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Abstract

This paper applies Pontryagin’s Maximum Principle to the
time optimal control of differential drive mobile robots with
velocity bounds. The Maximum Principle gives necessary
conditions for time optimality. Extremal trajectories are
those which satisfy these conditions, and are thus a su-
perset of the time optimal trajectories. This paper derives
a compact geometrical structure for extremal trajectories
and shows that extremal trajectories are always composed
of rotations about the robot center and straight line mo-
tions. Further necessary conditions are obtained.

1 Introduction

Thispaper focuseson theapplication of Pontryagin’sMax-
imum Principle to the time optimal control of diff drive
mobile robots with velocity bounds. A diff drive robot
has two independently driven coaxial wheels. By veloc-
ity bounds, wemean that thewheel velocitiesarebounded,
but thereareno boundson wheel acceleration. In fact, dis-
continuities in wheel velocity areallowed.

Pontryagin’s Maximum Principle yields conditions that
are necessary but not sufficient for time optimal trajecto-
ries. Hence the trajectories that satisfy theMaximum Prin-
ciple are called extremal trajectories, and are a superset of
thetimeoptimal trajectories. TheMaximum Principlepro-
vides a compact geometrical description of the extremal
trajectories, and thus gives us a tool for enumerating and
exploring time optimal trajectories. Figure 1 shows two of
thesix different extremal types.

1.1 Previous Work

We know of no previous work on time-optimal control of
the bounded velocity diff drive robot, but the techniques
employed here draw extensively on the techniques devel-

Figure 1: Two extremals: zigzag right and tangent CW.
Other extremal types are zigzag left, tangent CCW, and
turning in place: CW and CCW. Straight lines are special
cases of zigzags or tangents.

oped for steered vehicles [6, 2, 5, 4]. Interested readers
should see our companion paper [1] for a broader discus-
sion.

2 Assumptions, definitions, notation

The state of the robot is q = (x, y, θ), where the robot
reference point (x, y) is centered between the wheels, and
the robot direction θ is 0 when the robot is facing along
thex-axis, and increases in thecounterclockwisedirection
(Figure 2). The robot’s velocity in the forward direction
is v and its angular velocity isω. The robot’s width is 2b.
Thewheel angular velocitiesareωl andωr. With asuitable
choiceof units weobtain

v =
1

2
(ωl + ωr) (1)

ω =
1

2b
(ωr − ωl) (2)



           

Figure2: Notation

and

ωl = v − bω (3)

ωr = v + bω (4)

The robot is a system with control input w(t) =
(ωl(t), ωr(t)) and output q(t). Admissible controls are
bounded Lebesgue measurable functions from time inter-
val [0, T ] to the closed box W = [−1, 1] × [−1, 1], where
T is the timeat which the robot reaches thegoal. (seeFig-
ure3).

It follows immediately that v(t) and ω(t) are measurable
functions defined on the same interval. Given initial con-
ditions qs = (xs, ys, θs) thepath of the robot is given by

θ(t) = θs +

∫ t

0

ω (5)

x(t) = xs +

∫ t

0

v cos(θ) (6)

y(t) = ys +

∫ t

0

v sin(θ) (7)

It followsthat θ, x, y arecontinuous, that their timederiva-
tives exist almost everywhere, and that

θ̇ = ω a.e. (8)

ẋ = v cos(θ) a.e. (9)

ẏ = v sin(θ) a.e. (10)

We also define rectified path length in the plane of robot
positions

s(t) =

∫ t

0

|v| (11)

and in thecircleof robot orientations

σ(t) =

∫ t

0

|ω| (12)

We also need a notation for trajectories. Later sections
show that extremal trajectories are composed of straight

Figure3: Bounds on (ωl, ωr)

lines and turns about the robot’s center. We will represent
forward by ⇑, backward by ⇓, left turn by x, and right
turn by y. Thus the trajectory x⇑x can be read “ left
forward left” . When necessary, a subscript will indicate
thedistanceor angle traveled.

3 Controllability

Before applying Pontryagin’s Maximum Principle to de-
rive necessary conditions on optimal trajectories, we must
show that trajectories exist for any given pair of start and
goal states (controllability) and then that time optimal tra-
jectories exist for any given pair of start and goal states.

To prove controllability we combine equations 1, 2, 8, 9,
and 10 to obtain




ẋ
ẏ

θ̇


 = ωlfl + ωrfr (13)

where fl and fr are the vector fields corresponding to the
left and right wheels:

fl =




1
2 cos θ
1
2 sin θ
− 1

2b


 (14)

fr =




1
2 cos θ
1
2 sin θ

1
2b


 (15)

Vector field fl corresponds to turning about a center lo-
cated under the right wheel, and fr corresponds to turning
about acenter located under the left wheel.

We construct a third vector field which is the Lie bracket
of fl and fr:

fLie = [fl, fr] = Dfr fl −Dfl fr (16)

whereDf is the Jacobian matrix, obtained by taking par-
tials of the field f with respect to the three state variables.



           

Expanding these Jacobians and simplifying:

fLie =




1
2b sin θ
− 1

2b cos θ
0


 (17)

This third vector field corresponds to an infinitesimal par-
allel parking maneuver of the robot, translating the robot
to its right. For nonzero b it is readily observed that the
three vector fields are linearly independent, satisfying the
Lie Algebra Rank Condition. The diff drive robot is also
symmetric, meaning that an admissible trajectory with time
reversed yields an admissible trajectory. It follows from
Theorem 2 of Sussman and Tang [6] that the bounded ve-
locity diff drive robot is globally controllable, i.e. that ad-
missible trajectories exist for every pair of start and goal
configurations.

4 Existence of optimal trajectories.

Theorem 1 For any given start and goal configuration of
aboundedvelocitydiff drivein theplanewithout obstacles,
there is a timeoptimal control.

Proof: Theorem 6 of Sussman and Tang [6] gives condi-
tions sufficient for the existence of time optimal controls.
For our case the conditions are:

• the system state variable q = (x, y, θ) takes values in
an open subset of a differentiable manifold;

• the vector fields fl and fr are locally Lipschitz;

• the input w = (ωl, ωr) takes values in a compact con-
vex subset of R2;

• the admissible controls are measurable functions on
compact subintervals of R;

• completeness: for every start state and every control
over some time interval, there is a trajectory starting
at the start state, and defined over the whole interval.

The conditions are readily verified for the bounded velocity
diff drive, and we know from Section 3 that trajectories
exist for every pair of given start and goal states. It follows
that time optimal controls exist for every given start and
goal state. ut

5 Pontryagin’s Maximum Principle.
Extremal controls.

This section uses Pontryagin’s Maximum Principle [3] to
derive necessary conditions for time optimal trajectories of

the bounded velocity diff drive robot. The robot system is
described by

q̇ =




ẋ
ẏ

θ̇


 =




1
2 (ωl + ωr) cos(θ)
1
2 (ωl + ωr) sin(θ)

1
2b (ωr − ωl)


 (18)

where our input is

w =

(
ωl
ωr

)
∈W

Define λ to be an R3-valued function of time called the
adjoint vector:

λ(t) =




λ1(t)
λ2(t)
λ3(t)




Let H : R3 × SE2 ×W → R be the Hamiltonian:

H(λ, q, w) =< λ, ωlfl + ωrfr >

where fl and fr are the vector fields defined by equa-
tions 14 and 15.

The maximum principle states that for a control w(t) to
be optimal, it is necessary that there exist a nontrivial (not
identically zero) adjoint vector λ(t) satisfying the adjoint
equation:

λ̇ = − ∂

∂q
H (19)

while the control w(t) minimizes the Hamiltonian at all t:

H(λ, q, w) = min
z∈W

H(λ, q, z) = λ0. (20)

with λ0 ≥ 0. Equation 19 is called the adjoint equation
and equation 20 is called the minimization equation.

For the bounded velocity diff drive, the adjoint equation
gives

λ̇ =
ωl + ωr

2




0
0

λ1 sin θ − λ2 cos θ


 (21)

Fortunately these equations can be integrated to obtain an
expression for the adjoint vector. First we observe that λ1

and λ2 are constant and define c1 and c2 accordingly

λ1(t) = c1 (22)

λ2(t) = c2 (23)

For λ3 we have the equation

λ̇3 =
ωl + ωr

2
(λ1 sin θ − λ2 cos θ) (24)



           

But wecan substitute from equations1, 9, and 10 to obtain

λ̇3 = c1ẏ − c2ẋ (25)

which is integrated to obtain thesolution for λ3:

λ3 = c1y − c2x+ c3 (26)

where c3 is our third and final integration constant. It will
beconvenient in therest of thepaper to definea function η
of x and y:

η(x, y) = c1y − c2x+ c3 (27)

So then theadjoint equation is satisfied by

λ =




c1
c2

η(x, y)


 (28)

for any c1, c2, c3 not all equal to zero.

Let the η-line be the line of points (x, y) satisfying
η(x, y) = 0, and note that η(x, y) gives a scaled directed
distanceof apoint (x, y) from theη-line. Let the right half
plane be thepoints satisfying

η(x, y) > 0 (29)

and let the left half plane be thepoints satisfying

η(x, y) < 0 (30)

Wealso defineadirection for theη-lineconsistent with our
thechoiceof “ left” and “right” for thehalf planes.

Theminimization equation 20 can be rewritten

ωlφl + ωrφr = min
zl,zr

zlφl + zrφr (31)

whereφl and φr are defined to be the two switching func-
tions:

φl = < λ, fl > (32)

= − 1

2b
η(x+ b sin θ, y − b cos θ) (33)

φr = < λ, fr > (34)

=
1

2b
η(x− b sin θ, y + b cos θ) (35)

Note that thewheels’ coordinates can bewritten
(
xl
yl

)
=

(
x− b sin θ
y + b cos θ

)
(36)

(
xr
yr

)
=

(
x+ b sin θ
y − b cos θ

)
(37)

so theswitching functions can bewritten

φl = − 1

2b
η(xr, yr) (38)

φr =
1

2b
η(xl, yl) (39)

Now the minimization equation says that if the controls
ωl, ωr are optimal then they minimize the Hamiltonian
H = ωlφl+ωrφr. Notethat η(xr, yr) andη(xl, yr) arethe
location of the left and right wheels relative to the η-line.
(e.g, if η(xr, yr) > 0, then the right wheel is the right half
plane.) This implies theoptimal controls can beexpressed

ωl





= 1 if right wheel ∈ right half plane
∈ [−1, 1] if right wheel ∈ η-line
= −1 if right wheel ∈ left half plane

(40)

ωr





= 1 if left wheel ∈ left half plane
∈ [−1, 1] if left wheel ∈ η-line
= −1 if left wheel ∈ right half plane

(41)

If c1 = c2 = 0, then the η-line is at infinity, and the entire
planeistheleft half planeor theright half plane, depending
on thesign of c3. (Recall that all threeintegration constants
cannot besimultaneously zero.)

The location of the η-line depends on the apparently ar-
bitrary integration constants. Themaximum principledoes
not give the location of the line; it merely says that if we
havean optimal control then the lineexistsand theoptimal
control must conform to theequationsabove. Thequestion
that naturally arisesishow to locatethelineproperly, given
the start and goal configurations of the robot. There seems
to be no direct way of doing so. Rather, we must use other
means to identify theextremal trajectory.

The behavior of the robot falls into one of the following
cases (Figure1):

• CCW and CW: If the robot is in the left half plane
and out of reach of the η-line, it turns in the counter-
clockwisedirection (CCW). CW is similar.

• TCCW and TCW (Tangent CCW and Tangent CW). If
therobot is in theleft half plane, but closeenough that
a circumscribed circle is tangent to the η-line, then
the robot may either roll straight along the line, or it
may turn through any positive multiple of π. TCW is
similar.

• ZR and ZL: If the circumscribed circle crosses the
η-line, then a zigzag behavior occurs. The robot
rolls straight in the η-line’s direction until one wheel
crosses. It then turns until the other wheel crosses,
and then goes straight again. There are two non-
degenerate patterns: . . . ⇑x⇓y . . . called zigzag
right ZR, and . . . ⇑y⇓x . . . called zigzag left ZL.



             

Examining theseclasses, wesee that

Theorem 2 For an optimal trajectory,

t = s(t) + bσ(t) (42)

Proof: Extremal trajectories are composed only of turns
and straight lines.ut

Notethat in [1], wedemonstratethat equation 42 actually
holds for any trajectory such that max(|ωl|, |ωr|) = 1 for
almost all t; i.e., for trajectories in which one control is
alwayssaturated. Thismay providesomeintuition for why
turns and straights are faster than curves.

6 Further necessary conditions for
optimality.

Every nontrivial time-optimal control must fall in one of
the above cases. However, the converse is definitely not
true—not every trajectory conforming to the cases above
is optimal. For example, a robot turning in place for sev-
eral revolutions is not time optimal. To keep the distinc-
tion clear, we refer to trajectories satisfying Pontryagin’s
Maximum Principleasextremal, and wenotethat thetime-
optimal trajectories are a subset of the extremal trajecto-
ries.

We place a coordinate system as follows. Put the robot
start on the negative x axis, and the put the goal on the
positive x axis, such that xs = −xg. The y axis is then the
perpendicuar bisector of the segment between xs and xg,
oriented in theusual way. Wedefinetherangeof θs and θg
to be (−π, π].

Restrictions on TCCW and TCW trajectories

Theorem 3 The cost of the fastest TCW or TCCW trajectory
is

t = b(min(|θs|+ |θg|, 2π−|θs|− |θg|))+(xg−xs) (43)

Furthermore, optimal trajectories of type TCW or TCCW
can be composed of no more than three actions.

Proof: TCW or TCCW trajectorieswith threeactionsareof
the form straight-turnπ(2n+1)-straight or of the form turn-
straight-turn. The theorem is elementary for thefirst case.

Now consider turn-straight-turn trajectories. If we let φ1

and φ2 be the magnitudes of the first and second turns re-
spectively, thecost of this trajectory is

t = b(φ1 + φ2) + (xg − xs) (44)

Figure4: Zigzags of three turnsarenot optimal

Choosing turning directions to minimizeequation 44, we
find that |θs| + |θg| is the magnitude of the total angle
turned through by the fastest turn-⇑-turn trajectory, and
π−|θs|+π−|θg| is themagnitudeof thetotal angleturned
through by the fastest turn-⇓-turn trajectory. This verifies
equation 43. To complete the proof, note that any four ac-
tion TCW or TCCW trajectory must turn through more than
π, and costs no less in translation than the fastest three ac-
tion tangent trajectory. ut

Applying theorem 3 and equation 42, we immediately
have the following corollary:

Corollary 1 For every time-optimal trajectory σ(T ) ≤ π.

Restrictions on ZR and ZL trajectories

Zigzag trajectories are composed of alternating turn or
straight line actions. Successive turns or straights must be
in opposite directions, but have the same magnitude. Sim-
plegeometry also givesa relationship between φ, the turn-
ing angle of the zigzag, and d, the length of each straight.
Wehave:

d = 2b tan(
φ

2
) (45)

Theorem 4 Zigzag subsections containing three turns are
not optimal.

Proof: Consider azigzag subsection with threeturns, and
two straights. Thestraightsarethesamelength, so thesec-
ond turn (the via point) must fall on the y axis. Construct
thecirclecontaining thestart, thegoal, and theviapoint as
in Figure 4. If we perturb the via point to a nearby point
on the same circle, the turning time is unchanged, and the
translation is decreased. ut

Zigzags can also be said to be periodic. Let τ be the
smallest positive timesuch that:

θ(t) = θ(t+ τ)

η(x(t), y(t)) = η(x(t+ τ), y(t+ τ))



          

Figure5: Periodicity of azigzag

Theorem 5 A zigzag trajectory of more than one period is
not optimal.

Proof: Consider azigzag of morethan oneperiod, begin-
ning at time 0 and ending at time T > τ . By theorem 4,
the zigzag is not optimal if σ(T ) > 2φ. If s(T ) > 2d,
then there are three straights. The first and last straights
are parallel. If we reorder the segments to perform these
consecutively, then we have a path which costs no more
than theoriginal but which isno longer alegitimatezigzag.
Since it is not extremal, neither it nor the original path can
beoptimal. ut

Enumeration

Theorems 3, 5, and 4 allow a finite enumeration of the
structure of optimal trajectories. The structure must be ei-
ther one of the following, or a subsection of one of the
following:

Zigzag ⇑x⇓y⇑ ⇓x⇑y⇓ ⇑y⇓x⇑ ⇓y⇑x⇓
Tangent y⇑y y⇓y x⇑x x⇓x
Tangent ⇑yπ⇓ ⇓yπ⇑ ⇑xπ⇓ ⇓xπ⇑

7 Summary and Conclusion.

Thispaper analyzed thebounded velocity differential drive
model using Pontryagin’s Maximum Principle. The Maxi-
mum Principleprovidesan elegant geometric program that
generatesall optimal trajectories. Further necessary condi-
tionswereused to generateafiniteset of optimal trajectory
structures. Our companion paper [1] analyzes this set to
determine the cost and structure of the optimal trajectories
between any start and goal configuration.
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