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Abstract

This paper applies Pontryagin’s Maximum Principleto the
time optimal control of differential drive mobilerobotswith
velocity bounds. The Maximum Principle gives necessary
conditions for time optimality. Extremal trajectories are
those which satisfy these conditions, and are thus a su-
perset of the time optimal trajectories. This paper derives
a compact geometrical structure for extremal trajectories
and shows that extremal trajectories are always composed
of rotations about the robot center and straight line mo-
tions. Further necessary conditions are obtained.

1 Introduction

This paper focuses on the application of Pontryagin’s Max-
imum Principle to the time optimal control of diff drive
mobile robots with velocity bounds. A diff drive robot
has two independently driven coaxial wheels. By veloc-
ity bounds, we mean that the wheel velocities are bounded,
but there are no bounds on wheel acceleration. In fact, dis-
continuities in wheel velocity are allowed.

Pontryagin’s Maximum Principle yields conditions that
are necessary but not sufficient for time optimal trajecto-
ries. Hence the trgjectories that satisfy the Maximum Prin-
ciple are called extremal trgjectories, and are a superset of
the time optimal trajectories. The Maximum Principle pro-
vides a compact geometrical description of the extremal
trgjectories, and thus gives us a tool for enumerating and
exploring time optimal trajectories. Figure 1 shows two of
the six different extremal types.

1.1 PreviousWork

We know of no previous work on time-optimal control of
the bounded velocity diff drive robot, but the techniques
employed here draw extensively on the techniques devel-

Figure 1. Two extremals: zigzag right and tangent CW.
Other extremal types are zigzag left, tangent CCW, and
turning in place: CW and CCW. Straight lines are special
cases of zigzags or tangents.

oped for steered vehicles [6, 2, 5, 4]. Interested readers
should see our companion paper [1] for a broader discus-
sion.

2 Assumptions, definitions, notation

The state of the robot is ¢ = (z,y,0), where the robot
reference point (z,y) is centered between the wheels, and
the robot direction 6 is 0 when the robot is facing along
the xz-axis, and increases in the counterclockwise direction
(Figure 2). The robot’s velocity in the forward direction
isv and its angular velocity isw. The robot’s width is 20.
Thewheel angular velocitiesare w; and w,.. With asuitable
choice of unitswe obtain

v o= %(wz+wr) (@)
5 (e — 1) @
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Figure 2: Notation

and

w = v-—bw (3)
Wy = v4bw 4)

The robot is a system with control input w(t) =
(wi(t),wr(t)) and output ¢(t). Admissible controls are
bounded L ebesgue measurable functions from time inter-
val [0, 7] to the closed box W = [—1,1] x [—1, 1], where
T isthetime at which the robot reaches the goal. (see Fig-
ure 3).

It follows immediately that v(¢) and w(t) are measurable
functions defined on the same interval. Given initial con-
ditions g5 = (x5, ys, 0s) the path of the robot is given by

o(t) = 98+/tw ®)
0

z(t) = x5—|—/tvcos(9) (6)
0
t

y(t) = ys+/0 vsin(6) @)

It followsthat 6, x, y are continuous, that their time deriva-
tives exist almost everywhere, and that

f = w ae ®
x = wcos(f) ae 9)
= wsin(f) ae (10)

We also define rectified path length in the plane of robot
positions

t
s(t) = /0 v (11)

and in the circle of robot orientations

olt)= | Il (12)

We also need a notation for trajectories. Later sections
show that extremal trajectories are composed of straight
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Figure 3: Bounds on (w;, w;.)

lines and turns about the robot’s center. We will represent
forward by 1, backward by |}, left turn by «~, and right
turn by ~. Thus the trgjectory .~~~ can be read “left
forward left”. When necessary, a subscript will indicate
the distance or angle traveled.

3 Controllability

Before applying Pontryagin’s Maximum Principle to de-
rive necessary conditions on optimal trajectories, we must
show that trajectories exist for any given pair of start and
goal states (controllability) and then that time optimal tra-
jectories exist for any given pair of start and goal states.

To prove controllability we combine equations 1, 2, 8, 9,

and 10 to obtain
T
U :Wlfl +wrf7‘ (13)

0

where f; and f,. are the vector fields corresponding to the

left and right wheels:
%0059
fi = (%Sirlle) (14)
2b
%0059
Ir = (%ﬁﬁ) (15)
2b

Vector field f; corresponds to turning about a center lo-
cated under the right wheel, and f,. corresponds to turning
about a center located under the left whedl.

We construct athird vector field which is the Lie bracket
of f;and f,.:

fLie:[flafT]:Dfol_DflfT (16)

where Df is the Jacobian matrix, obtained by taking par-
tials of the field f with respect to the three state variables.



Expanding these Jacobians and simplifying:
2_117 sin 6
fLie = — % cosf @n

Thisthird vector field corresponds to an infinitesimal par-
allel parking maneuver of the robot, translating the robot
to its right. For nonzero b it is readily observed that the
three vector fields are linearly independent, satisfying the
Lie Algebra Rank Condition. The diff drive robot is also
symmetric, meaning that an admissibletrajectory with time
reversed yields an admissible trgjectory. It follows from
Theorem 2 of Sussman and Tang [6] that the bounded ve-
locity diff drive robot is globally controllable, i.e. that ad-
missible trajectories exist for every pair of start and goal
configurations.

4 Existence of optimal trajectories.

Theorem 1 For any given start and goal configuration of
a bounded vel ocity diff drivein the plane without obstacl es,
thereisa time optimal control.

Proof: Theorem 6 of Sussman and Tang [6] gives condi-
tions sufficient for the existence of time optimal controls.
For our case the conditions are;

e the system state variable ¢ = (z, y, ) takes valuesin
an open subset of a differentiable manifold;

e thevector fields f; and f, arelocally Lipschitz;

e theinput w = (w;,w, ) takes valuesin acompact con-
vex subset of R?;

e the admissible controls are measurable functions on
compact subintervals of R;

e completeness: for every start state and every control
over some time interval, there is a trajectory starting
at the start state, and defined over the whole interval.

The conditions are readily verified for the bounded velocity
diff drive, and we know from Section 3 that trgjectories
exist for every pair of given start and goal states. It follows
that time optimal controls exist for every given start and
goa state. O

5 Pontryagin’s Maximum Principle.
Extremal contrals.

This section uses Pontryagin's Maximum Principle [3] to
derive necessary conditions for time optimal trajectories of

the bounded velocity diff drive robot. The robot system is

described by
(wi + wy) cos(0)
(wy + w,.) sin(8) ) (18)

()
0 ﬁ(wr—wl)

where our input is
w = ( wi ) eWw
Wr

Define ) to be an R3-valued function of time called the
adjoint vector:

N[ ==

Let H : R® x SE? x W — R bethe Hamiltonian:
H()‘7qaw) =< Avwlfl +w7’fr >

where f; and f, are the vector fields defined by equa
tions 14 and 15.

The maximum principle states that for a control w(t) to
be optimal, it is necessary that there exist a nontrivial (not
identically zero) adjoint vector A\(¢) satisfying the adjoint
equation:

0

T (19)

while the control w(t) minimizes the Hamiltonian at all ¢:

H(\ qg,w) = min H(\ gq,2) = Xo. (20)

zeW
with Ay > 0. Equation 19 is called the adjoint equation
and equation 20 is called the minimization equation.
For the bounded velocity diff drive, the adjoint equation

gives
0
j= ;“T 0 1)
A1sind — Ay cos @

Fortunately these equations can be integrated to obtain an
expression for the adjoint vector. First we observe that A,
and )\, are constant and define ¢; and ¢, accordingly

M) = a (22)
X(t) = e (23)

For A3 we have the equation

g = W()\l sin @ — Ay cos 0) (24)



But we can substitute from equations 1, 9, and 10 to obtain
A3 = 19 — o (25)

which isintegrated to obtain the solution for As:
A3 = 1y — cax + c3 (26)

where ¢3 is our third and final integration constant. It will
be convenient in the rest of the paper to define afunction n
of z and y:

n(z,y) = c1y — car +c3 (27)
So then the adjoint equation is satisfied by

A:( c; ) (28)
n(x,y)

for any c1, ¢a, c3 not al egual to zero.

Let the n-line be the line of points (z,y) satisfying
n(z,y) = 0, and note that n(x, y) gives a scaled directed
distance of apoint (z,y) from then-line. Let the right half
plane be the points satisfying

n(z,y) >0 (29)
and let the left half plane be the points satisfying
n(z,y) <0 (30)

We d so define adirection for the n-line consistent with our
the choice of “left” and “right” for the half planes.

The minimization equation 20 can be rewritten
wipr + wr¢p = min 21¢; + 2, ¢, (31)
Zly2r

where ¢; and ¢,. are defined to be the two switching func-
tions:

b= <\Nfi> (32)
= —%)n(x +bsinf,y — bcosb) (33)
br = <\ fr> (34)
= %n(x —bsiné,y + bcos0) (35

Note that the wheels' coordinates can be written

(Zl) B (x—bsine) )

y + bcos
(:IJT >
yT

T+ bsinf
( y —bcosf ) (37)
so the switching functions can be written
1

& = —%n(wr,yr) (38)

¢ = %n(wz, () (39)

Now the minimization equation says that if the controls
wy,w, are optimal then they minimize the Hamiltonian
H = w¢;+w,¢,. Notethat n(z,, y,.) andn(x;, y,) arethe
location of the left and right wheels relative to the 7-line.
(e.q, if n(z.,y.) > 0, then the right wheel is the right half
plane.) Thisimpliesthe optimal controls can be expressed

if right wheel € n-line (40)

=1 if right wheel € right half plane
wi € [717 1}
=-1 if right wheel € left half plane

=1 if left wheel € left half plane
wr ¢ €]-1,1] if left wheel € n-line (41)
=-1 if left wheel € right half plane

If c; = co = 0, thenthe n-lineis at infinity, and the entire
planeistheleft half plane or theright half plane, depending
onthesign of c3. (Recall that al threeintegration constants
cannot be simultaneously zero.)

The location of the n-line depends on the apparently ar-
bitrary integration constants. The maximum principle does
not give the location of the ling; it merely says that if we
have an optimal control then the line exists and the optimal
control must conform to the equations above. The question
that naturally arisesis how to locate the line properly, given
the start and goal configurations of the robot. There seems
to be no direct way of doing so. Rather, we must use other
means to identify the extremal trgjectory.

The behavior of the robot falls into one of the following
cases (Figure 1):

e CCWand CW If the robot is in the left half plane
and out of reach of the n-line, it turns in the counter-
clockwise direction (CCW. CWis similar.

e TCCWand TCW(Tangent CCW and Tangent CW). If
therobot isin theleft half plane, but close enough that
a circumscribed circle is tangent to the »-line, then
the robot may either roll straight along the line, or it
may turn through any positive multiple of =. TCWis
similar.

e ZR and ZL: If the circumscribed circle crosses the
n-line, then a zigzag behavior occurs. The robot
rolls straight in the 7-line's direction until one wheel
crosses. It then turns until the other wheel crosses,
and then goes straight again. There are two non-
degenerate patterns. ... |~ ... caled Zzigzag
right ZR,and ... 1t~ ... called zigzag left ZL .



Examining these classes, we see that

Theorem 2 For an optimal trajectory,
t=s(t)+ bo(t) (42)

Proof. Extremal trgjectories are composed only of turns
and straight lines.0

Notethat in[1], we demonstrate that equation 42 actually
holds for any trajectory such that max(|w|, |w,|) = 1 for
almost al ¢; i.e, for trgjectories in which one control is
always saturated. Thismay provide some intuition for why
turns and straights are faster than curves.

6 Further necessary conditions for
optimality.

Every nontrivial time-optimal control must fal in one of
the above cases. However, the converse is definitely not
true—not every trajectory conforming to the cases above
is optimal. For example, arobot turning in place for sev-
era revolutions is not time optimal. To keep the distinc-
tion clear, we refer to trajectories satisfying Pontryagin's
Maximum Principle as extremal, and we note that the time-
optimal trgjectories are a subset of the extremal trajecto-
ries.

We place a coordinate system as follows. Put the robot
start on the negative x axis, and the put the goal on the
positive x axis, such that ., = —x,. They axisisthen the
perpendicuar bisector of the segment between x and z,
oriented in the usual way. We define the range of 6, and ¢,
to be (—m, 7.

Restrictionson TCCWand TCWir ajectories

Theorem 3 The cost of thefastest TCWor TCCWrajectory
is

t = b(min(|0] +[0g], 2 — 05| = [04])) + (g — ) (43)

Furthermore, optimal trajectories of type TCWor TCCW
can be composed of ho more than three actions.

Proof: TCWor TCCWtrajectories with three actions are of
the form straight-turn,. 2, 1)-straight or of the form turn-
straight-turn. The theorem is elementary for the first case.

Now consider turn-straight-turn tragjectories. If we let ¢,
and ¢- be the magnitudes of the first and second turns re-
spectively, the cost of thistrgjectory is

t=b(¢1 + ¢2) + (24 — x5) (44)

Start Goal

Figure 4: Zigzags of three turns are not optimal

Choosing turning directions to minimize equation 44, we
find that |6s| + |6, is the magnitude of the total angle
turned through by the fastest turn--turn trajectory, and
m—|0s|+7—10,| isthe magnitude of the total angle turned
through by the fastest turn-J}-turn trajectory. This verifies
equation 43. To complete the proof, note that any four ac-
tion TCWor TCCWirgjectory must turn through more than
7, and costs no lessin trandation than the fastest three ac-
tion tangent trajectory. O

Applying theorem 3 and equation 42, we immediately
have the following corollary:

Corollary 1 For every time-optimal trajectory o(T") < .

Restrictionson ZRand ZL trajectories

Zigzag trajectories are composed of alternating turn or
straight line actions. Successive turns or straights must be
in opposite directions, but have the same magnitude. Sim-
ple geometry also gives a relationship between ¢, the turn-
ing angle of the zigzag, and d, the length of each straight.
We have:

d = 2btan(=) (45)

¢
2
Theorem 4 Zigzag subsections containing three turns are
not optimal.

Proof: Consider azigzag subsection with three turns, and
two straights. The straights are the same length, so the sec-
ond turn (the via point) must fall on the y axis. Construct
the circle containing the start, the goal, and the viapoint as
in Figure 4. If we perturb the via point to a nearby point
on the same circle, the turning time is unchanged, and the
trandation is decreased. O

Zigzags can also be said to be periodic. Let 7 be the
smallest positive time such that:

o) =
n(x(t),y(t) =

o(t+ 1)
n(x(t+7),y(t + 7))
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Figure 5: Periodicity of azigzag

Theorem 5 A zigzag trajectory of more than one periodis
not optimal.

Proof: Consider azigzag of more than one period, begin-
ning at time 0 and ending at time 7" > 7. By theorem 4,
the zigzag is not optimal if o(T) > 2¢. If s(T) > 2d,
then there are three straights. The first and last straights
are parallel. If we reorder the segments to perform these
consecutively, then we have a path which costs no more
than the original but which isno longer alegitimate zigzag.
Sinceit is not extremal, neither it nor the original path can
be optimal. O

Enumeration

Theorems 3, 5, and 4 alow a finite enumeration of the
structure of optimal trajectories. The structure must be ei-
ther one of the following, or a subsection of one of the
following:

Zigzag |t | I | ot | Il
Tangent A a2 "% AN AL
Tangent | ol ) [AYR" A

7 Summary and Conclusion.

This paper analyzed the bounded vel ocity differential drive
model using Pontryagin’s Maximum Principle. The Maxi-
mum Principle provides an el egant geometric program that
generates all optimal tragjectories. Further necessary condi-
tions were used to generate afinite set of optimal trgjectory
structures. Our companion paper [1] analyzes this set to
determine the cost and structure of the optimal trajectories
between any start and goal configuration.
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