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Abstract

A differential drive robot is perhaps the simplest type of
mobile robot, and the bounded velocity model is perhaps
the simplest useful model of the admissible controls. This
paper develops the bounded velocity model for diff drive
mobile robots, and derives the time-optimal trajectories.

1 Introduction

A differential drive robot has two independently driven
coaxial wheels. It is the configuration used by most
wheelchairs, and due to its simplicity is commonly used
by mobile robots. By bounded velocity, we mean that
the wheel angular velocities are bounded, but otherwise
we allow essentially arbitrary motions of the robot. There
are no bounds on wheel angular acceleration. In fact, we
do not even require that angular acceleration be defined—
discontinuities in wheel angular velocity areadmissible.

This paper addresses the question: what are the fastest
trajectories for a bounded velocity diff drive robot, in a
planar environment free of obstacles? Our companion pa-
per [1] proves that between given start and goal configura-
tions, the fastest trajectories are composed of at most five
segments, where each segment is either a straight line or a
rotation about the robot’s center. This paper completes the
analysis of these trajectories.

We present an algorithm for computing all optimal tra-
jectories, and show afew plots illustrating theperformance
limits of bounded velocity diff drive robots.

1.1 Previous Work

Much of the work reported in this paper is a straightfor-
ward application of methods developed in the nonholo-
nomic control and motion planning literature. We have
found the surveys by Laumond [3] and Wen [10] to be

Figure1: Notation

very helpful. Most of the work on time-optimal control
with bounded velocity models has focused on steered ve-
hicles rather than diff drives, originating with papers by
Dubins [2] and Reeds and Shepp [4]. For diff drives, pre-
vious work has assumed bounded acceleration rather than
bounded velocity. See, for example, papers by Reister and
Pin [5] and Renaud and Fourquet [6]. Fortunately, thetech-
niques developed for velocity models of steered cars ap-
ply readily differential drives. The present paper follows
the techniques developed in the papers by Sussman and
Tang [9], by Souères and Boissonnat [7], and by Souères
and Laumond [8].

2 Assumptions, definitions, notation

The state of the robot is q = (x, y, θ), where the robot
reference point (x, y) is centered between the wheels, and
therobot direction θ is0 when therobot isfacing parallel to
thex-axis, and increases in thecounterclockwisedirection
(Figure 1). The robot’s velocity in the forward direction
is v and its angular velocity isω. The robot’s width is 2b.
The wheel angular velocities areωl and ωr. With suitable
choices of units weobtain

v =
1

2
(ωl + ωr) (1)



             




Figure 2: Bounded velocity models of mobile robots

ω =
1

2b
(ωr − ωl) (2)

and

ωl = v − bω (3)

ωr = v + bω (4)

The robot is a system with control input w(t) =
(ωl(t), ωr(t)) and output q(t). Admissible controls are
bounded Lebesgue measurable functions from time inter-
val [0, T ] to the closed box W = [−1, 1]× [−1, 1]

The admissible control region W provides a conve-
nient comparison with previously studied bounded velocity
models. If we plot W in v-ω space, we obtain a diamond
shape. Steered vehicles are typically modeled as having a
bound on the steering ratio ω : v, and on the velocity v
(Figure 2).

We also need notation for trajectory types. We will use
the symbols ⇑, ⇓, x, and y, to denote forwards, back-
wards, left turns, and right turns. A trajectory of sev-
eral segments is indicated by a string. Thus, for example,
⇑y⇓x means a motion of four segments: forward, right
turn, backward, left turn.

3 Time cost of saturated trajectories

We define a saturated trajectory to be one for which the
input w(t) is at the boundary of the box W over the entire
trajectory. That is, at almost all times either ωr or ωl is
at the limit. We define rectified arc length in the plane of
robot positions

s(t) =

∫ t

0

|v| (5)

and in the circle of robot orientations

σ(t) =

∫ t

0

|ω| (6)

For a saturated trajectory, it is easily shown that

|v|+ b|ω| = 1 (7)

almost everywhere. Integrating this equation yields

s(t) + bσ(t) = t (8)

Thus the time for a saturated trajectory is just the sum of
the arc length in E2 and the arc length in S1 scaled by the
robot radius b. This suggests that to minimize the time we
ought to turn in place or make straight lines. Our com-
panion paper [1] proves that this is indeed the case using
Pontryagin’s maximum principle.

4 Controllability. Existence of opti-
mal controls. Extremals.

This section summarizes the results of our companion pa-
per [1]. The bounded velocity diff drive is globally control-
lable, and time optimal controls exist. Pontryagin’s Max-
imum Principle yields necessary conditions for time opti-
mal controls. The trajectories satisfying these conditions
are thus a superset of the time optimal trajectories, and are
called the extremal trajectories. Using additional necessary
conditions an enumeration of extremals is obtained.

The extremal trajectories can be expressed as a geometric
program, using a construction called the η-line. It is a di-
rected line in the plane, which divides the plane into a left
half plane and a right half plane. Pontryagin’s Maximum
Principle implies that for any optimal trajectory there is an
η-line such that the trajectory can be achieved by a control
of the form:

ωl





= 1 if right wheel ∈ right half plane
∈ [−1, 1] if right wheel is on the line
= −1 if right wheel ∈ left half plane

(9)

ωr





= 1 if left wheel ∈ left half plane
∈ [−1, 1] if left wheel is on the line
= −1 if left wheel ∈ right half plane

(10)

The behavior of the robot falls into one of the following
cases (see Figure 3):

• CCW and CW: If the robot is in the left half plane out
of reach of the η-line, it turns in the counter-clockwise
direction (CCW). CW is similar.



              

Figure 3: Two extremals: zigzag right and tangent CW.
Other extremal types are zigzag left, tangent CCW, and
turning in place: CW and CCW. Straight lines are special
cases of zigzags or tangents.

• TCCW and TCW: If the robot is in the left half plane,
but closeenough that acircumscribed circleistangent
to the η-line, then the robot may either roll straight
along the line, or it may turn through any positive
multipleof π. TCW is similar.

• ZR and ZL: If the circumscribed circle crosses the
η-line, then a zigzag behavior occurs. The robot
rolls straight in the η-line’s direction until one wheel
crosses. It then turns until the other wheel crosses,
and then goes straight again. There are two non-
degenerate patterns: . . . ⇑x⇓y . . . called zigzag
right ZR, and . . . ⇑y⇓x . . . called zigzag left ZL.

Since each extremal falls in one of the above classes, it
follows that each timeoptimal trajectory does as well.

A robot turning in placefor several revolutionsisnot time
optimal. Further, a zigzag of several segments is not opti-
mal. In fact, our companion paper shows that optimal tra-
jectories must besubsections of the following extremals:

Zigzag ⇑x⇓y⇑ ⇓x⇑y⇓ ⇑y⇓x⇑ ⇓y⇑x⇓
Tangent y⇑y y⇓y x⇑x x⇓x
Tangent ⇑yπ⇓ ⇓yπ⇑ ⇑xπ⇓ ⇓xπ⇑

5 Symmetries

Symmetries developed by Souères and Boissonnat [7] and
Souères and Laumond [8] reduce the complexity of ana-
lyzing theaboveenumeration of optimal trajectories.

The symmetries are summarized in Figure 4. Let “base”
be an extremal trajectory from q = (x, y, θ) to the origin.
Then there are seven other trajectories, obtained by apply-
ing one or more of three transformations defined below.

Geometrically, the transformations reflect the plane across
the origin or across one of three other lines: the x-axis, a
line∆θ at angle (π + θs)/2, or the line∆⊥θ at angleθs/2.

The three transformationsare:

τ1: Swap ⇑ and ⇓ T1: q = (−x,−y, θ)
τ2: Reverseorder T2: (x, y) = Rot(θ)(x,−y)
τ3: Swapy andx T3 q = (x,−y,−θ)

Each transformation is its own inverse, and the three
transformations commute. For any given base trajectory,
the transformations yield up to seven different symmetric
trajectories. Theresult is that all optimal trajectories fall in
oneof ninesymmetry classes.

base T1 T2 T2 ◦ T1

A. ⇑x⇓y⇑ ⇓x⇑y⇓ ⇑y⇓x⇑ ⇓y⇑x⇓
B. x⇓y⇑ x⇑y⇓ ⇑y⇓x ⇓y⇑x
C. ⇓y⇑ ⇑y⇓ ⇑y⇓ ⇓y⇑
D. ⇑xπ⇓ ⇓xπ⇑ ⇓xπ⇑ ⇑xπ⇓
E. y⇓y y⇑y y⇓y y⇑y
F. x⇓y x⇑y y⇓x y⇑x
G. ⇓y ⇑y y⇓ y⇑
H. ⇓ ⇑ ⇓ ⇑
I. y y y y

T3 T3 ◦ T1 T3 ◦ T2 T3 ◦ T2 ◦ T1

A. ⇑y⇓x⇑ ⇓y⇑x⇓ ⇑x⇓y⇑ ⇓x⇑y⇓
B. y⇓x⇑ y⇑x⇓ ⇑x⇓y ⇓x⇑y
C. ⇓x⇑ ⇑x⇓ ⇑x⇓ ⇓x⇑
D. ⇑yπ⇓ ⇓yπ⇑ ⇓yπ⇑ ⇑yπ⇓
E. x⇓x x⇑x x⇓x x⇑x
F. y⇓x y⇑x x⇓y x⇑y
G. ⇓x ⇑x x⇓ x⇑
H. ⇓ ⇑ ⇓ ⇑
I. x x x x

We can analyze all types of trajectories by analyzing just
one type from each of the nine classes, and then applying
the transformationsT1, T2, T3 to obtain theother members
of theclass. Thenumber of casescan befurther reduced by
noticing that classesD, G, H, and I can betreated asdegen-
erate or limiting cases of classes B, C, E, and F. Class A,
consisting of five-segment trajectoriesthat areoptimal only
when the robot start and goal headings are parallel, is also
easily analyzed as it only occurs when two different mem-
bersof classB arevalid. Thuswehaveobtained areduced
set of extremal trajectories, which still includesall optimal
trajectories, which can beanalyzed by considering just four
cases.



          

Figure 4: Given an optimal trajectory from “base” with
heading θs to the origin with heading θg = 0, transforma-
tionsT1,T2, and T3 yield up to seven other optimal trajec-
tories symmetric to theoriginal.

6 Time optimal trajectories.

In thissection wediscuss theanalysisof extremal trajecto-
riesto identify thetimeoptimal trajectories. Wechoosethe
origin coincident with thegoal position, and assumeagoal
heading of zero. Naturally, theprocessiseased by employ-
ing the symmetries. We only need to consider a “base” re-
gion; the results then apply to symmetric regions. In prin-
ciple, theanalysis is completed by the following steps:

1. For each trajectory type, we identify every feasible
choice of start configuration (x, y, θ). This defines a
map from trajectory type to a region of configuration
space.

2. Now we consider a point in configuration space
(x, y, θ). If it is in only one region, then the corre-
sponding trajectory type isoptimal from that point.

3. When regionsoverlap, wederiveadditional necessary
conditions for optimality or calculate the actual times
for each trajectory type to disambiguate.

Start

Goal

Figure 5: An example of overlapping regions. The path
shown is extremal, but not optimal.

To illustrate this procedure, we present the following ex-
ample. The feasible regions for ⇓y⇑x andx⇓y⇑ over-
lap. For almost all qs in theoverlap, thereare two possible
extremals but only one true optimal path. Figure 5 illus-
trates the proof that the ∆θ line is a decision boundary.
First we observe that the alternatives give equal time on
the ∆θ line, because that line is the axis of reflection for
theT1 ◦ T2 isometry. So both paths areoptimal on ∆θ.

Now, theargument proceedsby contradiction. Supposea
⇓y⇑x path is optimal from the start pose shown. When
the path crosses ∆θ, the remaining cost is unchanged if it
switches tox⇓y⇑. But then the total path would not be
a legitimate zigzag. We conclude that for qs to the right of
∆θ theoptimum isx⇓y⇑. Similarly, to the left of ∆θ the
optimum is⇓y⇑x.

Similar techniques can be applied to the other regions.
The end result is a mapping that defines for each point in



          

Figure 6: Optimal control for start configuration qs =
(x, y, π4 ) and goal configuration qg = (0, 0, 0). Coordi-
nates are normalized by division by b.

configuration space the set of optimal trajectories from that
point to the origin. This mapping is illustrated by showing
a slice at θ = π/4 (Figure 6). The mapping from start
configuration to optimal trajectory is usually, but not al-
ways, unique. At some boundaries in the figures there are
two distinct trajectories that give the same time cost. More
interesting is the case at θ = 0 where a continuum of dif-
ferent trajectories of type A are all optimal, bounded by
optimal trajectories of type B.

7 Algorithm for optimal control and
value function. Balls.

We now present an algorithm to determine the optimal
paths between a given start and goal position, and the time
cost of those paths. For each type of optimal path, the nec-
essary conditions yield a region as shown in Figures 6. The
algorithm uses the start configuration (x, y, θ) to identify
the correct region(s) and then calculates the value function
for one of the optimal path structures. The algorithm em-
ploys the three symmetries T1, T2, and T3 defined earlier
to reduce the number of cases.

First we define functions to calculate the cost of the
fastest trajectory for the base trajectory of each symmetry
class. For example, the function ValueBaseTSTS below

calculates the cost of the fastest trajectory with a structure
of x⇓y⇑. Let (r, ζ) be the polar coordinates of the start
configuration.

Procedure ValueBaseTSTS(q = (x, y, θ))
arccos(1− y)− θ/2− x+

√
y(2− y)

End ValueBaseTSTS

Procedure ValueBaseSTS(q = (x, y, θ))
If y = 0 then |x|+ θ/2
else y(1 + cos (θ))/sin (θ)− x+ θ/2

End ValueBaseSTS

Procedure ValueBaseTST(r, ζ, θ)
r + min (|ζ|+ |ζ − θ|, 2π − (|ζ|+ |ζ − θ|))

End ValueBaseTST

We now can define OptBVDD (optimal bounded veloc-
ity diff drive). The function recursively applies symmetry
transforms until the configuration is in a region for which
one of the base trajectories for the symmetry classes is op-
timal. The optimal path structure can then be determined
based on the necessary conditions for extremal paths to be
optimal. The value for that path structure is calculated.
The recursion applies the appropriate combination of τ1,
τ2, and τ3 transforms to the base path structure to deter-
mine the actual optimal path structure.

Procedure OptBVDD(q = (x, y, θ))
if θ ∈ (π, 2π) then τ3(OptBVDD(T3(q)))

r = ‖(x, y)‖
ζ = arctan(y, x)
if ζ ∈ (θ + π/2, π) then τ2(OptBVDD(T2(q)))
if y < 0 then τ1(OptBVDD(T1(q)))

if ζ ≤ θ
return(y⇓y, ValueBaseTST(r, ζ, θ))

else if y ≤ 1− cos (θ)
return(⇓y⇑, ValueBaseSTS(q))

else if r ≥ tan (ζ/2)
return(x⇓y, ValueBaseTST(r, ζ, θ))

else if r ≤ tan (ζ/2)
return(x⇓y⇑, ValueBaseTSTS(q))

End OptBVDD

For the sake of brevity, certain special cases have been
omitted from the pseudocode presented. Whenever two
symmetric regions are adjacent, the fastest paths for both
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Figure7: Reachableconfigurations in normalized time2.

regions are optimal. For example, if the robot starts at
(0, 1, π), then both thepathsy⇓y andx⇑x areoptimal.
There are two other cases where multiple path trajectories
will be optimal. When θs = 0, there may be a continuum
of optimal five segment paths, bounded by two different
four segment paths. When θs = π, straight-turnπ-straight
paths (ClassD) may beoptimal; in thiscase therewill also
be a continuum of optimal paths of this form bounded by
three segment trajectories of different classes. In each of
thesecases, theabovealgorithm will return an optimal tra-
jectory. Some additional bookkeeping would allow all of
theoptimal trajectories to be returned in thesecases.

The level sets of the value function show the reachable
configurationsof the robot for somegiven amount of time.
Figure 7 shows the shape of this region for time 2. (x,
y, and time are normalized by b, the width of the robot.)
Slices of this value function allow the regions in which
variousextremal pathsareoptimal to beseen moreclearly.
For example, figure 6 shows a slice where the angle be-
tween thestart and goal robot is fixed at π4 .

8 Summary and Conclusion.

The time optimal trajectories for the bounded velocity diff
drive robot are simple, and are composed only of turns in
placeand straight lines. Wehavepresented thevalue func-
tion, and an algorithm to determinetheoptimal trajectories
between any start and goal configuration of the robot.
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