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Abstract

One of the most ubiquitous examples of origami is the
common paper shopping bag. In a common model of pa-
per folding, there are a finite number of creases, between
which the paper must stay rigid and flat, as if made of
plastic or metal plates connected by hinges. We show
that (maybe surprisingly), the paper shopping bag cannot
be flattened under this model using the usual pattern of
creases. This raises the question of what foldings are pos-
sible in this model? We introduce some techniques for
foldability analysis, and show that the bag may be flat-
tened by adding new creases, or by adding new material
between creases.

1 Introduction

In grocery stores around the world, people fold and unfold
countless paper bags every day. The rectangular-bottomed
paper bags that we know today are manufactured in their
3D shape, then folded flat for shipping and storage, and
later unfolded for use. This process was revolutionized by
Margaret Knight (1838–1914), who designed a machine
in 1867 for automatically gluing and folding rectangular-
bottomed paper bags [11]. Before then, paper bags were
cut, glued, and folded by hand. Knight’s machine effec-
tively demolished the working-class profession of “paper
folder”.

Our work questions whether paper bags can be truly
(mathematically) folded and unfolded in the way that hap-
pens many times daily in reality. More precisely, we con-
sider foldings that use a finite number of creases, between
which the paper must stay rigid and flat, as if the paper
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Figure 1: A shopping bag with the traditional crease pattern.

were made of plastic or metal plates connected by hinges.
Such foldings are sometimes calledrigid origami, being
more restrictive than general origami foldings, which al-
low continuous bending and curving of the paper and thus
effectively uncountably infinite “creasing”. It is known
that essentially everything can be folded by a continuous
origami folding [6], but that this is not the case for rigid
origami.

We prove that the rectangular-bottomed paper bag can-
not be folded flat or unfolded from its flat state using the
usual set of creases that are so common in reality—in fact,
the bag cannot move at all from either its folded or un-
folded state.

The difficulty with folding can be removed by shorten-
ing the bag – for example, by making a horizontal cut all
the way around the bag at a height ofd/2, with dimen-
sions as shown in figure 1. The pattern of creases on the
shortened bag resembles that of cardboard boxes depart-
ment stores use to pack sweaters or collared shirts.

One way to understand the difference between short
bags and tall bags is to make a vertical cut along the edge
between the right and back sides of the bag, and another
along the edge between the left and back sides. As the cut
bag is folded, the cut sides separate from each other by
as much as22◦. Adding additional paper between the cut
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edges might therefore allow the bag to be folded.
Finally, we prove that rigid folding is possible without

adding paper. If all of the dimensions of the bag are equal,
then the pattern of diagonal creases shown in figure 10(b)
can be used to ‘twist’ the bag flat. If the dimensions are
not equal, a sequence of ‘telescoping’ folds as shown in
figure 12 shorten the bag until it can be collapsed.

2 Related Work

In the mathematical literature, the closest work to rigid
folding is rigidity. The famous Bellows Theorem of
Connelly, Sabitov, and Walz [4] says that any polyhe-
dral piece of paper forming a closed surface preserves
its volume when folded according to a finite number of
creases. In contrast, as suggested by the existence of bel-
lows in the real world, it is possible to change the vol-
ume using origami folding. Even more fundamental are
Cauchy’s rigidity theorem, Aleksandrov’s extension, and
Connelly’s extension [2], which all establish an inabil-
ity to fold a convex polyhedron using a finite number of
creases. (In Cauchy’s case, the creases must be precisely
the edges of the polyhedron; in Connelly’s case, any finite
set of additional creases can be placed; Aleksandrov’s the-
orem is somewhere in between.) Another result of Con-
nelly1 is that a positive-curvature “corner” (the cycle of
facets surrounding a vertex in a convex polyhedron) can-
not be turned “inside-out” no matter how we place finitely
many additional creases; this result answers a problem of
Gardner [7]. In contrast, a paper bag can be turned inside-
out with an origami folding (and in real life) [3].

Few papers discuss rigid origami directly. Demaine and
Demaine [5] present a family of origami “bases” that can
be folded rigidly. Streinu and Whiteley [15] proved that
any single-vertex crease pattern can be folded rigidly—up
to but not included the moment at which multiple layers
of paper coincide. Balkcom and Mason [1] demonstrate
how some classes of origami can be rigidly folded by a
robot.

Huffman [9] and McCarthy [12] derive equations de-
scribing the relationship between angles of four creases
that meet at a vertex. Hull and Belcastro [14] describe the
relationship for vertices where several creases intersect
using a product of rotation matrices; we solve these equa-
tions explicitly to compute three dependent crease angles
as a function of the other crease angles.

If a rigid folding is possible, the equations relating
crease angles must have a solution along the entire fold-
ing trajectory. The connectedness of the space of solu-
tions has been analyzed by Kapovich and Millson [10];
our approach is based on work on planar closed chains by

1Personal communication, 1998.

Figure 2: The three types of vertex found in a shopping bag.

Milgram and Trinkle [13].

3 Model and Definitions

We take a simple polyhedral model of the shopping bag.
The facets are rigid and infinitely thin; facets may be-
come coplanar during folding, but are not permitted to
pass through one another. Creases are assumed to be line
segments, and their positions relative to the facets that
they bound are fixed.

Several creases may meet at a vertex; we will call the
angles between adjacent creases meeting at a vertexsector
angles, and call the angles between adjacent facets across
a creasedihedral angles. The sector angles depend on the
design of the bag, which we will call thecrease pattern,
while the dihedral angles describe the current configura-
tion of the bag.

4 Non-foldability of the Traditional
Crease Pattern

Figure 1 shows the traditional crease pattern for a shop-
ping bag. The height of the bag ish, the width isw, and
the depth isd. We assume thath > d/2; this ensures that
the diagonal creases on the right and left sides of the bag
meet.

We can distinguish three types of vertex; see fig-
ure 2. The vertices in the middle of each of the
right and left sides of the bag have sector angles of
(90◦, 135◦, 90◦, 45◦). There is a vertex along each of the
two of the upright edges of the bag, with sector angles
(90◦, 90◦, 90◦, 90◦). There are vertices at the corners of
the bag with sector angles(90◦, 90◦, 45◦, 45◦).

Some pairs of vertices share a crease; figure 3 shows
how vertices of each type are connected to one another.

The sequence of sector angles around a vertex deter-
mine a relationship between the dihedral angles at creases
around the vertex. Huffman [9] derives a relationship be-
tween opposite dihedral anglesm andn for a degree-four
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Figure 3: The vertex graph for a shopping bag. The nodes repre-
sent ‘edge’, ‘side’, and ‘corner’ vertices, and the edges represent
creases that connect vertices.
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Figure 4: Huffman’s notation for the relationship between four
creases.A, B, C, andD are sector angles;m, n, p, andq are
the dihedral angles.

vertex,

1 − cosn =
sin A sinB

sin C sin D
(1 − cosm), (1)

whereA, B, C, andD are sector angles as shown in fig-
ure 4.

For bothsideandedgevertices,A + C = 180◦, and
B + D = 180◦. Equation 1 can be simplified:

cosn = cosm. (2)

We can use this relationship between dihedral angles
to show that a shopping bag with the traditional crease
pattern cannot be rigidly folded.

Theorem 1 A shopping bag with the traditional crease
pattern cannot be rigidly folded.

Proof: Consider an ‘edge’ vertex. The two vertical
creases that meet at this vertex have crease angles that are
equal in magnitude; if the magnitude is not0 or π, then
the two horizontal creases from this vertex must be one
of {0, π}. Choose a crease that is0 or π, and connected
to another vertex. Walk the crease network; each of the
left and right sides is flat (open or folded), and each of the
corners is either fully open or collapsed.

5 Folding Short Bags

On each of the left and right sides of the traditional shop-
ping bag, there are two creases that make a45◦ angle with
the bottom edge. Ifh ≤ d/2, then the creases on each side
do not intersect on the interior of the facet; we say the bag
is short.

Short bags, unlike tall bags with the traditional crease
pattern, can be rigidly folded flat. The proof has three
components. First, we conjecture a solution: a continuous
trajectory of dihedral angles that starts with the open con-
figuration and ends at a flat configuration. We then show
that the solution is topologically consistent –i.e., that at all
configurations along the trajectory satisfy the constraints
among crease angles imposed by the geometry of the pa-
per and the crease pattern. Finally, we show that the paper
does not pass through itself at any point along the trajec-
tory.

5.1 Configuration-space Topology

The configuration of a rigid origami mechanism is com-
pletely determined by the dihedral angles, but not all
choices of dihedral angles satisfy the constraints imposed
by the geometry of the paper and the crease pattern.

Finding a trajectory from start to goal that satisfies the
constraints can be difficult. The space of configurations
may have multiple components, or sections of the config-
uration space may be joined only at specific regions along
their boundaries. For the tall shopping bag described, the
possible configurations are ‘fully open’ and ‘fully closed’;
the configuration space is a pair of isolated points.

In this section, we describe a geometric method for an-
alyzing the connectedness of the configuration space for
a single vertex at the intersection of four creases; this
method is based on work by Trinkle and Milgram [16].
If the configuration space has only one component, then
there exists a topologically consistent path between every
pair of start and goal configurations.

The technique can also be used to determine whether a
given path is topologically consistent. For the purposes of
this analysis, we allow paper to pass through itself; we
deal with self-intersections separately in the foldability
proofs below.

Figure 5 shows an example. We first cut the paper along
one of the creases, as shown. If the crease angles were
known for creases 1 and 2, then the configuration of the
mechanism would be completely determined. However,
there is an additional constraint – that the crease angles of
the uncut creases be such that the edges of the cut crease
‘line up’. We will therefore analyze the behavior of a point
on the cut crease (points A and B in the figure), and see
how it restricts motion of the other creases.
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We label the creases as shown in figure 5, cut crease
3, and rigidly attach the facet between creases 1 and 4 to
the ground. Consider the motion of the point A as the
paper is allowed to fold along creases 1 and 2. Point A
is a fixed distance from the central vertex, and can move
on the surface of a sphere. Its motion is also bounded
on the left by a plane normal to crease 1, and containing
point A. There are two configurations of crease angles 1
and 2 that allow point A to reach most locations on the
sphere: crease 2 may be convex, or concave. There are
some locations that can only be reached in one way: those
that fall on the plane normal to crease 1 and containing
point A. There is also one point that can be reached in an
infinite number of ways, at the intersection of crease 1 and
the sphere.

Now consider point B, that rotates around crease 4. The
reachable locations form a circle that lies in a plane per-
pendicular to crease 4.

If the cut is removed, point A and point B must touch;
we will call this point AB. AB must move on the intersec-
tion of the sphere cut by a plane that A moves on, and the
circle that B moves on. The locations that AB can reach
therefore form an arc of a circle.

We can describe the space of possible configurations of
the paper by the ways in which point AB can reach each
point on the arc. There are two configurations that reach
each point on the interior of the arc (crease 2 may be either
concave or convex). There is only one way in which each
of the endpoints of the arc can be reached – crease 2 is flat
at each endpoint.

Each point on the arc corresponds to a slice of the space
of configurations of the paper, described by crease angles
1 and 2. Starting at one endpoint of the arc, the slice is a
single configuration. Moving continuously along the arc,
each new slice corresponds to two configurations. At the
final slice (at the other endpoint of the arc), there is only
one configuration. The topology of this shape, and thus
of the configuration space, is a circle – a 1-dimensional
manifold with one component.

In general, the set of reachable locations of point A is a
sphere bounded by two planes perpendicular to crease 1.
The intersection of this surface with the circle reachable
by point B can be a circle, an arc of a circle, or two arcs
of a circle. Depending on the shape of this workspace,
and the ways in which point AB can reach each point on
the workspace, the configuration space may have one of
several different structures, as shown in figure 6.

• Null intersection. One side of the circle may be com-
pletely contained in the workspace. The pre-image
of an arc completely contained within the workspace
is two arcs.

• Transverse intersection. One side of the circle may

Figure 5: A degree-four vertex, cut along crease 3.

null-null

null-transverse

null-tangent

transverse-transverse

tangent-transverse

radzero-transverse

tangent-tangent
radzero-tangent

radzero-radzero

transverse-null

tangent-null

transverse-tangent
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Figure 6: Thirteen of the sixteen possible ways a circle can in-
tersect the workspace of an open three-bar spherical chain.For
each class, the ellipses on the left show the workspace; the cir-
cles on the right show the configuration space (the pre-imageof
the workspace). There are seven distinct topological classes of
configuration space.
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Figure 7: A corner of the short bag, cut between two facets, and
anchored to the ground.

be cut by the bounding plane at two points. The pre-
image of an arc touching the bounding plane is an
arc.

• Tangent intersection. The circle just touches a
bounding circle of non-zero radius. The pre-image
of an arc tangent to the bounding circle is a pair of
arcs touching at a single interior point.

• Radius-zero intersection. The circle touches the
bounding plane at one of the poles of the sphere on
thex axis. The pre-image of this point is a circle of
configurations corresponding to spinning links about
thex axis; the pre-image of an arc through this point
is two arcs connected by a circle.

• We ignore the case where the circle is com-
pletely contained within the boundary of the open
workspace.

5.2 Proof of Foldability

Theorem 2 Every short shopping bag can be rigidly col-
lapsed.

Proof: Consider a corner vertex. If we ignore self-
intersections, we can see that the configuration space is a
single connected component as follows. Let the links be
numbered as shown in figure 7, and anchor link 1. The
workspace of the endpoint of link 3 is the portion of the
sphere bounded by two halfplanes;|x| <

√

(2)/2. The
workspace of the endpoint of link 4 is a circle of radius
√

(2)/2, centered at the point(0,−1). The pre-image of
the intersection of these two workspaces is a pair of circles
connected at two points. (These points correspond to two
collapsed configurations.)
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Figure 8: A tall bag. (a) the crease pattern and (b) partially
folded bag when some of the edges are cut open.

We choose the collapsed configuration in which all di-
hedral angles areπ, and choose a trajectory that moves to
this configuration directly (i.e., without passing through
the other collapsed trajectory). We letθ1 increase mono-
tonically fromπ/2 to π. From equation 1,θ2 = ±θ4; for
the trajectory we have chosen,θ2 = θ4. θ1 also increases
monotonically fromπ/2 to π for this trajectory.

Adjacent facets can only collide if the angle between
them is zero orπ; no crease angles are0 or π except
at the start and end of the trajectory. Intersections be-
tween facets 1 and 3 must first occur when theθ2 or θ3

axis touches thez = 0 plane; sinceθ1 andθ4 are positive
except at the end of the trajectory, there are no intersec-
tions. The case of intersection between facets 2 and 4 is
symmetric.

The four corners of the bag are connected by creases
along the bottom of the bag, and all four corners fold oc-
cur simultaneously and symmetrically; the condition that
h ≤ d/2 is sufficient to ensure that no facets that do not
share a vertex can intersect.

6 Folding Tall Bags

Short bags can be folded; this suggests several techniques
for folding taller bags. We consider adding new paper
between creases, and adding more creases.

6.1 Folding by Adding Material

Figure 8a shows a bag whose height is greater thand/2.
Three horizontal creases have been added at a height of
d/2, forming a complete rectangle of creases that circum-
scribe the bag. Experimenting with a card model reveals
that the edges of the bag turn to split open during the fold-
ing. In other words, gaps, as those shown in figure 8b,

5



appear during the folding process. We can compute the
size of the gaps.

Consider a tall bag with edges above heightd/2 being
cut open. Figure 8 shows a partially folded bag. A set
of vectors,a3, a4, a5, anda6, are introduced to present
the creases and the edges of panels that are slit open.
We choose a right-handed Cartesian coordinate system as
shwn, with origin at vertexO, thex axis along the bottom
front edge, and they axis in the plane of the bottom of the
bag.

a3 = (1, 0, 0) (3)

a4 =
OE − OD

|OE − OD|
= (− cos δ, 1 − cos θ, sin δ − sin θ).

(4)

Since the slit edges are perpendicular to both FD and DH,
a3 · a5 = 0, anda4 · a6 = 0. Therefore,

a5 = (0, cosω, sinω) (5)

a6 = (
sin δ − sin θ

√

1 − 4 sin4 θ/2
, 0,−

cos δ
√

1 − 4 sin4 θ/2
), (6)

whereω is a variable describing the rotation between the
portions of the side panel above and below DH. Denote
by ϕ the angle betweena5 anda6. Sincecosϕ = a5 · a6,

cosϕ =
sin ω cos δ

√

1 − 4 sin4 θ/2
=

sinω
√

1 − tan2 θ/2
√

1 − 4 sin4 θ/2
(7)

While folding the bag with slit edges, it is always pos-
sible to adjustω so thata5 anda6 become the closest,
or ϕ is minimum. It is obvious from equation 7 that the
minimum is obtained whenω = π/2:

cosϕmin =

√

1 − tan2 θ/2
√

1 − sin4 θ/2
(8)

Plotting this curve, we find that the maximum gap angle
during folding is about22◦. This solution indicates that
the box can be folded rigidly provided that additional ma-
terial can be found to fill the gap; figure 9 shows a conjec-
tured solution.

6.2 Folding Cubical Bags by Twisting

In the special case thatd = h = w, a “twist” folding
scheme can be applied. The crease pattern is shown in
figure 10(a) and a card model is displayed in figure 10(b).

The scheme is not applicable to taller bags with a
square base – during the fold, corner and midpoints on
the top edges of the bag are not co-planar in spite that

C

DE

O

11
o

Figure 9: A tall shopping bag with material added to allow fold-
ing.

they become co-planar in the fully folded and fully open
states. This makes it difficult to join two neighbouring
portions of the bag when the same folding scheme applies
to both portions. The twist folding scheme is not applica-
ble to bags with a rectangular base do to lack of rotational
symmetry.

6.3 Folding by Telescoping

We have considered a few special cases; in this section we
show that any tall shopping bag can be collapsed with the
addition of a finite number of fixed creases. Theorem 3
will show the procedure. In order to verify the procedure,
it is necessary to show that facets do not collide during
folding; the primary method for showing this will be to
consider the volumes that might be swept by each facet
during folding, and to show that these volumes do not in-
tersect.

Theorem 3 A tall shopping bag can be collapsed with the
addition of a finite number of creases.

Proof: The approach is to shorten the box, by adding
creases that allow the top to be rolled inside the box. Once
the box is short, theorem 2 allows the box to be collapsed.

(a) (b)

Figure 10: The ‘twist’ folding of a cubical bag.
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Figure 11: An edge of the shopping bag with creases added to
allow folding. Facets 1 and 2 are rigidly connected; there are
joints (creases) between all other pairs of adjacent facets.

We consider a single edge of the box, with crease pattern
shown in figure 11.

The crease between facets 1 and 2 is fixed at90◦. The
fold takes place in three steps. During step 1, we fix crease
5, and drive crease 3 from180◦ to 0◦, choosing the solu-
tion such that crease angle 1 is positive, crease angle 2 is
negative, and crease angle 4 is positive. During step 2,
we fix crease 3 at0◦, and drive crease 1 to180◦. Crease
angles 2 and 4 do not change sign, and crease angle 5 be-
comes positive. During step 3, we fix crease 1 at180◦, and
drive crease 3 to−180. Crease angles 2 and 4 return to
0◦, and crease angle 5 reaches180◦. Table 1 summarizes
the crease angles after each step.

Ignoring self-intersection, the existence of a trajectory
of this form can be verified using the graphical method
for determining the topology of of a degree-four spherical
linkage, since each of the steps is a fixes two of the six
creases (the crease between facets 1 and 2, and one other.)

To prove that self-intersection does not occur, consider
pairwise intersections of facets. No two adjacent facets
can collide unless the angle of the crease between them
crosses180◦; this never happens for our choice of trajec-
tory. Table 2 summarizes the analysis of collision possi-
bilities for non-adjacent facets.

A single edge can be rolled inside the box using the pro-
cedure above; to shorten the box, place symmetric crease
patterns at each edge. Figure 12 shows an animation. For
a tall box, or a box with dissimilar length and width, it
may be necessary to perform a number of shortenings be-
fore collapsing the box. Note that the height removed dur-
ing a shortening can be as small as desired, so it is possible
to shorten the box to any desired height.

Figure 12: Procedure for shortening a rectangular tube.

Figure 13: Solving for three dependent crease angles.

7 Relationships Among Crease An-
gles for Degree-n Vertices

Huffman gives a relationship between opposite dihedral
angles for a degree-four vertex, and we have described a
graphical method for analyzing the connectedness of the
space of configurations for vertices, assuming that self-
intersection of the paper is ignored.

In order to permit simulation and analysis of more com-
plicated origami mechanisms, we expect it to be useful
to be able to determine the relationship between dihe-
dral angles around vertices of higher degree. This sec-
tion presents a parameterization of the configurations the
paper around a vertex; this parameterization was used to
build a simulator for rigid origami, which was used to gen-
erate the frames shown in figure 12.

We choosen − 3 arbitrary independent crease angles
as input, and solve for the remaining crease angles. (In
the special case where the dependent crease angles are se-
quential, a simpler solution is possible using the inverse
kinematics approach described in [8].)

Figure 13 shows the procedure;ϕ1, ϕ2, andϕ3 are the
crease angles to be solved for. First cut the crease corre-
sponding toϕ3, and flatten the paper. For any valid con-
figuration of the paper, the two cut edges must ‘line up’
in such a way that they could be re-glued together. Letpl

andpr be points along these edges a unit distance from
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θ1 θ2 θ3 θ4 θ5

Start 0◦ 0◦ 90◦ 0◦ 0◦

After step 1 +, < 180◦ −, > −180◦ 0◦ +, < 180◦ 0◦

After step 2 180◦ −, > −180◦ 0◦ +, < 180◦ +, < 180◦

After step 3 180◦ 0◦ −180◦ +, < 180◦ 0◦

Table 1: A trajectory for shortening an edge of a shopping bag.

facet(s) vs. facet(s) Don’t intersect because:

Step 1 3 1, 6 Workspace of 3 is a right circular cone that intersects
plane of facets 1, 6 only at origin.

3 5 Workspaces of 3, 5 right circular cones, sep.≥ 90◦.
4 1, 2, 6 Facet 4 is bounded by two creases. Crease 2 is inside

the box forθ1 ≥ 0, and crease 3 is as well forθ5 =
0, θ4 ≥ 0.

5 2 Workspace of 5 is a right circular cone that intersects
plane of facet 2 only at origin.

5 6 Facet 6 is co-planar with facet 1.
Step 2 4, 5 1, 2 Crease 2 and crease 4 are inside the box forθ1 ≥ 0

andθ5 ≥ 0.
3 1 Cone workspace vs. plane; intersection is origin.
3 6 Right circular cone workspaces sep.≥ 90◦.
6 2 Cone workspace vs. plane; intersection is origin.

Step 3 6 2, 3 Cone workspace vs. plane.
6 4 Right circular cone workspaces sep.≥ 90◦.
5 1, 2, 3 Creases 3, 4 inside the box for range ofθ2, θ5.
4 1 Cone workspace vs. plane.
4 6 Right circular cone workspaces sep.≥ 90◦.

Table 2: Summary of collision possiblities for non-adjacent facetswhile shortening the tall shopping bag.
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the vertex.
Anchor the facet clockwise from theϕ3 crease, and

choose a coordinate system with origin at the vertex and
with thex-axis along theϕ1 crease. The pointpr lies at
a fixed position within thez = 0 plane in this coordinate
system.

If pl were permitted to move, then its location would be
given by a sequence of rotations about each of the creases.
LetRx andRz be matrices describing rotation about thex
andz axes respectively. LetR1, R2, andR3 be matrices
corresponding to rotations about the independent crease
angles, as shown in figure 13.

The closure constraint can now be written as

R1Rx(ϕ1)R2Rz(α)Rx(ϕ2)Rz(−α)R3pl = pr, (9)

Our goal is to solve forϕ1 andϕ2, given R1, R2, and
R3, which may be easily computed from the indepen-
dent crease angles and the geometry of the paper. Rewrite
equation 9:

Rx(ϕ1)ZRx(ϕ2)a = b, (10)

whereZ, a, andb may be computed:

Z = R2Rz(α) (11)

a = Rz(−α)R3pl (12)

b = RT

1 pr. (13)

Multiplying out equation 10 gives three equations, the first
of which is

k3 = k1 cosϕ2 + k2 sin ϕ2, (14)

with k1, k2, andk3 computed to be

k1 = z12a2 + z13a3 (15)

k2 = z13a2 − z12a3 (16)

k3 = b1 − z11a1. (17)

If k1 = k2 = 0, then equation 14 implies thatϕ2 can
take on any value. Otherwise, equation 14 has the solu-
tion(s)

ϕ2 = atan(k2, k1) ± acos

(

k3
√

k2

1
+ k2

2

)

. (18)

There may be zero, one, two, or infinitely many solutions
for ϕ2. For each value ofϕ2, the remaining two rows
of equation 10 can be used to solve forϕ1, which either
has a unique value or is unconstrained.ϕ3 is uniquely
determined by the angle between the normals to the facets
at either end of the cut chain.

8 Open problems

We conjecture that it is possible to unfold a paper bag
from its flat state if it was already folded using the usual
set of creases (by an adversary equipped with techniques
from origami or reality).
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