The time-optimal trajectories for an omni-directional v

Devin J. Balkcom and Paritosh A. Kavathekar Matthew T. Mason
Department of Computer Science Robotics Institute
Dartmouth College Carnegie Mellon University
Hanover, NH 03755 Pittsburgh, PA 15213
{devin, paritosh@cs.dartmouth.edu matt.mason@cs.cmu.edu
Abstract

A common mobile robot design consists of three ‘omni-
wheels’ arranged at the vertices of an equilateral trigngle &
with wheel axles aligned with the rays from the center
of the triangle to each wheel. Omniwheels, like standard
wheels, are driven by the motors in a direction perpendic-
ular to the wheel axle, but unlike standard wheels, can slip (a) Photograph. (b) Notation.
in a direction parallel to the axle. Unlike a steered car, a
vehicle with this design can move in any direction withowigure 1: The Palm-Pilot Robot Kit, an example of an omni-
needing to rotate first, and can spin as it does so. directional vehicle. Photograph used by permission of Aero
The shortestpaths for this vehicle are straight linesame, Inc.ywwv. acr oname. com
However, the vehicle can move more quickly in some di-
rections than in others. What are the fastest trajectories? ) )
We consider a kinematic model of the vehicle and placeThe only other ground vehicles for which the fastest
independent bounds on the speeds of the wheels, buf'@gctories are known explicitly are the steered cars-stud
not consider dynamics or bound accelerations. We derigél Py Dubins [6] and by Reeds and Shepp [9] and
the analyticafastesttrajectories between configurationgdifferential-drives [1]. Although our results are specific
The time-optimal trajectories contain only spins in plact® the particular vehicle studied, we hope that expanding
circular arcs, and straight lines parallel to the wheelsxidh€ set of vehicles for which the optimal trajectories are
We classify optimal trajectories by the order and type bpown will ever_wtually lead to a more unified understanpl-
the segments; there are four such classes, and there afl8$®f the relationship between robot mechanism design
more than 18 control switches in any optimal trajectory@nd the use of resources.
We take a simple kinematic model of the robot — the

configuration iz, y, 6) € SE?, and the controls;, vo,
1 Introduction andvs are the velocities of the wheels perpendicular to the

axles, as shown in figure 1(b). We assume independent
This paper presents the time-optimal trajectories forb@unds on the speeds of the wheels;, 33 € [-1,1].
simple model of the common mobile-robot design shownWe show that the time-optimal trajectories between any
in figure 1(b). The three wheels are “omni-wheels”; theair of configurations consist of spins in place, circular
wheels not only rotate forwards and backwards wharcs, and straight lines parallel to the wheel axles. We la-
driven by the motors, but can also slip sideways freelyel each segment type by a lettér; C, S, respectively.
Such a robot can drive in any direction instantaneouslyThere are specific sequences of segments that may be op-




timal; we call the four classes of trajectoriggin roll, choose between two wheels and three, what is the cost
shuffle andtangent of each choice? Furthermore, the time-optimal metric is
. . . . - independent of compromises made by particular planners
1. Spintrajectories consist of a spin in pI_ace througgr controllers, and therefore provides a useful benchmark
an angle no greater than and are described by th'E'to compare them. Finally, the metric derived from the op-
single-letter control sequend® Figure 3(a) shows timal trajectories may be used as a heuristic to guide sam-
an example. pling in complete planning systems that permit obstacles
2. Rolltrajectories consist of a sequence of circular ar@§ @ more complex dynamic model of the mechanism.
of equal radius separated by spins in place. Fig-We do not argue that controllers should be designed
ure 4(a) shows an example. The trajectories are p@-drive robots to follow the ‘optimal’ trajectories we de-
riodic; a single period is of the for@PCPC. The rive, or that planners must use the optimal trajectories as
centers of the arcs all fall on the same line. With tHauilding blocks. Our model ignores the dynamics of real
possible exception of the first and last segments, tfhicles; this is particularly problematic for larger vehi
arcs all encompass the same ang|e’ as do the srﬂ}l‘%S,. Resources other than time may also be important,
and the sum of the angular displacement of a cofficluding energy consumption, safety, simplicity of pro-
plete arc and a complete spinli80°. There are no gramming, sensing opportunities, and accuracy. Trade-

more than four circular arcs in any optimal trajectorffs must be made, but understanding the relative payoffs
of each design requires an understanding of the funda-

3. Shufflerajectories are composed of repetitions of sgrental behavior of the mechanism. The knowledge that
quences of three c-|rcular arcs followed by a spigreat circles are geodesics on the sphere does not require
CCCP, and contain no more than seven contrghat airplanes must strictly follow great circles, but may

switches. Figure 4(b) shows an example. A compleignetheless influence the choice of flight paths.
period of ashufflemoves the vehicle ‘sideways’ in a

direction parallel to a line connecting two wheels.
P g 1.1 Related work

lost of the work on time-optimal control for vehicles
ily long translations in a direction parallel to th asb_focuze%op bogn(:je?r-]veI%CIt)t/ mtodelt.; ofbstgsred c;ars.
line containing the center of the robot and one of i ubins [6] determine € shortest paths between two

wheels: see figure 4(c). Al straight segments are C%anigurations of a car that can only move forwards at
linear ,The control sequence @SCSCP and constant speed, with bounded steering angle. Reeds and

trajectories contain no more than 18 switches. Int§-h(app [9] found the shortest paths for a steered car that
itively, the robot ‘lines up’ in its fastest direction ofcan move backwards as well as forwards. Sgssmann and
translation, translates, and then follows arcs of C%@ng [16] fl_J_rther reﬂryed thgse results, reducing t_he num-
cles to arrive at its final position and orientation. er of fam|I|e§ of trajectories thought to be optlrpal by
two, and Soueres and Boissonnat [13], and Souéres and
Why study optimal trajectories? Knowledge of theaumond [14] discovered the mapping from pairs of con-
shortest or fastest paths between any two configuratidigsirations to optimal trajectories for the Reeds and Shepp
of a particular robot is fundamental. Robots expend rear.
sources to achieve tasks. Possibly the simplest resource Besaulniers [5] showed that in the presence of obsta-
time; the minimum amount of time that must be expendetes, shortest paths may not exist between certain config-
to move the robot between configurations is a basic prapations of steered cars. Furthermore, in addition to the
erty of the mechanism, and a fundamental metric on teieaight lines and circular arcs of minimum radius discov-
configuration space. ered by Dubins, the shortest paths may also contain seg-
Knowledge of the time optimal trajectories is also useaents that follow the boundaries of obstacles. Vendittelli
ful. Mechanisms should be designed so that commenal.[17] used geometric techniques to develop an algo-
tasks can be achieved efficiently. If the designer mugthm to obtain the shortest non-holonomic distance from

4. Tangenttrajectories consist of a sequence of ar
of circles and spins in place separated by arbitr



a robot to any point on an obstacle. ity of the derived solutions have proven difficult to deter-
Recently, the optimal trajectories have been found fatine, as has complete characterization of the geometric

vehicles that are not steered cars, and metrics other teancture of trajectories.

time. The time-optimal controls for differential-drives

with independent bounds on the wheel speeds were (55- . .

covered by Balkcom and Mason [1]. Chitsetzal. [2] de- Model, assumptions, notation

termined the trajectories for a differential-drive thatmi )
imize the sum of the rotation of the two wheels. The o€t the state of the robot be= (z, y, 0), the location of
timal paths have also been explored for some exampiag center of the robot, and the angle that the line from
of vehicles without wheels. Coombs and Lewis [4] cor‘ihe center_to _the first Whee_l makes with the horl_zontal,
sider a simplified model of a hovercraft, and Chyba af$ Shown in figure 1(b). Without loss of generality, we
Haberkorn [3] consider underwater vehicles. We know gFSUme that the distance from the center of the robot to
no previous attempts to obtain closed-form solution ff€¢ Wheels is one. We further assume that each of the
the optimal trajectories for any omni-directional vehiclethrée wheel-speed contrals, v, andu; is in the interval
The model of the three-wheeled omni-directional vé=1: 1]- We define the control region

hicle that we study is similar to that used by Williams
et al. [12], who are concerned with obtaining a feasible

model of friction and wheel-slip, rather than optimal corand consider the class afdmissible controlgo be the

U=[-1,1] % [-1,1] x [-1,1], )

trol. measurable functions(t) mapping the time interval
Bounded-velocity models capture the kinematics of[@ 7] to U: w(t) = (vy(t), va(t), vs(£))”.
vehicle, but not the dynamics. Our approach specificallyTo simplify notation, we define;; = cos6;, and

allows unbounded accelerations. The durations of optimgal — sin;, whered; = 6 + (i — 1)120°, the angle

trajectories we compute are a lower bound for the duig the ith wheel measured from the horizontal. Define
tions of optimal trajectories for a more complex dynamige matrixS to be the Jacobian that transforms between
model. Since the unbounded accelerations for our mogghfiguration-space velocities of the vehicle, and veloci-

only occur a small bounded number of times during ajs of the wheels in the controlled direction:
optimal trajectory, the trajectories can be time-scaled to

yield trajectories that are feasible for systems with digni —s1 ¢ 1
icant dynamics, giving both an upper and a lower bound S=1 =52 ¢ 1 )
on the duration of the optimal dynamic trajectories. For —s3 ¢z 1

small robots following sufficiently long trajectories (sev

eral robot-lengths in distance), we expect the approxima- 2| T TR T
tion to be reasonable. ST=51 a ¢ o |. 3
Although the bounded-velocity model is not com- /2 1/2 1/2

pletely satisfying, the optimal-control problem for dy- We define the state trajectogyt) = (x(t), y(t), 0(t))
namic models of ground vehicles appears to be very difr any initial stateg, and admissible contral(t) using
ficult; the differential equations describing the trajecte ebesgue integration, with the standard measure:
ries do not have recognizable analytical solutions, and in

some cases, the optimal trajectories involve chatterimg, a q(t) = qo + /S_lu . ()
infinite number of control switches in a finite time [15].

Papers by Reister and Pin [10], and Renaud and I:OurFor any admissible control, the time derivatiyés de-

quet [11] present numerical and partial geometric reSLﬁJltﬁed almost everywhere, and
for steered cars, and Kalmar-Nagy al. [7] present al- ’

gorithms for numerically computing optimal trajectories o [ =51 —s2 s 0
for a bounded-acceleration model of the omnidirectionaly = S~'u == | ¢ ¢ ¢ va |. (5)
robot we consider. However, tight bounds on the optimal- 1/2 1/2 1/2 v3



It may be easily verified that the kinematic equatiord1 Application of the Maximum Principle

and bounds on the controls satisfy the conditions of theo- . . . .
rem 6 of Sussmann and Tang [16]: an optimal traject(?@/e solve for the adjoint vector by direct integration of

exists between every pair of start and goal configuratioﬁg.uation 6:
/\1 = 3k1 (9)
N’ H H H Ao = 3ko (10)
3 Pontryagin’s Maximum Principle N = 301y — o ). a

This section uses Pontryagin’s Maximum Principle [8] tynere 3k1, 3ks, and 3k; are constants of integration.
derive necessary _cor_1ditions for time_—optimal _trajecmrithe constant factor of 3 will simplify the form of equa-
The Maximum Principle states that if the trajectafy) ions 14, 15, and 16 below.)

with corresponding contral(?) is time-optimal then the  \ve now substitute the adjoint function into the mini-
following conditions must hold: mization equation to determine necessary conditions for

) - ) ) time-optimal trajectories. To simplify notation, we define
1. There exists a non-trivial (not identically zer@J- ihree functions

joint function an absolutely continuouR?-valued

function of time, A (¢), ©i(t) = (A1), fi(q(t)), (12)
A1(t) wheref; is theith column ofS—1. Explicitly, if we define
A) = A2t) |, the function
As(t)
n(x,y) = kiy — kax + ks, (13)

defined by a differential equation, tlaljoint equa- , _
tion, in the configuration and in time-derivatives of1€N the functions are:
the configuration:

o1 = 2(—k181 + kac1) +n(z,y) (14)
.0 . w2 = 2(—k152 + kac2) + n(x,y) (15)
A o _6_q<)\’ q<q7u>> a.e’ (6) Y3 = 2(—k182 + kQCQ) + n(I,y) (16)

where angle brackets denote the dot product. We calWe may now write the equation for the Hamiltonian in
the inner product appearing in equation 6 temil- terms of these functions and the controjsvs, andvs:
toniar
H()\, q,U) _ </\7 q(q,U)> 7) H = ¢1v1 + p2v2 + p3v3. (17)
The minimization condition of the Maximum Principle
2. The controk(¢) minimizes the Hamiltonian: (condition 2, above) applied to equation 17 implies that if
the functiony; is negative, them; should be chosen to
H(\(t),q(t),u(t)) = min H(\(t),q(t),z) a.e. takeits maximum possible value, 1, in order to minimize
zeU ®) H. If the functionyp; is positive, then; should be chosen
to be—1. Since the controls switch whenever one of the
functionsy; changes sign, we refer to the functignsas

o " switching functions
3. The Hamiltonian is constant and non-positive over 9

the trajectory. We defing, as the negative of theTheorem 1 For any time-optimal trajectory of the omni-
value of the Hamiltonian), is constant and non-directional vehicle, there exist constarits, k-, and &3,
negative for any optimal trajectory. with k2 + k2 + k3 # 0, such that at almost every tinte

Equation 8 is called thminimization equation



the value of the contral; is determined by the sign of the IC 1
switching functionp;:

1 ifgi<0 Q5
“1_{ ~1 ifg; >0, (18)

where the switching functions , v2, andys are given by

equations 13, 14, 15, and 16. Furthermore, the quantity
Ao defined by

Ao = —H(p1, 02, 03) = 1| + |pa + 3] (19)

is constant along the trajectory.

Proof: Application of the Maximum Principle. B Figure 2: Geometric interpretation of the switching functions.
The Maximum Principle does not directly give inforFor the case shownp: < 0, 92 > 0, andgs > 0, so the
mation about the optimal controls in the case that one@ntrols aren = 1, vz = —1, andvz = —1.
more of the switching functiong; is zero. Theorems 7

and 8 in section 4 will specifically address this case. Thgih the ray from the center of the vehicle to wheel 1, re-
Maximum Principle also does not give information abo'_ébectively (refer to figure 2). For any time-optimal trajec-

the constants of integration, as these depend on the 1By, there exist constants;, ks, and ks, and a line (the
tial and final configurations of the robot. In this paper, W&yitching line)

give the structure of trajectories as a function of these con
stants, but do not describe how to determine the constants £ = {(a,b) € R2: kb —koa+ ks = 0},
except in a few cases.
such that the controls of the vehielg, v5, andvs depend
L . . on the location of the pointS;, S;, andSs relative to the
3.2 Geometric interpretation of the switch- jine. specifically, foi € {1,2, 3},

ing functions
1 if S; is to the right of the switching line
The switching functions have a geometric interpretatiofy. = { —1 if S; is to the left of the switching line.
Consider the function(z, y):
Proof: Let (xg,,ys,) be the coordinates of;. We

n(xz,y) = k1y — kex + ks. (20) compute the signed, scaled distance of the p8jrftom
the line £, and observe from the definition of the switch-
n(z,y) gives the signed, scaled distance of the ping) ing functions thatp; (z, y, 0) = n(zs,,ys,)- ]

from a line in the plane whose location is determined by We will call S;, S», and .Sz the switching points For
the constants;, ko, andks. (If k7 + k3 = 0, we may any optimal trajectory, the location of the switching line
consider the line to be ‘at infinity’.) We will call this linejs fixed by the choice of constants, and the controls at any
the switching line We also associate a direction with thgoint depend on the signs, but not on the magnitudes, of
switching line such that any poirtt, y) is to the left of the switching functions. Figure 2 shows an example. Two
the switching line ify(z,y) > 0, and to the right of the of the switching points{, andSs) are to the left of the
switching line ifn(x, y) < 0. switching line, so the corresponding switching functions
are positive, and wheels 2 and 3 spin at full speed in the
Theorem 2 Define the pointsSy, S, and Ss rigidly at- negative direction. The remaining switching poist |
tached to the vehicle, with distance 2 from the centerisfto the right of the switching line, so wheel 1 spins at
the vehicle, and making angles 880°, 300°, and 60° full speed in the positive direction. As a result of these



controls, the robot will follow a clockwise circular arcpoint contained in the interval. We say that a trajectory is
The center of the arc is a distance of four from the robsingularon some interval if exactly one of the switching
and along the line containing the center of the robot afithctions is identically zero on that interval, and no other
wheel 1. switching function is zero at any point on the interval. We
If all three switching functions have the same sign, tisay that an extremal trajectory @ubly-singularon an
controls all take either their maximum or minimum valuénterval if exactly two of the switching functions are zero
and the robot spins in place. The center of rotation is tha that interval, and the third switching function is never
center of the robot; we call this point IC 0. If the switchingero on the interval.
functions are non-zero but do not all have the same sign,
the vehicle rotates in a circular arc. The rotation centéReorem 3 The negative of the Hamiltonian achieves a
is a distance of four from the center of the robot, on tiggobal minimum if and only if the trajectory is doubly-
ray connecting the center of the robot and the wheel corfégular at that point; at a doubly-singular pointy = 3.
sponding to the ‘minority’ switching function. We call the

rotation centers corresponding to each wheel IC 1, IC 2, . Proof: We can compute an expression f_orthe Ham'l'
and IC 3. tonian using relations between the switching functions.

&Iotice thats; + s+ s3 = 0, from the trigopnometric iden-

The switching functions are invariant to translation Adding the th itching f . f
the vehicle parallel to the switching line (see figure 23%?12'21 2'29 the three switching functions from equa-

and scaling the switching functions by a positive consta
do_es not affect the <_:ontro|s. Therefore, _for any optimal o1+ 02+ 03 = 3y . (24)
trajectory, we may without loss of generality choose a co-

ordinate frame withz-axis on the switching line, and ana|so, for distincti, j, k € {1,2, 3},

appropriate scaling, such thatgives the distance from

the switching line, and gives the angle of the vehicle  ¢; + ¢; — i =y — 2s; — 2s; + 254, (25)
relative to the switching line. With this choice of coordi- =y —2si+s;+5s5) +4s,  (26)
nates, the switching functions become
=y +4sy . (27)
1=y —25 (21) ) . S
_ The equation for the negative of the Hamiltonian in terms
P2 =Y — 252 (22) .
of y andd is therefore
p3 =y — 2s3. (23)
We will use these coordinates for the remainder of thery(y, 9) = 3] if 1, 2, 3 have same sign
paper. - ly +4si| otherwise.
(28)
_ Level sets of this function are shown in figure 6. We
4 Properties of extremals divide the domain into two pieces. First consider the

domain(y,0) € R/[—2,2] x S*. The minimum value

We will say that any trajectory that satisfies the conditiofier )\, is 6 on this domain, since the switching functions
of theorem 1 (or equivalently, theorem 2)agtremal In have the same sign. Now consider the don{gird) <
this section, we will enumerate several properties of ex-2,2] x S!. On this compact domairf is continuous,
tremal trajectories. The primary result is that every eand achieves both a minimum and a maximum.
tremal trajectory contains only a finite number of control At any minimum point that is not along the boundary,
switches with an upper bound determined Xy The either (i) the partial derivatives dff are both zero, or (ii),
first-time reader may wish to skip the technical details the partial derivatives ot are discontinuous. The par-
this section, and return to it after sections 5 and 6, whitial 0 H/dy is nonzero everywhere=<(3 or = 1 depending
describe the geometric structure of optimal trajectorieson the signs of the switching functions). Therefore the

We say that an extremal trajectorygenericon some partials are discontinuous at the minimuditf /§y is dis-
interval if none of the switching functions is zero at any continuous iffp;, = 0 for somei € {1, 2, 3}.



Consider a root of théth switching function. Letp; Proof: Let ¢t; andt, be two arbitrary times at which
and ¢, be the values of the other switching functionshe trajectory is singular, withi, > t;. Leti andj
with & andj chosen such that wheelsj, andk are in be the indices of the switching functions that are zero;
clockwise order. Evaluating equations 19, 21, 22, and 23(t1) = ¢,(t4) = 0. If ¢t; and¢, are not contained

at this root, within the same singular interval, continuity of the switch
ing functions implies that then there must be a time such
Ao = @i + ekl (29) that either the switching function that was initially zero
y = 2sinb;. (30) becomes non-zero, or some switching function that was
initially non-zero becomes zero. That is, there exists a
From equations 24 and 30, time¢s € [t1,t4] such that at least one of the following
properties hold:
0 + pr = 6sinb; (31) 1. oi(ts) £ 0,
Yk — @ = 2v/3 cos 0;. (32)

2. pi(ts) = 0 for somek # ¢ (from continuity ofy;).

We may now write) in terms off and the signs on thef the first property holds, but not the second, thgris

switching functions: a generic point. If the second property holds, but not the
first, t5 is a doubly-singular point, and the trajectory is not

6 sin 0; if p; > 0andgy, > 0. extremal by corollaries 1 and 2. If both properties hold,
Ao = —6sin0; if ¢; < 0andgy, < 0. (33) then by the intermediate value theorem, there must be a
2v3cost;  if g; <Oandgy > 0. pointt, € [t1, 3] such that eithet; (t2) = @i (ts), or
—23cosf; if p; > 0andp, < 0. @i(ty) = —pi(tz). This point must be generic, since it
o ) o cannot be doubly-singular. [ |

The minimum value of this function i8¢ = 3, and the

minima occur a¥; € {30°,210°}; at these pointsp; = Lemma 1 Assume; andt, are two points of a generic

0, so the trajectory is doubly-singular. W interval, withty > ;. Defined to be the duration of the

interval [tq, t2]. If 6(t1) # 6(¢2), then
Corollary 1 At no point along an extremal trajectory

If 0(t1) = 6(t2), then
Proof: If o1 = ¢y = (o3 = 0then)y = 0. (1) (t2)

0 > 2m. (35)
Corollary 2 If an extremal trajectory contains any

doubly-singular point, then every point of the trajectory ~ Proof: On any generic interval, the controls are con-
is doubly-singular. Stant and is a non-zero constant. Depending on the signs

of the switching functions = +1, ord = +1/3. The
Proof: The Maximum Principle implies that theProperties follow immediately from direct integration of
Hamiltonian must remain constant over any extremal tfk- u

jectory; th_e previous t_heorem tells us that any trajeCt_OW]eorem 5 Every generic pointis contained in a generic
thadt coptami both points that aLe doubly-singular po'nfﬁerval that either has the start or the end of the entire
and points that are not cannot have a constant Ham'lﬁ%]ectory as an endpoint, or has a duration that is lower-

hian. bounded by a constant, that depends only oky.

Theorem 4 Every pair of singular points of an extremal Proof: Continuity of the switching functions implies
trajectory is contained in a single singular interval, or ighat every generic point is contained in an open inter-
separated by a generic point. val containing only generic points. Consider the largest



open interval that contains the generic point; the intervialom equation 33, the time derivative &f is
is bounded either by singular points, or by the start and i )
end of the trajectory. We will show that singular points Ao = %660 cosb; = 0. (38)
are separated by a constarthat depends only ok.
Given a value fot\y, there exist a finite number of rea
valued solutions fo#, which may all be found by solving
the above equations fér
Assume now that the generic interval is bounded by two Symbol | 0 | u | Ao

IThe fact tha#) # 0 implies thatcos §; = 0 can hold only
instantaneously, and therefore the interval must be of zero
duration.

singular pointst; andt,, with to > t;. We may compute e

all possible values fat(¢1) andf(t2) in terms ofAq. Con- P R Rl 3
. i . Py --- 1,11 —3y

sider all possible pairs @f(t1) andd(t¢2), and the angular :

. . . Cl* - ++ 1, '1, -1 y+4SID91
distance betweefi(t2) andf(t,) for each pair. If all dis- .

N . Co- ++ | -1,1,-1 | y+4sinfy
tances are zero, then lét= 2r; otherwise, let) be the .

. i . ) . Cs- ++- -1,-1,1 | y+4sinfs
minimum non-zero distance. The duration of the interval C e 111 Asin f
must be at least, by lemma 1. [ | 1 r Ty T s

Co+ - +- 1,-1,1 | —y —4sinby
Theorem 6 The number of control switches in an ex- Cs+ | --+| 1,1,-1 | —y—4sinbs
tremal trajectory is finite, and upper-bounded by a con- S13 |-0+] 1,0,-1 2V/3
stant that depends only o). Si2 |-+0] 1,-1,0 2V/3
. S32 | 0+ | 0,-1,1 23
Proof. Let N be the number of switches. By corol- Sa; | +0- | -1,0,1 23
lary 2, the trajectory is doubly-singular everywhere, or ’ T
) . . Sa1 +-0 -1,1,0 2\/§
nowhere. If the trajectory is doubly-singular, th&n= 0. ’

. . . . Sa3 0-+ 0,1,-1 2\/§
Otherwise, letl’ be the duration of the trajectory. Since D ’ 00 5 51 3
every maximal generic interval (except possibly the first 37 T

. . . ) . D~ -00 | 1,-5,-5 3

and the last) is contained in an interval of duration of at
Do+ 0+0 | .5,-1,.5 3
leasté (theorem 5), there can be no more tHEY + 2 D 00- | -5 .51 3

. P 3—- - [} )
maximal generic intervals, and Dy +00 | -1, 5’ 5 3
Dy- 0-0-51,-5 3
N < % +2. (36) 2
- Table 1: The twenty extremal controls.

In section 7, we will show that fooptimaltrajectories,

a much stronger property holds: the number of controlNOW assume thap; andy; have opposite signs;; =
switches is never greater than 18. —vy, = £1, by theorem 1. We will first show that

Theorem 7 Consider a singular interval of non-zero du- y =sint; = 0. (39)
ration, with ¢; = 0. At every point of the interval, . .
. vi 0 yp Assume the converse. If eithgr# 0 orsin; # 0, then
y = sinf; = 0, and the controls are constant;; = 0, ) . : .
neithery = 0 norsin#; = 0, sincey = 2sinf,;. From
andv; = —v, = %1.

equation 33, we can write the time derivativegf

Proof: Choose an arbitrary point on the interior of
the interval. First, assume that andy;, have the same
sign. Thenv; = v, = %1, by theorem 1. From the
system equations (5),

Ao = £2V/30sin6; (40)

Since)o must be constant over an extremal trajectory, it
follows thatd = 0. From equations 21, 22, and 23,

. 1 .
0=3(vi£2)#0. (37) =20 cosb; = 0. (41)



From the system equations (5),

1
0= -(vi+vj+v)=0 (42)

3
2 o
y = glcivi + ¢jvj + cpve) = 0. (43) ‘%ﬂ :

Combining these equations, and using the fact that o
—vg, we can show that; = ¢, which implies that Si N
sinf; = 0, a contradiction. Thereforg, = s; = 0 over 2
the entire interval. From the system equations, it follows (a) An example clockwisepin control, P_.
thatv; = 0. |

IC 2.

Theorem 8 Consider a doubly-singular interval of non-

S3
zero duration, withp; = ¢; = 0. Along the interval, (i)
y = %1, cosf, = 0, and (ii) the controls are constant,
with v, = £1, andv; = v; = F.5.
4 >
& £ >

Proof: Property (i) follows from equations 21, 22, T

and 23. Property (ii) can then be shown by taking a time o S
derivative of the equations given in property (i) and ap- \/ 2
plying the system equations (5). [ ]

(b) An example clockwiseircular arc control, C,— .

S3

O<«<—mM8M8M O

5 Extremal controls

Theorems 1, 6, 7, and 8 imply that optimal trajectories are
composed of a finite number of segments, along each of L >
which the controls are constant. Considering all possible Sy L
combinations of signs and zeros of the switching func-
tions allows the twenty extremal controls to be enumer- -~
ated; table 1 shows the results. The vehicle may spin in S1
place, follow a circular arc, translate in a direction per- () An examplesingular translationcontrol, S 5.
pendicular to the line joining two wheels, or translate in a
direction parallel to the line joining two wheels. We de- 53
O ~——0O0

note each control by a symboP 4, C;x, S; ;, of Dy,
respectively. The subscripts depend on the specific signs
of the switching functions.

Theorem 2 gives a more geometric interpretation of the
extremal controls. The controls depend on the location of
the switching points relative to the switching line. There S S
are four cases:

Dy

(d) An exampledoubly-singular translationcontrol,
e Spinin place. If the vehicle is far from the switching Dj+.
line, all of the switching points are on the same side
of the line, and all of the wheels spin in the same di- Figure 3: Extremal controls for an omni-directional robot.
rection. Figure 3(a) shows an example. If the robotis



to the left of the switching line, the robot spins clock-
wise (P_); if the robot is to the right of the switching
line, the robot spins counterclockwide ().

Circular arc. Figure 3(b) shows an example of a Ic3 Ic2
counterclockwise arc around IC Z{;). If two .
switching points are on one side of the line, and one
switching point is on the other side, two wheels spin
in one direction at full speed, and one wheel spins in
the opposite direction at full speed. These controls
cause the vehicle to follow a circular arc of radius
four; the center of the arc is the IC corresponding to
the switching point that is not on the same side of

the switching line as the others, and the direction of (@) AROIICW trajectory,C,_ P_Cy_P_C,_ .
rotation depends on whether this switching point is

to the left or right of the line. Icl
Singular translation. Figure 3(c) shows an exam-

ple, S1,3, where the second switching point slides K\FW

along the switching line. If two switching points are o < I

an equal distance from the switching line but on op-
posite sides of the line, two of the wheels spin at full
speed, but in opposite direction. If the last switch-
ing point falls exactly on the switching line, theo- . IC3

rem 2 does not provide any information about the (b) A Shuffletrajectory,Cy+ C, - P_Cy_ Cas Cy_ P ...
speed of the last wheel. If the wheel does not spin,
then the vehicle translates along the switching line,
as described by theorem 7. Otherwise, the singular
translation is only instantaneous.

Doubly-singular translation. Figure 3(b) shows an
example D5+, where the first and second switching
points slide along the switching line. If two switch-
ing points fall on the switching line, the speeds of
the corresponding wheels cannot be determined from
theorem 2. If these wheels spin at half speed, in. _ i o
a direction opposite to that of the third wheel, bc)ﬂ{zlgure 4: Extremal trajectories for an omni-directional robot.
switching points slide along the switching line, and

the vehicle translates. It turns out that that doubly-

singular controls, although extremal, aveveropti-

mal; see section 7.

end mid start
for o oy

(c) A Tangenttrajectory,C5'"* Sz 3 Cg‘jd S2.1 C;de p_Cgert.
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6 Classification of extremal trajec-
tories

Every extremal trajectory is generated by a sequence of

constant controls from table 1. However, not every se-

guence is extremal. This section geometrically enumer-

ates the five structures of extremal trajectories.

First consider an example, shown in figure 4(a). Ini-
tially, switching points 1 and 3 fall to the left of the
switching line, and switching point 2 falls to the right
of the switching line. The vehicle rotates in the clock-
wise direction about IC 2. After some amount of rotation,
switching point 2 crosses the switching line. Now all three
switching points are to the left of the switching line, the
velocity of wheel 2 changes sign, and the vehicle spins in
place. When switching point 3 crosses the switching line,
the vehicle begins to rotate about IC 3. When switching

point 3 crosses back to the left side, the vehicle spins in

place again until switching point 1 crosses the line. The
pattern continues in this form; we describe the trajectory

by the sequence of symbdls-P_C;-P_C;-.

In general, if no switching points fall on the switching

line (the generic case), then the controls are completely
determined by theorem 2, and the vehicle either spins in

place or rotates around a fixed point. When one of the
switching points crosses the switching line, the controls
change. For some configurations for which one or two of
the switching points fall exactly on the switching line (the

singular and doubly-singular cases), there exist controls

that allow the switching points to slide along the switch-

ing line.

We will define these classes more rigorously in sec-

close enough to the switching line that spinning in
place will eventually cause the switching points to
straddle the line, the trajectory is a sequence of cir-
cular arcs and spins in place. If the vehicle is far
enough from the switching line that every switching
point crosses the switching line and returns to the
same side before the next switching point crosses the
line, the structure of the trajectory is as described in
the example above and in figure 4(a).

Shuffle. If the vehicle is close enough to the switch-
ing line that two switching points cross the switching
line before the first returns to its initial side, the sign
of § changes during the trajectory. An example is
shown in figure 4(b).

Tangent. As the vehicle spins in place or follows
a circular arc, the switching points follow circular
arcs. If one of these arcs is tangent to the switching
line, a singular control becomes possible at the point
of tangency, and the vehicle may translate along the
switching line for an arbitrary duration before re-
turning to following a circular arc. An example is
shown in figure 4(c). A single circular arc is divided
into three sections in #&angenttrajectory. These
segments are separated by the singSlatraights,
possibly of zero duration. We call the arc sections
Cstart cmid gndCend, as shown in figure 4(c). The
robot rotates througho° during a completeC™id
segment.

e Slide. If two switching points fall on the switching

tions 6.1 and 6.2. However, we can see geometrically that

there are five cases:

e SpinCW and SpinCCW. If the vehicle is far from

line, the trajectory is doubly singular. The vehicle
slides along the switching line in a pure translation;
an example of this trajectory type is shown by fig-
ure 3(d). Althougtslidetrajectories are extremal, we

will show in section 7 that they are never optimal.

the switching line, the switching points are on the
same side of the switching line and never cross @,1 Configuration space

the vehicle spins in place indefinitely. The structure ) )
off the trajectory is eitheP_ (if the vehicle is to the In order to show that the above list of trajectory classes

left of the switching line) o, (if the vehicle is to i exhaustive, it is useful to consider the structure of tra-
the right of the switching line). An example is showifctories in configuration space. The configuration of the
in figure 3(a). robot relative to the switching line may be represented by
(0,y). Figure 6(a) shows the configuration space.
RollICW andRolICCW. If the switching points ei- Each point on figure 6(a) corresponds to a configu-
ther straddle the switching line, or the vehicle igtion of the robot relative to the switching line. The

11



Class | Control sequence | Value of )

SpinCW P_ Ao > 6
SpinCCW Py

RollCW | C3 P_Cy P_C, P_... | 2V3< <6
RollCCW Cl+P+CQ+P+Cg+P+ Ces

Tangent CSCSCP ... Ao = 2V3
Shuffle; — Co+C1-C3+P 4 ... 3< < 2\/§
ShuﬂieQ, C3+ CQ— Cl+P+ e

Shufﬂeg_ Cl* C3—CQ+P+ e

Shufﬂel+ Cg— Cl+CQ—P_ e

Shufﬂeg+ Cl* CQ+ Cg—P_ e

Shuﬁ:l63+ 02703+ leP, Ces

Table 2: Four of the five classes of extremal trajectories. Everynogtitrajectory is composed of a sequence of controls that is
a subsequence of one of the above types. (Doubly-singlithrtrajectories are extremal, but never optimal; see sectip e
structure oftangenttrajectories is complicated, and shown explicitly in figbre

Cs+ S2.3 Cg+ S1,3 Ca+ Py Car Syo Co+ Sz,0 Cov Py Cyt S31 G+ So1 Gyt Py

Ci- Si,2 G- 81,3 Cy- P_ Cy- Sp3 Cy- Sg1 Co- P Cz- S3,1 Cg- Sz0 C3- P

Figure 5: The structure ofangenttrajectories. The controls must occur in left-to-right @rih the direction shown by either the
top or the bottom arrows. However, after a singular corfirghe trajectory may switch from one sequence to the otheshasn
by the vertical and diagonal lines segments.

sinusoidal curves defined by; = 0, ¢ = 0, and jectory. When the trajectory crosses a switching curve, the
w3 = 0 mark boundaries in configuration space; we calbntrol switches. However, the condition that the Hamil-
these curves thswitching curves The switching curves tonian remain constant over a trajectory provides an even
and their intersections divide the configuration space irgimpler way to enumerate all trajectories in the configura-
cells, within each of which the controls are constant. tion space.

As an example, consider any point below switching _ .
Over any particular trajectoryif = —)\q, for some

curve 1, but above switching curves 2 and 3. The controls " )
are(—1,1,1), described by the symb@l,  : the vehicle constant\g € R™. Different values of\, correspond

follows a circular arc around IC 1 in the clockwise direct-O different types of trajectories. For example, assume

tion. This trajectory is a sinusoidal curve in configuratio%‘l0 = 9. A,” three switching functions must be positive,
and equation 28 reduces$o= +3. Thus,\y = 9 corre-

space. : . -
P sponds to trajectories for whighis constant, and onlg
changesi.e., a ‘spin’ trajectory. For any, > 6, a similar
6.2 Level sets of the Hamiltonian reasoning hold; the trajectory is a spin.

The trajectory curves in configuration space can be drawrFigure 6(b) shows the level sets of the Hamiltonian, or
by considering each possible initial configuration, detexquivalently, extremal trajectories in configuration spac
mining the constant control, and integrating to find the tr@the cases are:

12



Shuffle; 4 Shuffles + Shuffles

P_ Y SpinCW \
w3 =0 =< .
p1=0

02 =0 \ | SpimcCW |
P, ’ Shuffles Shuffle; Shuffle; _
(a) The sinusoidal switching curves partition the confitjora (b) The configuration space of the robot relative to the gviritg
space into eigh€ andP control regions. line, with level sets of the Hamiltonian. (Axes, not drawrg ¢he

same as for figure 6(a).) Since the Hamiltonian is constast ov
any optimal trajectory, optimal trajectories lie along tmms of the
Hamiltonian. The dashed lines represent control switckeshawn

in figure 6(a); the bold lines separate the trajectory classe

Figure 6: The configuration space of the robot relative to the switgime.

e If \g > 6, the level set is a pair of horizontal lines,
one withy = )\ /3, corresponding to apinCWtra-
jectory, and one witly = — /3, corresponding to
aspinCCWrajectory.

Figure 7: Any sufficiently-shortslidetrajectory (solid line) can

o If 2¢/3 < X\ < 6, the level set is composed of twabe replaced by a fastehuffletrajectory (dashed line).
disjoint curves, one corresponding ta@CW tra-
jectory and one corresponding ta@CCW trajec-

tory, 7 Optimal trajectories

We have presented the five classes of extremal trajec-

e If \o = 2v/3, the level set is the union of the boldory; every optimal trajectory must be extremal. How-

curves shown in figure 6(bJangentrajectories fol- €ver, not all extremal trajectories are optimal. In this-sec
low these curves. tion, we will derive further conditions that optimal tra-

jectories must satisfy. Specifically, we will show that
doubly-singularslide trajectories are never optimal, and
e If 3 < Ay < 2V/3, the level set is composed of sixhat the number of control switches in any optimal trajec-
disjoint curves, one corresponding to each of the sixry never exceeds 18. Finally, we show that the classi-
symmetricshuffletrajectories. fication {spin, roll, shuffle tangen} is minimat for each
trajectory class, there exists at least one pair of configura

o ] tions for which a trajectory of that class is optimal.
e If Ny = 3, the level set is six isolated points, each

corresponding to one of the sskidetrajectories.  Theorem 9 Doubly-singular slide trajectories are not

13



optimal for any pair of start and goal configurations. f(Xo) is negative on the interval, so it remains only to
o . show thag(A¢) > 0 onthe interval. Notice that(3) = 0,
Proof: It can be shown (by continuity of equation 44gy it js sufficient to show that (Ag) > 0 on the interval.

below) that there is & CCCP one-periodshufflethat \ve computey/(3) = 0, and the second derivative gf
connects any two configurations on a slide that are sep-

arated by less thagn/6/3; see figure 7. Let be the dura- " 9 3

tion of theshuffle and letx be the signed distance traveled 9" (o) = V12— 22 B V36 =22 (51)
along the switching line. During any generic interval, the

robot moves in a circle or spins in place. We can therefosbich is strictly positive on the interval. ]

therefore explicitly write ther andy distances travelled

during a single period of a shuffle as a function of the amheorem 10 Optimal trajectories contain no more than
gular distanceé through which the robot turns. If we usel8 control switches. Specifically,

equation 33 to eliminaté in favor of \y, we get an equa- . ) . ) )

tion for the net translation of a single period of a shuffle in() ©Ptimal spin - trajectories contain zero control

terms of)\o, the characteristic constant for the trajectory: ~ SWitches, and the maximum duration of an optimal
spin trajectory isr;

—4
z(Xo) = ?\/36 - A§+ 4\/12 - A3 (44) (i) optimal roll trajectories contain at most 8 control
switches;
t(XNo) = 8% — 12 arccos Do _ 4 arcsin %. (45)
2v/3 (i) optimal shuffle trajectories contain at most 7 control

The forward velocity of a doubly-singular trajectory is  switches;
—1. We will show that the average forward velocity of .
the shuffleover the length of one period is less than (V)
for \o in the interval(3,2+/3); i.e, the shuffle is faster.

optimal tangent trajectories contain at most 12 con-
trol switches if the trajectory is non-monotonicin
and at most 18 control switches if the trajectory is

Define o
z(Xo) monotonic irg;
Uavg()\O) = t()\O) (46)
The proof forspintrajectories is obvious. We consider
p p J
As Ao — 3, i ) each of the other trajectory classes separately:
1M Vayg = —1.
) 03 _ ) (i) Roll trajectories: Consider aoll trajectory with 9
~ We will now show that,, is monotonically decreas-  or more segments. The trajectory contains a full pe-
ing as)o increases frons to 2v/3, by showing that the riod beginning with an untruncated spin and ending
derivative w.r.t.\ is negative. We will denote differenti- with an untruncated spi? CPCPCP. (The addi-
ation with respect td, using the prime’j symbol. tional two segments are required so that even if the
-~ / trajectory begins or ends on with a truncated spin, a
, T —at L . . .
Vave = (48) full period is still contained as a subsection.)

. , " , There are two cases.
The termt? is strictly positive on the interval, and may be

ignored. The numerator is of the forfit\o)g(\o), where Ifthe circular arcs are at least®, then we cut &0°

segment from the center of each arc. We reflect each
Fo) = \/ﬂ _ 3\/ﬂ (49) segment across the switching-line, and adjoin the
0 0 segments to the original trajectory as shown by the

g(o) = 27X + 9\/12 a2 3\/36 ~ X2 (50) dashed curves in figure 8. After following the first
reflected arc, the vehicle is in the same location as

— 9)\g arccos Ao 3)\o arcsin ﬁ. if it had followed the original trajectory, but rotated

2V/3 120°. After following all three reflected arcs, the

14



(ii)

(iii)

vehicle is in the same configuration as if it had fol-
lowed the original trajectory. Since this equal-cost
trajectory is not extremal, neither it nor the original
is optimal.

If the rotation segments are less tti#Xi, a new non-
extremal trajectory of equal or less time may be co
structed by reversing the direction of each spin.

Shuffle trajectories: If there are nine switches,

.
>

Figure 8: The dashed curve sho@d° arcs reflected from the
center of theC segments. After three periods the alternate tra-
'Hactory leads to the same configuration as the original one.

BI A:'l\\‘D’ C:

then the trajectory must contain the sequence/\/\/D\/— A

CPCCCPC; specifically, it must contain two
spins of full duration, as shown in figure 9. Call the

C B

first and the last arc in this period A and D; cut theigure 9: Reordering the segments, as shown by the dashed
central arc into two symmetric equal-time segmengggments, gives an alternate non-optimal trajectory oénee
labeled B and C in the figure. Reordering these sefjiration as the originahuffletrajectory.

ments as C, D, A, B gives an equal-time trajectory.
The new trajectory is not extremal, so neither it nor
the original is optimal.

Tangent trajectories: The three parts of th&
curves appear cyclically in tangenttrajectory in

the same order, i.e, start, mid, and end (interspersed
by theS and theP curves), with possibly different
ICs,e.q,

start mid end start
Cslarts, s Cmidg, joondp_cgtart

We divide thetangenttrajectories into two types:

(a) Trajectories that areon-monotonic in 6.
We will show that two particular classes of
13-segment non-monotoniangenttrajecto-
ries are not optimal, by constructing equal-
duration trajectories that are not extremal. We
then reduce all other non-monotonic cases to
these cases.

(b) Trajectories that armonotonicin 6. We will
show that for any monotonitangenttrajec-
tory containing 19 control switches, an equal-
duration trajectory containing a 13-segment
non-monotoni¢angenttrajectory can be con-

structed.

If a tangenttrajectory contains 13 control switches,
then it must contain the sequenc® CSCSCPC;

15

specifically, it must contain two sping of maxi-
mum duration. Two special cases are shown in fig-
ure 10. We slice the centr&l segment and re-
order the segments as shown, yielding an equal-time
PCSCPCSCP trajectory. Since the constructed
trajectory is not extremal, the original trajectory is
not optimal.

For the other non-monotonic trajectories the two
spins (and the adjoining**** andC**d segments)
must occur on opposite sides of the switching
line. Reflecting theC™id segment and the three
segmentg(stat, Cend, and P) that occur on the
same side of the switching-line as G&i4 segment,

as shown in figure 11, gives a trajectory of equal du-
ration as that of one of the two special cases shown
in 10.

Now consider monotoni@angenttrajectories. If the
trajectory has 19 switches, then it must contain the
sequencesCSCPCSCSCPCSCS; i.e, it must
contain three full-lengt™ central arcs, as shown
in figure 12. We can construct an equal-length tra-
jectory containing a non-monotontangenttrajec-
tory with structureCPCSCSCPC by reflecting
theC™id segments along the switching-line (see fig-
ure 12). This trajectory cannot be optimal, by the
argument made above.



Theorem 10 shows that the number of segments for an
optimal path between any start and goal are no more than
18. Additionally, for each segment obll, shuffle and
spintrajectories, we can compute the maximum distance
along one of the coordinate axisg, (y, or ) that the robot
can travel. In the next theorem we utilize this knowl-
edge, coupled with the fact that the number of segments is
bounded above, to calculate the maximum distance (along
one or more coordinate axis) for which these trajectories

Figure 10: Non-monotonic tangent trajectories that are not o§&n be optimal.

timal. The solid curves represent the actual tangent t@jies.

The dashed curves represent alternative trajectoriesuafiég- Theorem 11 There exist bounds on the displacements

ration that are not extremal. along ther and6 axis beyond which spin, roll, and shuffle
trajectories are not optimal. In particular,

() Roll trajectories with z-displacement more than

402 i
5 are not optimal.

(i) Shuffle trajectories withe-displacement more than
L\/g andd displacement more thaé0° are not op-
timal.

(iii) Tangent trajectories are not optimal for configura-
tions that are separated by more tha20°, with dis-
tance between the configurations less than

Figure 11: Reducing non-monotonic tangent trajectories to the )
trajectories shown in figure 10. The solid curves repredeat t Proof: We prove the bounds for each class of trajec-
original trajectories. The dashed curves are obtainedfiscte tory separately.

ing the solid curves across the switching line. The newdtajy ) ) )
obtained is identical to that from figure 10. (i) Roll trajectories: Theorem 10 states thaill tra-

jectories with more than fiv&€® segments are not
optimal. Furthermore, the displacement alongithe
axis for each complet€ segment is the same, and
they displacement for such a segment is zero. The

maximum displacement along one such segment is
8v2
R

(i) Shuffle trajectories: shuffletrajectories correspond
to small parallel-park motions parallel to theaxis.
Like the roll trajectories, the limiting case for the
maximum distance covered along one period for
shuffletrajectories occurs as they approach e
genttrajectories (see figure 6(b)). Thedisplace-
ment along this limiting curve i§€. Theorem 10
shows that more than two periods oflauffletrajec-
tory are not optimal.

Figure 12: Figure for the proof that monotonic trajectories with
more than 18 switches are not optimal. The dashed curves are
the reflectedC™¢ curves. An equal-time non-monotonic tra-
jectory is created by following the dashed curves insteatti®f
original C™i¢ curves.
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(i)

Theorem 12 Spin, Roll, Shuffle, and Tangent trajectorie
are each optimal for at least one pair of start and goafri/
configurations of the omni-directional vehicle.

of start and goal configurations for which no other traje¢
tory class is optimal.

(i)

(ii)

(i)

(iv)

Tangent trajectories: If the start and goal are sepa8 Open problems
rated by more thah20°, then anytangenttrajectory

connecting the two would need to contain at leagfe have presented a complete and minimal classification
one completé0° arc of a circle of radius four. Sinceqt gptimal trajectories, and explicit descriptions of each
all extremal trajectories are monotonicinno such yaiectory. However, we have not addressed the problem
tangentirajectory can connect start and goal configst qetermining which of these trajectories is optimal for
urations that are closer together than a particular pair of start and finish configurations. For

the problem of determining the shortest trajectories for a

steered car, Reeds and Shepp [9] suggest the simple ap-
proach of enumerating all possible structures that connect
o configurations, and comparing the time of each. A
milar approach should be possible for the omnidirec-
tional vehicle.

Proof: For each class, we explicitly construct a pair SOueres and Laumond [14] determined the complete
ynthesisof optimal trajectories for the steered car: an

explicit mapping from pairs of configurations to trajecto-

ries. Balkcom and Mason [1] determined the synthesis for

Spin. The maximum value fOFé’I along any trajec- differential-drive vehicles. Such a result for the omnidi-

tory is 1. Since spin trajectories achieve this valuegctional vehicle would remove the need for enumerating

a spin trajectory is optimal for any pair of start andnd comparing all trajectories between a pair of config-

goal configurations with the sameandy location. urations, and would give the metric on the configuration
space more explicitly.

Roll. Choose any pair gf configurations that are sep-The current work also does not consider the presence
arated by more that20°, are not at the same’, y) of obstacles. We expect that optimal trajectories among
location, and are closer together than obstacles would consist of segments of obstacle-free tra-

jectories, and ts that follow the bound f th
Shuffle. Consider any one-period shuffle startin porones, and segments that Toflow the boundary ot the

T . : . Bbstacles.
and ending in the middle of a spin, and configu- ,
rations corresponding to the start and finish of this There are also broader questions. The shortest or fastest

trajectory. The fastest roll between these Conﬁggjectories are now known f(_)rafevy examples of specific_
urations takes timer, since roll trajectories aresystems: steere_zd cars, the differential drive, and the omni
monotonic ind; as this is slower than the Shufﬂeglrectmnal vehicle considered here. The results share
no roll can be optimal. The same is true for mong°me features in common; each of the optimal trajecto-

tonic tangent trajectories. Non-monotonic tangeHFS can be described by motion of the robot relative to a

trajectories are a limiting case of tangent trajecté‘-"’itcmng line in the plane. The trajectories for steered

fies; the duration of a non-monotonic tangent b&2S include arcs of circles and straight lines; the trajec-
tween the two configurations can be lower-bounddgyies for differential drives include spins in place and

by £(2/3), which is greater thaf(\o) for any A < straight lines. The trajectories for the current system in-
V3. (See ,equation 45.) clude straight lines, arcs of circles, and spins in place,

and the system could in that sense be considered a hybrid

Tangent_ Choose start and goa| Conﬁgurations thg]f a steered car and a differential drive. What general'
are farther apart than the maximum distance ofizations are possible, and can the optimal trajectories be
roll, and that have different start and goal angles. Bietermined for a generic mechanism whose design is de-

theorem 11, only tangent trajectories can be optim&gribed in terms of a set of variable parameters? Which
mechanism should be chosen to be most efficient for a

m given distribution of start and goal configurations?
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