (e.g., name) and value could be BufferedImage (e.g., mugshot), both could be integers (key is zip code, value is population), depends on use case
- Remember, generics need to be objects, so use wrapper classes for primitives such as Integer and Double

We need a way to compare nodes, so the Key must implement a Comparable

Extending Comparable interface

```
public class BST<K extends Comparable<K>, V> {
    private K key;
    private V value;
    private BST<K,V> left, right;
}
```

- Comparable must implement compareTo(K compareKey) method
- compareTo() built in for primitive types and wrappers (e.g., String), no need to implement ourselves if Key is String
- compareTo() returns 0 if node and compareKey are the "equal"
- Return -1 if node's key < compareKey
- Return 1 if node's > compareKey

BST.java

- Constructors set up trees as expected, just like last class in BinaryTree.java
- public V find(K search)
 - Compare *search* with node's key
 - If match then return node's value
 - If (compare < 0 && hasLeft()) return left.find(search)
 - If (compare > 0 && hasRight()) return right.find(search)
 - Throw exception if key not found (wasn't match and no left or right children)
- public void insert(K key, V value)
 - Search key
 - If key found, replace value
 - else, insert as leaf

Code to delete nodes

BST.java

- *delete(K search)* at line 105
- Compare *search* to this node's key
- If node's key < *search*, set *left = left.delete(search)*, return *this*
- If node's key > *search*, set *right= right.delete(search)*, return *this*
- If keys are the same
 - If node has one child, return child
 - If node has two children
 - Find successor (smallest on right), may have to recurve right child's left children
 - Delete successor, but save key and value
 - Set this node's key and value to successor's key and value
 - Return this node

Can find min value in tree recursively or in a loop

BST.java

Only need to traverse down left side, so like a linked list

- min() (line 66)
 - If left != null, return left.min()
 - Else return key (this will be the left most, smallest key)
- minIter() (line 74)
 - Start from current node
 - While (curr.left != null) curr = curr.left
 - Return curr.key