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Abstract

A common mobile robot design consists of three ‘omni-
wheels’ arranged at the vertices of an equilateral triangle,
with wheel axles aligned with the rays from the center
of the triangle to each wheel. Omniwheels, like standard
wheels, are driven by the motors in a direction perpendic-
ular to the wheel axle, but unlike standard wheels, can slip
in a direction parallel to the axle. Unlike a steered car, a
vehicle with this design can move in any direction without
needing to rotate first, and can spin as it does so.

The shortestpaths for this vehicle are straight lines.
However, the vehicle can move more quickly in some di-
rections than in others. What are the fastest trajectories?
We consider a kinematic model of the vehicle and place
independent bounds on the speeds of the wheels, but do
not consider dynamics or bound accelerations. We derive
the analyticalfastesttrajectories between configurations.
The time-optimal trajectories contain only spins in place,
circular arcs, and straight lines parallel to the wheel axles.
We classify optimal trajectories by the order and type of
the segments; there are four such classes, and there are no
more than 18 control switches in any optimal trajectory.

1 Introduction

This paper presents the time-optimal trajectories for a
simple model of the common mobile-robot design shown
in figure 1(b). The three wheels are “omni-wheels”; the
wheels not only rotate forwards and backwards when
driven by the motors, but can also slip sideways freely.
Such a robot can drive in any direction instantaneously.

(a) Photograph.
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(b) Notation.

Figure 1: The Palm-Pilot Robot Kit, an example of an omni-
directional vehicle. Photograph used by permission of Acron-
ame, Inc.,www.acroname.com.

The only other ground vehicles for which the fastest
trajectories are known explicitly are the steered cars stud-
ied by Dubins [6] and by Reeds and Shepp [9] and
differential-drives [1]. Although our results are specific
to the particular vehicle studied, we hope that expanding
the set of vehicles for which the optimal trajectories are
known will eventually lead to a more unified understand-
ing of the relationship between robot mechanism design
and the use of resources.

We take a simple kinematic model of the robot – the
configuration is(x, y, θ) ∈ SE

2, and the controlsv1, v2,
andv3 are the velocities of the wheels perpendicular to the
axles, as shown in figure 1(b). We assume independent
bounds on the speeds of the wheels;v{1,2,3} ∈ [−1, 1].

We show that the time-optimal trajectories between any
pair of configurations consist of spins in place, circular
arcs, and straight lines parallel to the wheel axles. We la-
bel each segment type by a letter:P, C , S, respectively.
There are specific sequences of segments that may be op-
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timal; we call the four classes of trajectoriesspin, roll ,
shuffle, andtangent.

1. Spin trajectories consist of a spin in place through
an angle no greater thanπ, and are described by the
single-letter control sequenceP. Figure 3(a) shows
an example.

2. Roll trajectories consist of a sequence of circular arcs
of equal radius separated by spins in place. Fig-
ure 4(a) shows an example. The trajectories are pe-
riodic; a single period is of the formCPCPC . The
centers of the arcs all fall on the same line. With the
possible exception of the first and last segments, the
arcs all encompass the same angle, as do the spins,
and the sum of the angular displacement of a com-
plete arc and a complete spin is120◦. There are no
more than four circular arcs in any optimal trajectory.

3. Shuffletrajectories are composed of repetitions of se-
quences of three circular arcs followed by a spin,
CCCP, and contain no more than seven control
switches. Figure 4(b) shows an example. A complete
period of ashufflemoves the vehicle ‘sideways’ in a
direction parallel to a line connecting two wheels.

4. Tangenttrajectories consist of a sequence of arcs
of circles and spins in place separated by arbitrar-
ily long translations in a direction parallel to the
line containing the center of the robot and one of its
wheels; see figure 4(c). All straight segments are co-
linear. The control sequence isCSCSCP . . ., and
trajectories contain no more than 18 switches. Intu-
itively, the robot ‘lines up’ in its fastest direction of
translation, translates, and then follows arcs of cir-
cles to arrive at its final position and orientation.

Why study optimal trajectories? Knowledge of the
shortest or fastest paths between any two configurations
of a particular robot is fundamental. Robots expend re-
sources to achieve tasks. Possibly the simplest resource is
time; the minimum amount of time that must be expended
to move the robot between configurations is a basic prop-
erty of the mechanism, and a fundamental metric on the
configuration space.

Knowledge of the time optimal trajectories is also use-
ful. Mechanisms should be designed so that common
tasks can be achieved efficiently. If the designer must

choose between two wheels and three, what is the cost
of each choice? Furthermore, the time-optimal metric is
independent of compromises made by particular planners
or controllers, and therefore provides a useful benchmark
to compare them. Finally, the metric derived from the op-
timal trajectories may be used as a heuristic to guide sam-
pling in complete planning systems that permit obstacles
or a more complex dynamic model of the mechanism.

We do not argue that controllers should be designed
to drive robots to follow the ‘optimal’ trajectories we de-
rive, or that planners must use the optimal trajectories as
building blocks. Our model ignores the dynamics of real
vehicles; this is particularly problematic for larger vehi-
cles. Resources other than time may also be important,
including energy consumption, safety, simplicity of pro-
gramming, sensing opportunities, and accuracy. Trade-
offs must be made, but understanding the relative payoffs
of each design requires an understanding of the funda-
mental behavior of the mechanism. The knowledge that
great circles are geodesics on the sphere does not require
that airplanes must strictly follow great circles, but may
nonetheless influence the choice of flight paths.

1.1 Related work

Most of the work on time-optimal control for vehicles
has focused on bounded-velocity models of steered cars.
Dubins [6] determined the shortest paths between two
configurations of a car that can only move forwards at
constant speed, with bounded steering angle. Reeds and
Shepp [9] found the shortest paths for a steered car that
can move backwards as well as forwards. Sussmann and
Tang [16] further refined these results, reducing the num-
ber of families of trajectories thought to be optimal by
two, and Souères and Boissonnat [13], and Souères and
Laumond [14] discovered the mapping from pairs of con-
figurations to optimal trajectories for the Reeds and Shepp
car.

Desaulniers [5] showed that in the presence of obsta-
cles, shortest paths may not exist between certain config-
urations of steered cars. Furthermore, in addition to the
straight lines and circular arcs of minimum radius discov-
ered by Dubins, the shortest paths may also contain seg-
ments that follow the boundaries of obstacles. Vendittelli
et al. [17] used geometric techniques to develop an algo-
rithm to obtain the shortest non-holonomic distance from
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a robot to any point on an obstacle.
Recently, the optimal trajectories have been found for

vehicles that are not steered cars, and metrics other than
time. The time-optimal controls for differential-drives
with independent bounds on the wheel speeds were dis-
covered by Balkcom and Mason [1]. Chitsazet al. [2] de-
termined the trajectories for a differential-drive that min-
imize the sum of the rotation of the two wheels. The op-
timal paths have also been explored for some examples
of vehicles without wheels. Coombs and Lewis [4] con-
sider a simplified model of a hovercraft, and Chyba and
Haberkorn [3] consider underwater vehicles. We know of
no previous attempts to obtain closed-form solution for
the optimal trajectories for any omni-directional vehicle.

The model of the three-wheeled omni-directional ve-
hicle that we study is similar to that used by Williams
et al. [12], who are concerned with obtaining a feasible
model of friction and wheel-slip, rather than optimal con-
trol.

Bounded-velocity models capture the kinematics of a
vehicle, but not the dynamics. Our approach specifically
allows unbounded accelerations. The durations of optimal
trajectories we compute are a lower bound for the dura-
tions of optimal trajectories for a more complex dynamic
model. Since the unbounded accelerations for our model
only occur a small bounded number of times during an
optimal trajectory, the trajectories can be time-scaled to
yield trajectories that are feasible for systems with signif-
icant dynamics, giving both an upper and a lower bound
on the duration of the optimal dynamic trajectories. For
small robots following sufficiently long trajectories (sev-
eral robot-lengths in distance), we expect the approxima-
tion to be reasonable.

Although the bounded-velocity model is not com-
pletely satisfying, the optimal-control problem for dy-
namic models of ground vehicles appears to be very dif-
ficult; the differential equations describing the trajecto-
ries do not have recognizable analytical solutions, and in
some cases, the optimal trajectories involve chattering, an
infinite number of control switches in a finite time [15].
Papers by Reister and Pin [10], and Renaud and Four-
quet [11] present numerical and partial geometric results
for steered cars, and Kalmár-Nagyet al. [7] present al-
gorithms for numerically computing optimal trajectories
for a bounded-acceleration model of the omnidirectional
robot we consider. However, tight bounds on the optimal-

ity of the derived solutions have proven difficult to deter-
mine, as has complete characterization of the geometric
structure of trajectories.

2 Model, assumptions, notation

Let the state of the robot beq = (x, y, θ), the location of
the center of the robot, and the angle that the line from
the center to the first wheel makes with the horizontal,
as shown in figure 1(b). Without loss of generality, we
assume that the distance from the center of the robot to
the wheels is one. We further assume that each of the
three wheel-speed controlsv1, v2, andv3 is in the interval
[−1, 1]. We define the control region

U = [−1, 1]× [−1, 1]× [−1, 1], (1)

and consider the class ofadmissible controlsto be the
measurable functionsu(t) mapping the time interval
[0, T ] to U : u(t) = (v1(t), v2(t), v3(t))

T .
To simplify notation, we defineci = cos θi, and

si = sin θi, whereθi = θ + (i − 1)120◦, the angle
of the ith wheel measured from the horizontal. Define
the matrixS to be the Jacobian that transforms between
configuration-space velocities of the vehicle, and veloci-
ties of the wheels in the controlled direction:

S =





−s1 c1 1
−s2 c2 1
−s3 c3 1



 (2)

S−1 =
2

3





−s1 −s2 −s3

c1 c2 c3

1/2 1/2 1/2



 . (3)

We define the state trajectoryq(t) = (x(t), y(t), θ(t))
for any initial stateq0 and admissible controlu(t) using
Lebesgue integration, with the standard measure:

q(t) = q0 +

∫

S−1u . (4)

For any admissible control, the time derivativeq̇ is de-
fined almost everywhere, and

q̇ = S−1u =
2

3





−s1 −s2 −s3

c1 c2 c3

1/2 1/2 1/2









v1

v2

v3



 . (5)
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It may be easily verified that the kinematic equations
and bounds on the controls satisfy the conditions of theo-
rem 6 of Sussmann and Tang [16]; an optimal trajectory
exists between every pair of start and goal configurations.

3 Pontryagin’s Maximum Principle

This section uses Pontryagin’s Maximum Principle [8] to
derive necessary conditions for time-optimal trajectories.
The Maximum Principle states that if the trajectoryq(t)
with corresponding controlu(t) is time-optimal then the
following conditions must hold:

1. There exists a non-trivial (not identically zero)ad-
joint function: an absolutely continuousR3-valued
function of time,λ(t),

λ(t) =





λ1(t)
λ2(t)
λ3(t)



 ,

defined by a differential equation, theadjoint equa-
tion, in the configuration and in time-derivatives of
the configuration:

λ̇ = − ∂

∂q
〈λ, q̇(q, u)〉 a.e., (6)

where angle brackets denote the dot product. We call
the inner product appearing in equation 6 theHamil-
tonian:

H(λ, q, u) = 〈λ, q̇(q, u)〉. (7)

2. The controlu(t) minimizes the Hamiltonian:

H(λ(t), q(t), u(t)) = min
z∈U

H(λ(t), q(t), z) a.e.

(8)
Equation 8 is called theminimization equation.

3. The Hamiltonian is constant and non-positive over
the trajectory. We defineλ0 as the negative of the
value of the Hamiltonian;λ0 is constant and non-
negative for any optimal trajectory.

3.1 Application of the Maximum Principle

We solve for the adjoint vector by direct integration of
equation 6:

λ1 = 3k1 (9)

λ2 = 3k2 (10)

λ3 = 3(k1y − k2x + k3), (11)

where 3k1, 3k2, and 3k3 are constants of integration.
(The constant factor of 3 will simplify the form of equa-
tions 14, 15, and 16 below.)

We now substitute the adjoint function into the mini-
mization equation to determine necessary conditions for
time-optimal trajectories. To simplify notation, we define
three functions,

ϕi(t) = 〈λ(t), fi(q(t))〉, (12)

wherefi is theith column ofS−1. Explicitly, if we define
the function

η(x, y) = k1y − k2x + k3, (13)

then the functions are:

ϕ1 = 2(−k1s1 + k2c1) + η(x, y) (14)

ϕ2 = 2(−k1s2 + k2c2) + η(x, y) (15)

ϕ3 = 2(−k1s2 + k2c2) + η(x, y). (16)

We may now write the equation for the Hamiltonian in
terms of these functions and the controlsv1, v2, andv3:

H = ϕ1v1 + ϕ2v2 + ϕ3v3. (17)

The minimization condition of the Maximum Principle
(condition 2, above) applied to equation 17 implies that if
the functionϕi is negative, thenvi should be chosen to
take its maximum possible value, 1, in order to minimize
H . If the functionϕi is positive, thenvi should be chosen
to be−1. Since the controls switch whenever one of the
functionsϕi changes sign, we refer to the functionsϕi as
switching functions.

Theorem 1 For any time-optimal trajectory of the omni-
directional vehicle, there exist constantsk1, k2, andk3,
with k2

1 + k2
2 + k2

3 6= 0, such that at almost every timet,
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the value of the controlvi is determined by the sign of the
switching functionϕi:

vi =

{

1 if ϕi < 0
−1 if ϕi > 0,

(18)

where the switching functionsϕ1, ϕ2, andϕ3 are given by
equations 13, 14, 15, and 16. Furthermore, the quantity
λ0 defined by

λ0 = −H(ϕ1, ϕ2, ϕ3) = |ϕ1| + |ϕ2| + |ϕ3| (19)

is constant along the trajectory.

Proof: Application of the Maximum Principle.
The Maximum Principle does not directly give infor-

mation about the optimal controls in the case that one or
more of the switching functionsϕi is zero. Theorems 7
and 8 in section 4 will specifically address this case. The
Maximum Principle also does not give information about
the constants of integration, as these depend on the ini-
tial and final configurations of the robot. In this paper, we
give the structure of trajectories as a function of these con-
stants, but do not describe how to determine the constants
except in a few cases.

3.2 Geometric interpretation of the switch-
ing functions

The switching functions have a geometric interpretation.
Consider the functionη(x, y):

η(x, y) = k1y − k2x + k3. (20)

η(x, y) gives the signed, scaled distance of the point(x, y)
from a line in the plane whose location is determined by
the constantsk1, k2, andk3. (If k2

1 + k2
2 = 0, we may

consider the line to be ‘at infinity’.) We will call this line
theswitching line. We also associate a direction with the
switching line such that any point(x, y) is to the left of
the switching line ifη(x, y) > 0, and to the right of the
switching line ifη(x, y) < 0.

Theorem 2 Define the pointsS1, S2, andS3 rigidly at-
tached to the vehicle, with distance 2 from the center of
the vehicle, and making angles of180◦, 300◦, and 60◦

2
si
n

θ

ϕ1
ϕ3

ϕ2

2

S1

S2

S3

L

IC 1

Figure 2: Geometric interpretation of the switching functions.
For the case shown,ϕ1 < 0, ϕ2 > 0, andϕ3 > 0, so the
controls arev1 = 1, v2 = −1, andv3 = −1.

with the ray from the center of the vehicle to wheel 1, re-
spectively (refer to figure 2). For any time-optimal trajec-
tory, there exist constantsk1, k2, andk3, and a line (the
switching line)

L = {(a, b) ∈ R
2 : k1b − k2a + k3 = 0},

such that the controls of the vehiclev1, v2, andv3 depend
on the location of the pointsS1, S2, andS3 relative to the
line. Specifically, fori ∈ {1, 2, 3},

vi =

{

1 if Si is to the right of the switching line,
−1 if Si is to the left of the switching line.

Proof: Let (xSi
, ySi

) be the coordinates ofSi. We
compute the signed, scaled distance of the pointSi from
the lineL, and observe from the definition of the switch-
ing functions thatϕi(x, y, θ) = η(xSi

, ySi
).

We will call S1, S2, andS3 the switching points. For
any optimal trajectory, the location of the switching line
is fixed by the choice of constants, and the controls at any
point depend on the signs, but not on the magnitudes, of
the switching functions. Figure 2 shows an example. Two
of the switching points (S2 andS3) are to the left of the
switching line, so the corresponding switching functions
are positive, and wheels 2 and 3 spin at full speed in the
negative direction. The remaining switching point (S1)
is to the right of the switching line, so wheel 1 spins at
full speed in the positive direction. As a result of these
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controls, the robot will follow a clockwise circular arc.
The center of the arc is a distance of four from the robot,
and along the line containing the center of the robot and
wheel 1.

If all three switching functions have the same sign, the
controls all take either their maximum or minimum value,
and the robot spins in place. The center of rotation is the
center of the robot; we call this point IC 0. If the switching
functions are non-zero but do not all have the same sign,
the vehicle rotates in a circular arc. The rotation center
is a distance of four from the center of the robot, on the
ray connecting the center of the robot and the wheel corre-
sponding to the ‘minority’ switching function. We call the
rotation centers corresponding to each wheel IC 1, IC 2,
and IC 3.

The switching functions are invariant to translation of
the vehicle parallel to the switching line (see figure 2),
and scaling the switching functions by a positive constant
does not affect the controls. Therefore, for any optimal
trajectory, we may without loss of generality choose a co-
ordinate frame withx-axis on the switching line, and an
appropriate scaling, such thaty gives the distance from
the switching line, andθ gives the angle of the vehicle
relative to the switching line. With this choice of coordi-
nates, the switching functions become

ϕ1 = y − 2s1 (21)

ϕ2 = y − 2s2 (22)

ϕ3 = y − 2s3 . (23)

We will use these coordinates for the remainder of the
paper.

4 Properties of extremals

We will say that any trajectory that satisfies the conditions
of theorem 1 (or equivalently, theorem 2) isextremal. In
this section, we will enumerate several properties of ex-
tremal trajectories. The primary result is that every ex-
tremal trajectory contains only a finite number of control
switches with an upper bound determined byλ0. The
first-time reader may wish to skip the technical details in
this section, and return to it after sections 5 and 6, which
describe the geometric structure of optimal trajectories.

We say that an extremal trajectory isgenericon some
interval if none of the switching functionsϕi is zero at any

point contained in the interval. We say that a trajectory is
singularon some interval if exactly one of the switching
functions is identically zero on that interval, and no other
switching function is zero at any point on the interval. We
say that an extremal trajectory isdoubly-singularon an
interval if exactly two of the switching functions are zero
on that interval, and the third switching function is never
zero on the interval.

Theorem 3 The negative of the Hamiltonian achieves a
global minimum if and only if the trajectory is doubly-
singular at that point; at a doubly-singular point,λ0 = 3.

Proof: We can compute an expression for the Hamil-
tonian using relations between the switching functions.
Notice thats1 +s2+s3 = 0, from the trigonometric iden-
tities. Adding the three switching functions from equa-
tions 21 – 23,

ϕ1 + ϕ2 + ϕ3 = 3y . (24)

Also, for distincti, j, k ∈ {1, 2, 3},

ϕi + ϕj − ϕk = y − 2si − 2sj + 2sk (25)

= y − 2(si + sj + sk) + 4sk (26)

= y + 4sk . (27)

The equation for the negative of the Hamiltonian in terms
of y andθ is therefore

−H(y, θ) =

{

|3y| if ϕ1, ϕ2, ϕ3 have same sign
|y + 4sk| otherwise.

(28)
Level sets of this function are shown in figure 6. We

divide the domain into two pieces. First consider the
domain(y, θ) ∈ R/[−2, 2] × S1. The minimum value
for λ0 is 6 on this domain, since the switching functions
have the same sign. Now consider the domain(y, θ) ∈
[−2, 2] × S1. On this compact domain,H is continuous,
and achieves both a minimum and a maximum.

At any minimum point that is not along the boundary,
either (i) the partial derivatives ofH are both zero, or (ii),
the partial derivatives ofH are discontinuous. The par-
tial δH/δy is nonzero everywhere (= 3 or = 1 depending
on the signs of the switching functions). Therefore the
partials are discontinuous at the minimum.δH/δy is dis-
continuous iffϕi = 0 for somei ∈ {1, 2, 3}.
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Consider a root of theith switching function. Letϕj

and ϕk be the values of the other switching functions,
with k andj chosen such that wheelsi, j, andk are in
clockwise order. Evaluating equations 19, 21, 22, and 23
at this root,

λ0 = |ϕj | + |ϕk|, (29)

y = 2 sin θi. (30)

From equations 24 and 30,

ϕj + ϕk = 6 sin θi (31)

ϕk − ϕj = 2
√

3 cos θi. (32)

We may now writeλ0 in terms ofθ and the signs on the
switching functions:

λ0 =















6 sin θi if ϕj ≥ 0 andϕk ≥ 0.
−6 sin θi if ϕj ≤ 0 andϕk ≤ 0.
2
√

3 cos θi if ϕj ≤ 0 andϕk ≥ 0.
−2

√
3 cos θi if ϕj ≥ 0 andϕk ≤ 0.

(33)

The minimum value of this function isλ0 = 3, and the
minima occur atθi ∈ {30◦, 210◦}; at these points,ϕj =
0, so the trajectory is doubly-singular.

Corollary 1 At no point along an extremal trajectory
doesϕ1 = ϕ2 = ϕ3 = 0.

Proof: If ϕ1 = ϕ2 = ϕ3 = 0 thenλ0 = 0.

Corollary 2 If an extremal trajectory contains any
doubly-singular point, then every point of the trajectory
is doubly-singular.

Proof: The Maximum Principle implies that the
Hamiltonian must remain constant over any extremal tra-
jectory; the previous theorem tells us that any trajectory
that contains both points that are doubly-singular points
and points that are not cannot have a constant Hamilto-
nian.

Theorem 4 Every pair of singular points of an extremal
trajectory is contained in a single singular interval, or is
separated by a generic point.

Proof: Let t1 andt4 be two arbitrary times at which
the trajectory is singular, witht4 > t1. Let i and j
be the indices of the switching functions that are zero;
ϕi(t1) = ϕj(t4) = 0. If t1 and t4 are not contained
within the same singular interval, continuity of the switch-
ing functions implies that then there must be a time such
that either the switching function that was initially zero
becomes non-zero, or some switching function that was
initially non-zero becomes zero. That is, there exists a
time t3 ∈ [t1, t4] such that at least one of the following
properties hold:

1. ϕi(t3) 6= 0,

2. ϕk(t3) = 0 for somek 6= i (from continuity ofϕj).

If the first property holds, but not the second, thent3 is
a generic point. If the second property holds, but not the
first, t3 is a doubly-singular point, and the trajectory is not
extremal by corollaries 1 and 2. If both properties hold,
then by the intermediate value theorem, there must be a
point t2 ∈ [t1, t3] such that eitherϕi(t2) = ϕk(t2), or
ϕi(t2) = −ϕk(t2). This point must be generic, since it
cannot be doubly-singular.

Lemma 1 Assumet1 and t2 are two points of a generic
interval, witht2 > t1. Defineδ to be the duration of the
interval [t1, t2]. If θ(t1) 6= θ(t2), then

δ ≥ |θ(t2) − θ(t1)| (34)

If θ(t1) = θ(t2), then

δ ≥ 2π. (35)

Proof: On any generic interval, the controls are con-
stant anḋθ is a non-zero constant. Depending on the signs
of the switching functions,̇θ = ±1, or θ̇ = ±1/3. The
properties follow immediately from direct integration of
θ̇.

Theorem 5 Every generic point is contained in a generic
interval that either has the start or the end of the entire
trajectory as an endpoint, or has a duration that is lower-
bounded by a constant,δ, that depends only onλ0.

Proof: Continuity of the switching functions implies
that every generic point is contained in an open inter-
val containing only generic points. Consider the largest
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open interval that contains the generic point; the interval
is bounded either by singular points, or by the start and
end of the trajectory. We will show that singular points
are separated by a constantδ that depends only onλ0.

Given a value forλ0, there exist a finite number of real-
valued solutions forθ, which may all be found by solving
the above equations forθ.

Assume now that the generic interval is bounded by two
singular points,t1 andt2, with t2 > t1. We may compute
all possible values forθ(t1) andθ(t2) in terms ofλ0. Con-
sider all possible pairs ofθ(t1) andθ(t2), and the angular
distance betweenθ(t2) andθ(t1) for each pair. If all dis-
tances are zero, then letδ = 2π; otherwise, letδ be the
minimum non-zero distance. The duration of the interval
must be at leastδ, by lemma 1.

Theorem 6 The number of control switches in an ex-
tremal trajectory is finite, and upper-bounded by a con-
stant that depends only onλ0.

Proof: Let N be the number of switches. By corol-
lary 2, the trajectory is doubly-singular everywhere, or
nowhere. If the trajectory is doubly-singular, thenN = 0.
Otherwise, letT be the duration of the trajectory. Since
every maximal generic interval (except possibly the first
and the last) is contained in an interval of duration of at
leastδ (theorem 5), there can be no more thanT/δ + 2
maximal generic intervals, and

N ≤ T

δ
+ 2. (36)

In section 7, we will show that foroptimaltrajectories,
a much stronger property holds: the number of control
switches is never greater than 18.

Theorem 7 Consider a singular interval of non-zero du-
ration, with ϕi = 0. At every point of the interval,
y = sin θi = 0, and the controls are constant:vi = 0,
andvj = −vk = ±1.

Proof: Choose an arbitrary point on the interior of
the interval. First, assume thatϕj andϕk have the same
sign. Thenvj = vk = ±1, by theorem 1. From the
system equations (5),

θ̇ =
1

3
(vi ± 2) 6= 0. (37)

From equation 33, the time derivative ofλ0 is

λ̇0 = ±6θ̇ cos θi = 0. (38)

The fact thatθ̇ 6= 0 implies thatcos θi = 0 can hold only
instantaneously, and therefore the interval must be of zero
duration.

Symbol ϕ u λ0

P− +++ -1, -1, -1 3y
P+ --- 1, 1, 1 −3y
C1− -++ 1, -1, -1 y + 4 sin θ1

C2− +-+ -1, 1, -1 y + 4 sin θ2

C3− ++- -1, -1, 1 y + 4 sin θ3

C1+ +-- -1, 1, 1 −y − 4 sin θ1

C2+ -+- 1, -1, 1 −y − 4 sin θ2

C3+ --+ 1, 1, -1 −y − 4 sin θ3

S1,3 -0+ 1, 0, -1 2
√

3

S1,2 -+0 1, -1, 0 2
√

3

S3,2 0+- 0, -1, 1 2
√

3

S3,1 +0- -1, 0, 1 2
√

3

S2,1 +-0 -1, 1, 0 2
√

3

S2,3 0-+ 0, 1, -1 2
√

3
D3+ 00+ .5, .5, -1 3
D1− -00 1, -.5, -.5 3
D2+ 0+0 .5, -1, .5 3
D3− 00- -.5, -.5, 1 3
D1+ +00 -1, .5, .5 3
D2− 0-0 -.5, 1, -.5 3

Table 1: The twenty extremal controls.

Now assume thatϕj andϕk have opposite signs.vj =
−vk = ±1, by theorem 1. We will first show that

y = sin θi = 0. (39)

Assume the converse. If eithery 6= 0 or sin θi 6= 0, then
neithery = 0 nor sin θi = 0, sincey = 2 sin θi. From
equation 33, we can write the time derivative ofλ0:

λ̇0 = ±2
√

3θ̇ sin θi (40)

Sinceλ0 must be constant over an extremal trajectory, it
follows thatθ̇ = 0. From equations 21, 22, and 23,

ẏ = 2θ̇ cos θi = 0. (41)
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From the system equations (5),

θ̇ =
1

3
(vi + vj + vk) = 0 (42)

ẏ =
2

3
(civi + cjvj + ckvk) = 0. (43)

Combining these equations, and using the fact thatvj =
−vk, we can show thatcj = ck, which implies that
sin θi = 0, a contradiction. Therefore,y = si = 0 over
the entire interval. From the system equations, it follows
thatvi = 0.

Theorem 8 Consider a doubly-singular interval of non-
zero duration, withϕi = ϕj = 0. Along the interval, (i)
y = ±1, cos θk = 0, and (ii) the controls are constant,
with vk = ±1, andvi = vj = ∓.5.

Proof: Property (i) follows from equations 21, 22,
and 23. Property (ii) can then be shown by taking a time
derivative of the equations given in property (i) and ap-
plying the system equations (5).

5 Extremal controls

Theorems 1, 6, 7, and 8 imply that optimal trajectories are
composed of a finite number of segments, along each of
which the controls are constant. Considering all possible
combinations of signs and zeros of the switching func-
tions allows the twenty extremal controls to be enumer-
ated; table 1 shows the results. The vehicle may spin in
place, follow a circular arc, translate in a direction per-
pendicular to the line joining two wheels, or translate in a
direction parallel to the line joining two wheels. We de-
note each control by a symbol:P±, Ci± , Si,j , or Dk± ,
respectively. The subscripts depend on the specific signs
of the switching functions.

Theorem 2 gives a more geometric interpretation of the
extremal controls. The controls depend on the location of
the switching points relative to the switching line. There
are four cases:

• Spin in place. If the vehicle is far from the switching
line, all of the switching points are on the same side
of the line, and all of the wheels spin in the same di-
rection. Figure 3(a) shows an example. If the robot is

S1

S2

S3

(a) An example clockwisespincontrol,P−.

S1

S2

S3

L

IC 2

(b) An example clockwisecircular arc control,C
2−

.

L

S1

S2

S3

(c) An examplesingular translationcontrol,S1,3.

S1 S2

S3

L

(d) An exampledoubly-singular translationcontrol,
D

3+ .

Figure 3: Extremal controls for an omni-directional robot.
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to the left of the switching line, the robot spins clock-
wise (P−); if the robot is to the right of the switching
line, the robot spins counterclockwise (P+).

• Circular arc. Figure 3(b) shows an example of a
counterclockwise arc around IC 2 (C2+ ). If two
switching points are on one side of the line, and one
switching point is on the other side, two wheels spin
in one direction at full speed, and one wheel spins in
the opposite direction at full speed. These controls
cause the vehicle to follow a circular arc of radius
four; the center of the arc is the IC corresponding to
the switching point that is not on the same side of
the switching line as the others, and the direction of
rotation depends on whether this switching point is
to the left or right of the line.

• Singular translation. Figure 3(c) shows an exam-
ple, S1,3, where the second switching point slides
along the switching line. If two switching points are
an equal distance from the switching line but on op-
posite sides of the line, two of the wheels spin at full
speed, but in opposite direction. If the last switch-
ing point falls exactly on the switching line, theo-
rem 2 does not provide any information about the
speed of the last wheel. If the wheel does not spin,
then the vehicle translates along the switching line,
as described by theorem 7. Otherwise, the singular
translation is only instantaneous.

• Doubly-singular translation. Figure 3(b) shows an
example,D3+ , where the first and second switching
points slide along the switching line. If two switch-
ing points fall on the switching line, the speeds of
the corresponding wheels cannot be determined from
theorem 2. If these wheels spin at half speed, in
a direction opposite to that of the third wheel, both
switching points slide along the switching line, and
the vehicle translates. It turns out that that doubly-
singular controls, although extremal, areneveropti-
mal; see section 7.

L

IC 2IC 3

S1

S2

S3

(a) A RollCW trajectory,C
2−

P−C
3−

P−C
1−

.

(b) A Shuffle trajectory,C
3+C

1−
P−C

2−
C

3+C
1−

P− . . .

L

C
start

2−
C

mid

2−
C

end

2−

(c) A Tangent trajectory,Cstart

2−
S2,3Cmid

2−
S2,1Cend

2−
P−Cstart

3−
.

Figure 4: Extremal trajectories for an omni-directional robot.
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6 Classification of extremal trajec-
tories

Every extremal trajectory is generated by a sequence of
constant controls from table 1. However, not every se-
quence is extremal. This section geometrically enumer-
ates the five structures of extremal trajectories.

First consider an example, shown in figure 4(a). Ini-
tially, switching points 1 and 3 fall to the left of the
switching line, and switching point 2 falls to the right
of the switching line. The vehicle rotates in the clock-
wise direction about IC 2. After some amount of rotation,
switching point 2 crosses the switching line. Now all three
switching points are to the left of the switching line, the
velocity of wheel 2 changes sign, and the vehicle spins in
place. When switching point 3 crosses the switching line,
the vehicle begins to rotate about IC 3. When switching
point 3 crosses back to the left side, the vehicle spins in
place again until switching point 1 crosses the line. The
pattern continues in this form; we describe the trajectory
by the sequence of symbolsC2−P−C3−P−C1− .

In general, if no switching points fall on the switching
line (the generic case), then the controls are completely
determined by theorem 2, and the vehicle either spins in
place or rotates around a fixed point. When one of the
switching points crosses the switching line, the controls
change. For some configurations for which one or two of
the switching points fall exactly on the switching line (the
singular and doubly-singular cases), there exist controls
that allow the switching points to slide along the switch-
ing line.

We will define these classes more rigorously in sec-
tions 6.1 and 6.2. However, we can see geometrically that
there are five cases:

• SpinCW andSpinCCW. If the vehicle is far from
the switching line, the switching points are on the
same side of the switching line and never cross it;
the vehicle spins in place indefinitely. The structure
off the trajectory is eitherP− (if the vehicle is to the
left of the switching line) orP+ (if the vehicle is to
the right of the switching line). An example is shown
in figure 3(a).

• RollCW andRollCCW . If the switching points ei-
ther straddle the switching line, or the vehicle is

close enough to the switching line that spinning in
place will eventually cause the switching points to
straddle the line, the trajectory is a sequence of cir-
cular arcs and spins in place. If the vehicle is far
enough from the switching line that every switching
point crosses the switching line and returns to the
same side before the next switching point crosses the
line, the structure of the trajectory is as described in
the example above and in figure 4(a).

• Shuffle. If the vehicle is close enough to the switch-
ing line that two switching points cross the switching
line before the first returns to its initial side, the sign
of θ̇ changes during the trajectory. An example is
shown in figure 4(b).

• Tangent. As the vehicle spins in place or follows
a circular arc, the switching points follow circular
arcs. If one of these arcs is tangent to the switching
line, a singular control becomes possible at the point
of tangency, and the vehicle may translate along the
switching line for an arbitrary duration before re-
turning to following a circular arc. An example is
shown in figure 4(c). A single circular arc is divided
into three sections in atangent trajectory. These
segments are separated by the singularS straights,
possibly of zero duration. We call the arc sections
Cstart, Cmid, andCend, as shown in figure 4(c). The
robot rotates through60◦ during a completeCmid

segment.

• Slide. If two switching points fall on the switching
line, the trajectory is doubly singular. The vehicle
slides along the switching line in a pure translation;
an example of this trajectory type is shown by fig-
ure 3(d). Althoughslidetrajectories are extremal, we
will show in section 7 that they are never optimal.

6.1 Configuration space

In order to show that the above list of trajectory classes
is exhaustive, it is useful to consider the structure of tra-
jectories in configuration space. The configuration of the
robot relative to the switching line may be represented by
(θ, y). Figure 6(a) shows the configuration space.

Each point on figure 6(a) corresponds to a configu-
ration of the robot relative to the switching line. The

11



Class Control sequence Value ofλ0

SpinCW P− λ0 ≥ 6
SpinCCW P+

RollCW C3−P−C2−P−C1−P− . . . 2
√

3 ≤ λ0 < 6
RollCCW C1+P+C2+P+C3+P+ . . .
Tangent CSCSCP . . . λ0 = 2

√
3

Shuffle1− C2+C1−C3+P+ . . . 3 < λ0 < 2
√

3
Shuffle2− C3+C2−C1+P+ . . .
Shuffle3− C1+C3−C2+P+ . . .
Shuffle1+ C3−C1+C2−P− . . .
Shuffle2+ C1−C2+C3−P− . . .
Shuffle3+ C2−C3+C1−P− . . .

Table 2: Four of the five classes of extremal trajectories. Every optimal trajectory is composed of a sequence of controls that is
a subsequence of one of the above types. (Doubly-singularslide trajectories are extremal, but never optimal; see section 7.) The
structure oftangenttrajectories is complicated, and shown explicitly in figure5.

C3+ S2,3 C3+ S1,3 C3+ P+ C2+ S1,2 C2+ S3,2 C2+ P+ C1+ S3,1 C1+ S2,1 C1+ P+

C1− S1,2 C1− S1,3 C1− P
−

C2− S2,3 C2− S2,1 C2− P
−

C3− S3,1 C3− S3,2 C3− P
−

Figure 5: The structure oftangenttrajectories. The controls must occur in left-to-right order in the direction shown by either the
top or the bottom arrows. However, after a singular controlS, the trajectory may switch from one sequence to the other, asshown
by the vertical and diagonal lines segments.

sinusoidal curves defined byϕ1 = 0, ϕ2 = 0, and
ϕ3 = 0 mark boundaries in configuration space; we call
these curves theswitching curves. The switching curves
and their intersections divide the configuration space into
cells, within each of which the controls are constant.

As an example, consider any point below switching
curve 1, but above switching curves 2 and 3. The controls
are(−1, 1, 1), described by the symbolC1− ; the vehicle
follows a circular arc around IC 1 in the clockwise direc-
tion. This trajectory is a sinusoidal curve in configuration
space.

6.2 Level sets of the Hamiltonian

The trajectory curves in configuration space can be drawn
by considering each possible initial configuration, deter-
mining the constant control, and integrating to find the tra-

jectory. When the trajectory crosses a switching curve, the
control switches. However, the condition that the Hamil-
tonian remain constant over a trajectory provides an even
simpler way to enumerate all trajectories in the configura-
tion space.

Over any particular trajectory,H = −λ0, for some
constantλ0 ∈ R+. Different values ofλ0 correspond
to different types of trajectories. For example, assume
λ0 = 9. All three switching functions must be positive,
and equation 28 reduces toy = ±3. Thus,λ0 = 9 corre-
sponds to trajectories for whichy is constant, and onlyθ
changes;i.e., a ‘spin’ trajectory. For anyλ0 ≥ 6, a similar
reasoning hold; the trajectory is a spin.

Figure 6(b) shows the level sets of the Hamiltonian, or
equivalently, extremal trajectories in configuration space.
The cases are:

12



P
−

P+

C1−C2−C3−

C1+ C2+C3+

S1,3 S1,2

S3,2

S3,1 S2,1 S2,3

D3+

D1−

D2+

D3−

D1+

D2−

y

θϕ1 = 0

ϕ2 = 0

ϕ3 = 0

(a) The sinusoidal switching curves partition the configuration
space into eightC andP control regions.

SpinCW

SpinCCW

RollCW

RollCCW

Shuffle1−Shuffle2−Shuffle3−

Shuffle1+
Shuffle2+Shuffle3+

(b) The configuration space of the robot relative to the switching
line, with level sets of the Hamiltonian. (Axes, not drawn, are the
same as for figure 6(a).) Since the Hamiltonian is constant over
any optimal trajectory, optimal trajectories lie along contours of the
Hamiltonian. The dashed lines represent control switches as shown
in figure 6(a); the bold lines separate the trajectory classes.

Figure 6: The configuration space of the robot relative to the switching line.

• If λ0 > 6, the level set is a pair of horizontal lines,
one withy = λ0/3, corresponding to aspinCWtra-
jectory, and one withy = −λ0/3, corresponding to
a spinCCWtrajectory.

• If 2
√

3 ≤ λ0 ≤ 6, the level set is composed of two
disjoint curves, one corresponding to arollCW tra-
jectory and one corresponding to arollCCW trajec-
tory.

• If λ0 = 2
√

3, the level set is the union of the bold
curves shown in figure 6(b).Tangenttrajectories fol-
low these curves.

• If 3 < λ0 < 2
√

3, the level set is composed of six
disjoint curves, one corresponding to each of the six
symmetricshuffletrajectories.

• If λ0 = 3, the level set is six isolated points, each
corresponding to one of the sixslidetrajectories.

Figure 7: Any sufficiently-shortslide trajectory (solid line) can
be replaced by a fastershuffletrajectory (dashed line).

7 Optimal trajectories

We have presented the five classes of extremal trajec-
tory; every optimal trajectory must be extremal. How-
ever, not all extremal trajectories are optimal. In this sec-
tion, we will derive further conditions that optimal tra-
jectories must satisfy. Specifically, we will show that
doubly-singularslide trajectories are never optimal, and
that the number of control switches in any optimal trajec-
tory never exceeds 18. Finally, we show that the classi-
fication{spin, roll , shuffle, tangent} is minimal; for each
trajectory class, there exists at least one pair of configura-
tions for which a trajectory of that class is optimal.

Theorem 9 Doubly-singular slide trajectories are not
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optimal for any pair of start and goal configurations.

Proof: It can be shown (by continuity of equation 44,
below) that there is aPCCCP one-periodshufflethat
connects any two configurations on a slide that are sep-
arated by less than8

√
6/3; see figure 7. Lett be the dura-

tion of theshuffle, and letx be the signed distance traveled
along the switching line. During any generic interval, the
robot moves in a circle or spins in place. We can therefore
therefore explicitly write thex andy distances travelled
during a single period of a shuffle as a function of the an-
gular distanceθ through which the robot turns. If we use
equation 33 to eliminateθ in favor ofλ0, we get an equa-
tion for the net translation of a single period of a shuffle in
terms ofλ0, the characteristic constant for the trajectory:

x(λ0) =
−4

3

√

36 − λ2
0 + 4

√

12 − λ2
0 (44)

t(λ0) =
8π

3
− 12 arccos

λ0

2
√

3
− 4 arcsin

λ0

6
. (45)

The forward velocity of a doubly-singular trajectory is
−1. We will show that the average forward velocity of
the shuffleover the length of one period is less than−1
for λ0 in the interval(3, 2

√
3); i.e., the shuffle is faster.

Define

vavg(λ0) =
x(λ0)

t(λ0)
. (46)

As λ0 → 3,
lim

λ0→3
vavg = −1. (47)

We will now show thatvavg is monotonically decreas-
ing asλ0 increases from3 to 2

√
3, by showing that the

derivative w.r.t.λ0 is negative. We will denote differenti-
ation with respect toλ0 using the prime (′) symbol.

v′avg =
tx′ − xt′

t2
(48)

The termt2 is strictly positive on the interval, and may be
ignored. The numerator is of the formf(λ0)g(λ0), where

f(λ0) =
√

12 − λ2
0 − 3

√

36 − λ2
0 (49)

g(λ0) = 2πλ0 + 9
√

12 − λ2
0 − 3

√

36 − λ2
0 (50)

− 9λ0 arccos
λ0

2
√

3
− 3λ0 arcsin

λ0

6
.

f(λ0) is negative on the interval, so it remains only to
show thatg(λ0) > 0 on the interval. Notice thatg(3) = 0,
so it is sufficient to show thatg′(λ0) > 0 on the interval.
We computeg′(3) = 0, and the second derivative ofg:

g′′(λ0) =
9

√

12 − λ2
0

− 3
√

36 − λ2
0

, (51)

which is strictly positive on the interval.

Theorem 10 Optimal trajectories contain no more than
18 control switches. Specifically,

(i) optimal spin trajectories contain zero control
switches, and the maximum duration of an optimal
spin trajectory isπ;

(ii) optimal roll trajectories contain at most 8 control
switches;

(iii) optimal shuffle trajectories contain at most 7 control
switches;

(iv) optimal tangent trajectories contain at most 12 con-
trol switches if the trajectory is non-monotonic inθ,
and at most 18 control switches if the trajectory is
monotonic inθ;

The proof forspin trajectories is obvious. We consider
each of the other trajectory classes separately:

(i) Roll trajectories: Consider aroll trajectory with 9
or more segments. The trajectory contains a full pe-
riod beginning with an untruncated spin and ending
with an untruncated spin,PCPCPCP. (The addi-
tional two segments are required so that even if the
trajectory begins or ends on with a truncated spin, a
full period is still contained as a subsection.)

There are two cases.

If the circular arcs are at least60◦, then we cut a60◦

segment from the center of each arc. We reflect each
segment across the switching-line, and adjoin the
segments to the original trajectory as shown by the
dashed curves in figure 8. After following the first
reflected arc, the vehicle is in the same location as
if it had followed the original trajectory, but rotated
120◦. After following all three reflected arcs, the
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vehicle is in the same configuration as if it had fol-
lowed the original trajectory. Since this equal-cost
trajectory is not extremal, neither it nor the original
is optimal.

If the rotation segments are less than60◦, a new non-
extremal trajectory of equal or less time may be con-
structed by reversing the direction of each spin.

(ii) Shuffle trajectories: If there are nine switches,
then the trajectory must contain the sequence
CPCCCPC ; specifically, it must contain two
spins of full duration, as shown in figure 9. Call the
first and the last arc in this period A and D; cut the
central arc into two symmetric equal-time segments,
labeled B and C in the figure. Reordering these seg-
ments as C, D, A, B gives an equal-time trajectory.
The new trajectory is not extremal, so neither it nor
the original is optimal.

(iii) Tangent trajectories: The three parts of theC
curves appear cyclically in atangenttrajectory in
the same order, i.e, start, mid, and end (interspersed
by theS and theP curves), with possibly different
ICs,e.g.,

Cstart
3+ S2,3C

mid
3+ S1,3C

end
1− P−Cstart

2− .

We divide thetangenttrajectories into two types:

(a) Trajectories that arenon-monotonic in θ.
We will show that two particular classes of
13-segment non-monotonictangent trajecto-
ries are not optimal, by constructing equal-
duration trajectories that are not extremal. We
then reduce all other non-monotonic cases to
these cases.

(b) Trajectories that aremonotonic in θ. We will
show that for any monotonictangenttrajec-
tory containing 19 control switches, an equal-
duration trajectory containing a 13-segment
non-monotonictangenttrajectory can be con-
structed.

If a tangenttrajectory contains 13 control switches,
then it must contain the sequenceCPCSCSCPC ;

Figure 8: The dashed curve show60◦ arcs reflected from the
center of theC segments. After three periods the alternate tra-
jectory leads to the same configuration as the original one.

A
BC

D

C’D’B’ A’

Figure 9: Reordering the segments, as shown by the dashed
segments, gives an alternate non-optimal trajectory of thesame
duration as the originalshuffletrajectory.

specifically, it must contain two spinsP of maxi-
mum duration. Two special cases are shown in fig-
ure 10. We slice the centralC segment and re-
order the segments as shown, yielding an equal-time
PCSCPCSCP trajectory. Since the constructed
trajectory is not extremal, the original trajectory is
not optimal.

For the other non-monotonic trajectories the two
spins (and the adjoiningCstart andCend segments)
must occur on opposite sides of the switching
line. Reflecting theCmid segment and the three
segments(Cstart, Cend, and P) that occur on the
same side of the switching-line as theCmid segment,
as shown in figure 11, gives a trajectory of equal du-
ration as that of one of the two special cases shown
in 10.

Now consider monotonictangenttrajectories. If the
trajectory has 19 switches, then it must contain the
sequenceSCSCPCSCSCPCSCS; i.e., it must
contain three full-lengthCmid central arcs, as shown
in figure 12. We can construct an equal-length tra-
jectory containing a non-monotonictangenttrajec-
tory with structureCPCSCSCPC by reflecting
theCmid segments along the switching-line (see fig-
ure 12). This trajectory cannot be optimal, by the
argument made above.
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Figure 10: Non-monotonic tangent trajectories that are not op-
timal. The solid curves represent the actual tangent trajectories.
The dashed curves represent alternative trajectories of equal du-
ration that are not extremal.

a)

b)

Figure 11: Reducing non-monotonic tangent trajectories to the
trajectories shown in figure 10. The solid curves represent the
original trajectories. The dashed curves are obtained by reflect-
ing the solid curves across the switching line. The new trajectory
obtained is identical to that from figure 10.

Figure 12: Figure for the proof that monotonic trajectories with
more than 18 switches are not optimal. The dashed curves are
the reflectedCmid curves. An equal-time non-monotonic tra-
jectory is created by following the dashed curves instead ofthe
originalCmid curves.

Theorem 10 shows that the number of segments for an
optimal path between any start and goal are no more than
18. Additionally, for each segment ofroll , shuffle, and
spin trajectories, we can compute the maximum distance
along one of the coordinate axis (x, y, or θ) that the robot
can travel. In the next theorem we utilize this knowl-
edge, coupled with the fact that the number of segments is
bounded above, to calculate the maximum distance (along
one or more coordinate axis) for which these trajectories
can be optimal.

Theorem 11 There exist bounds on the displacements
along thex andθ axis beyond which spin, roll, and shuffle
trajectories are not optimal. In particular,

(i) Roll trajectories with x-displacement more than
40

√
2√

3
are not optimal.

(ii) Shuffle trajectories withx-displacement more than
16

√
2√

3
andθ displacement more than60◦ are not op-

timal.

(iii) Tangent trajectories are not optimal for configura-
tions that are separated by more than120◦, with dis-
tance between the configurations less than4.

Proof: We prove the bounds for each class of trajec-
tory separately.

(i) Roll trajectories: Theorem 10 states thatroll tra-
jectories with more than fiveC segments are not
optimal. Furthermore, the displacement along thex-
axis for each completeC segment is the same, and
they displacement for such a segment is zero. The
maximum displacement along one such segment is
8
√

2√
3

.

(ii) Shuffle trajectories: shuffletrajectories correspond
to small parallel-park motions parallel to thex-axis.
Like the roll trajectories, the limiting case for the
maximum distance covered along one period for
shuffletrajectories occurs as they approach thetan-
gent trajectories (see figure 6(b)). Thex displace-
ment along this limiting curve is8

√
2√
3

. Theorem 10
shows that more than two periods of ashuffletrajec-
tory are not optimal.
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(iii) Tangent trajectories: If the start and goal are sepa-
rated by more than120◦, then anytangenttrajectory
connecting the two would need to contain at least
one complete60◦ arc of a circle of radius four. Since
all extremal trajectories are monotonic inx, no such
tangenttrajectory can connect start and goal config-
urations that are closer together than4.

Theorem 12 Spin, Roll, Shuffle, and Tangent trajectories
are each optimal for at least one pair of start and goal
configurations of the omni-directional vehicle.

Proof: For each class, we explicitly construct a pair
of start and goal configurations for which no other trajec-
tory class is optimal.

(i) Spin. The maximum value for|θ̇| along any trajec-
tory is 1. Since spin trajectories achieve this value,
a spin trajectory is optimal for any pair of start and
goal configurations with the samex andy location.

(ii) Roll. Choose any pair of configurations that are sep-
arated by more than120◦, are not at the same(x, y)
location, and are closer together than4.

(iii) Shuffle. Consider any one-period shuffle starting
and ending in the middle of a spin, and configu-
rations corresponding to the start and finish of this
trajectory. The fastest roll between these config-
urations takes time2π, since roll trajectories are
monotonic inθ; as this is slower than the shuffle,
no roll can be optimal. The same is true for mono-
tonic tangent trajectories. Non-monotonic tangent
trajectories are a limiting case of tangent trajecto-
ries; the duration of a non-monotonic tangent be-
tween the two configurations can be lower-bounded
by t(2

√
3), which is greater thant(λ0) for anyλ0 <√

3. (See equation 45.)

(iv) Tangent. Choose start and goal configurations that
are farther apart than the maximum distance of a
roll, and that have different start and goal angles. By
theorem 11, only tangent trajectories can be optimal.

8 Open problems

We have presented a complete and minimal classification
of optimal trajectories, and explicit descriptions of each
trajectory. However, we have not addressed the problem
of determining which of these trajectories is optimal for
a particular pair of start and finish configurations. For
the problem of determining the shortest trajectories for a
steered car, Reeds and Shepp [9] suggest the simple ap-
proach of enumerating all possible structures that connect
two configurations, and comparing the time of each. A
similar approach should be possible for the omnidirec-
tional vehicle.

Souères and Laumond [14] determined the complete
synthesisof optimal trajectories for the steered car: an
explicit mapping from pairs of configurations to trajecto-
ries. Balkcom and Mason [1] determined the synthesis for
differential-drive vehicles. Such a result for the omnidi-
rectional vehicle would remove the need for enumerating
and comparing all trajectories between a pair of config-
urations, and would give the metric on the configuration
space more explicitly.

The current work also does not consider the presence
of obstacles. We expect that optimal trajectories among
obstacles would consist of segments of obstacle-free tra-
jectories, and segments that follow the boundary of the
obstacles.

There are also broader questions. The shortest or fastest
trajectories are now known for a few examples of specific
systems: steered cars, the differential drive, and the omni-
directional vehicle considered here. The results share
some features in common; each of the optimal trajecto-
ries can be described by motion of the robot relative to a
switching line in the plane. The trajectories for steered
cars include arcs of circles and straight lines; the trajec-
tories for differential drives include spins in place and
straight lines. The trajectories for the current system in-
clude straight lines, arcs of circles, and spins in place,
and the system could in that sense be considered a hybrid
of a steered car and a differential drive. What general-
izations are possible, and can the optimal trajectories be
determined for a generic mechanism whose design is de-
scribed in terms of a set of variable parameters? Which
mechanism should be chosen to be most efficient for a
given distribution of start and goal configurations?

17



9 Acknowledgments

The authors would like to thank Steven LaValle, Hamid
Chitsaz, Jean-Paul Laumond, Bruce Donald, the members
of the CMU Center for the Foundations of Robotics, and
the members of the Dartmouth Robotics Lab for invalu-
able advice and guidance in this work.

References

[1] D. J. Balkcom and M. T. Mason. Time optimal tra-
jectories for differential drive vehicles.International
Journal of Robotics Research, 21(3):199–217, 2002.

[2] H. Chitsaz, S. M. LaValle, D. J. Balkcom, and
M. T. Mason. Minimum wheel-rotation paths for
differential-drive mobile robots. InIEEE Inter-
national Conference on Robotics and Automation,
2006. To appear.

[3] M. Chyba and T. Haberkorn. Designing efficient
trajectories for underwater vehicles using geomet-
ric control theory. In24rd International Confer-
ence on Offshore Mechanics and Artic Engineering,
Halkidiki, Greece, 2005.

[4] A. T. Coombs and A. D. Lewis. Optimal control for
a simplified hovercraft model. Preprint.

[5] G. Desaulniers. On shortest paths for a car-like robot
maneuvering around obstacles.Robotics and Au-
tonomous Systems, 17:139–148, 1996.

[6] L. E. Dubins. On curves of minimal length with a
constraint on average curvature and with prescribed
initial and terminal positions and tangents.Ameri-
can Journal of Mathematics, 79:497–516, 1957.

[7] T. Kalmár-Nagy, R. D’Andrea, and P. Ganguly.
Near-optimal dynamic trajectory generation and
control of an omnidirectional vehicle.Robotics and
Autonomous Systems, 46:47–64, 2004.

[8] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkre-
lidze, and E. F. Mishchenko.The Mathematical The-
ory of Optimal Processes. John Wiley, 1962.

[9] J. A. Reeds and L. A. Shepp. Optimal paths for a
car that goes both forwards and backwards.Pacific
Journal of Mathematics, 145(2):367–393, 1990.

[10] D. B. Reister and F. G. Pin. Time-optimal trajecto-
ries for mobile robots with two independently driven
wheels.International Journal of Robotics Research,
13(1):38–54, February 1994.

[11] M. Renaud and J.-Y. Fourquet. Minimum time
motion of a mobile robot with two independent
acceleration-driven wheels. InProceedings of the
1997 IEEE International Conference on Robotics
and Automation, pages 2608–2613, 1997.

[12] I. Robert L. Williams, B. E. Carter, P. Gallina,
and G. Rosati. Dynamic model with slip for
wheeled omnidirectional robotos.IEEE Transac-
tions on Robotics and Automation, 18(3):285–293,
June 2002.

[13] P. Souères and J.-D. Boissonnat. Optimal trajecto-
ries for nonholonomic mobile robots. In J.-P. Lau-
mond, editor,Robot Motion Planning and Control,
pages 93–170. Springer, 1998.

[14] P. Souères and J.-P. Laumond. Shortest paths syn-
thesis for a car-like robot.IEEE Transactions on
Automatic Control, 41(5):672–688, May 1996.

[15] H. Sussmann. The Markov-Dubins problem with
angular acceleration control. InIEEE International
Conference on Decision and Control, pages 2639–
2643, 1997.

[16] H. Sussmann and G. Tang. Shortest paths for the
Reeds-Shepp car: a worked out example of the use
of geometric techniques in nonlinear optimal con-
trol. SYCON 91-10, Department of Mathemat-
ics, Rutgers University, New Brunswick, NJ 08903,
1991.

[17] M. Vendittelli, J. Laumond, and C. Nissoux. Obsta-
cle distance for car-like robots.IEEE Transactions
on Robotics and Automation, 15(4):678–691, 1999.

18


