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Abstract

Origami, the art of paper sculpture, is a fresh challeng
for the field of robotic manipulation, and provides a con-|
crete example for many difficult and general manipulatior=
problems. This paper describes our initial exploration 5
and highlights key problems in manipulation, modeling,
and design of foldable structures. Results include the firs
origami-folding robot, a complete fold-sequence planne
for a simple class of origami, and analysis of the kine-
matics of more complicated folds, including the common

paper shopping bag. Figure 1: A simplified samurai hat being folded by a robot.

1 Introduction lation include paper bags, garments, fast-food contain-
ers, sheet-metal, car airbags, space-telescope mirrats, a
Humans are far more skilled than robots at manipulatiMEMS. Building products out of thin sheets may reduce
flexible, unpredictable materials. The clearest examplenisiterial costs, and allow storage in small volumes.
origami, the human art of paper sculpture. Figure 1 showsOrigami also reveals limitations of the state-of-the-art
the state of the art in robotic origami folding — a simplifieth robotic manipulation. Hardware is one problem. Hu-
samurai hat being folded by a robot in our lab. Figurer@ans have dozens of degrees of freedom in their hands,
showslcarus folded by master Hojyo Takashi out of aouch-sensitive skin, and capable binocular vision. The
single piece of paper, without cutting or gluing. industrial robot that forms the core of our paper-folding
This paper examines origami from the perspective wfachine has four degrees of freedom, and does not sense
robotic manipulation. There are many compelling rethie paper — the robot could be compared to a blind man
sons to explore and better understand folding manipuleith no sense of touch folding origami with one finger.
tion, and origami provides a useful starting point. The primary challenges, however, are algorithmic. We
A better understanding of techniques for designing add not know how to manipulate, model, or design foldable
folding flexible structures would be of great practical usetructures.
In the past, automated manufacturing with rigid bodiesThe first challenge is minimalist manipulation. Paper
was the driving application for the study of robotic manigias infinite degrees of freedom, and sensing and con-
ulation; tasks include grasping, fixturing, pushing, sottrol are hard. Occlusion, the thin-ness of the paper, and
ing, and feeding. Applications of deformable manipuhe presence of curved surfaces are challenges for vision



closed chain.

Traditional sampling-based path planners struggle with
environments containing narrow corridors. The configu-
ration space of a closed chain may be a union of several
manifolds, containing infinitely thin corridors. The prob-
ability that a random-sampling planner will find a path be-
tween two points on different manifolds is zero, if every
path must contain points on a connecting region of lower
dimension.

In this paper, we present a few configuration-space pa-
rameterizations that allow local planning, and discuss ge-
ometric techniques for analyzing the global topological
structure of the configuration space.

The third challenge is design. Not all patterns of
creases fold equally well. For example, we show that
the common paper shopping bag cannot be folded with-
out flexing or bending the paper in regions where there
are no creases. How complicated a model is necessary to

Photograph@HOJYO Takashi 2001 describe the folding of a shopping bag, and can creases
be added so that the bag folds predictably? Ultimately,
Figure 2: An example of the state-of-the-art in human foldingye want to design software that can automatically create
Icarus, by Hojyo Takashi; dry-folded out of a single piece ofq456 patterns that allow one shape to be folded into an-
paper. Photograph used by permission. other smoothly, while maximizing rigidity at the initial
and final configurations.

or laser-range-finding. Tactile sensors are even worse — ]
touching the paper is likely to deform it. 1.1 The task domain

Humans have some tricks for manipulating paper #mhere are many levels of origami complexity. The sim-
spite of the sensing difficulty. Figure 3 shows an exarptest traditional origami designs require only sequen-
ple. The goal is to fold a precise diagonal crease. THgl straight-line folds. At the next level of complexity,
folder grasps two corners and brings them into preciggds, frogs, and the waterbomb require multiple creases
alignment. The fingers of one hand then flatten the bulggt meet at a vertex to be manipulated simultaneously,
in the paper. Since the paper does not stretch, a cregi@le modern three-dimensional insects and flowers re-
forms at the extreme region of the paper, along the diaggrire multi-vertex networks of creases to be manipu-
nal. The fingers extend and sharpen the crease. The pifed simultaneously. State-of-the-art origami sculptur
cess requires minimal sensing, with only a few degreeguires even more complicated techniques. Masks re-
of control. We would like to build robots that use Similaauire bending facets and f0|d|ng curved creases, animal
teChniqueS, but our first attempt is much more crude: tg@_ﬂptures are often folded using wet paper, and modular
robot places creases using a vice-like clamp that flattejtgami requires assembly of several pre-creased sections
the paper near the crease. Figure 4 shows our current state of progress. The sim-

The second challenge is modeling. Even if we modglest skills can be implemented on a robot; we have built
folding paper as a collecting of rigid facets connected layrobot and automatic planning software to fold simple
hinges at the creases, the configuration space of a fadgami, including paper airplanes, an origami cup, and a
able structure may be complicated. The simplest modekifplified samurai hat.
creased paper is a collection of rigid bodies with hinges.We understand more advanced skills less well. For ex-
If creases meet at a vertex, the mechanism is a kinematigple, the (unsimplified) samurai hat requires that two



Figure 3: Creating a valley fold using landmarking.

Modeling A few theorems Path existence ~ Manipulation skill
Traditional Classification Local planning ~ C-space topology ~ Complete planning A robot
skills >
Simple folds g |
)
Mountain |  Reflection folds ;5_: |
Valley
Degree-4 single-vertex folds _ |
Reverse folds ﬁ
Prayer folds Degree-n single-vertex
Petal folds
Squash folds Crease networks i;s’
=9
Curved creases §
Sinks Crumpling, wet-folding E
o0
E=)
Modular origami o

Figure 4: A map of the origami task domain.

coplanar sections of paper be separated so that a flapfiguration space, but do not have a complete planner.

be folded. We have built a planner to explore the possi-

ble fold-sequences for the samurai hat, but the robot can-

not reliably separate facets of paper. The paper crane i$ve know very little about the most sophisticated
yet more complicated; the paper must be precreased anigami. We can build mathematical models of origami
unfolded to create a pattern where multiple creases megth curved creases, networks of creases, or curved sec-
at a vertex. These creases must be manipulated sinigias of the paper, but have only studied the simplest of
taneously, as shown in figure 11. The mechanism issgamples.

kinematic closed chain, and motion planning for closed

chains is a well-known open problem in robotic manip-

ulation. We can describe local parameterizations of theThe structure of the paper follows the map described

configuration space that allow local planning, and hayg figure 4 vertically, from simple folds through crease
techniques for analyzing the global structure of the coRetworks.



1.2 Related work c4 3

simple(cl, right)
E——

Box folding and sheet metal bending are the two robotics 3 simple(c2, left) 2
applications closest to origami folding; see Lu and | 4 2 3
Akella [Luand Akella, 1999, Lu and Akella, 2000], 1 4 /2\ 4
Liu and Dai [LiuandDai, 2003], and Gupteet cl c2 !
al. [Guptaetal., 1998]. In  preliminary Stacking: 1234 ? ;

work  [Balkcom, 2004, Balkcom and Mason, 2004],

we focus on the simplest possible model of origami: Figure 5: A sequence of two simple folds.

rigid bodies connected by hinges at the creases.
Miyazaki et al's [Miyazaki et al., 1992] software sim-
ulates simple origami manipulation under this moded] [Kergosien et al., 1994]. Dynamic simulation of cloth
and a rigid-body model for cartons with origamiand paper is an active research area in the graphics com-
like folds has also been studied by Dai, Rees Jonesinity. Baraff and Witkin’s [Baraff and Witkin, 1998]
and Liu [Daiand Jones, 2002b, Daiand Jones, 20@&rk is seminal; Choi and Ko [Choi and Ko, 2002]
Dai and Jones, 2002a, Dai and Jones, 1999]. and Bridsonet al [Bridson et al., 2002] present recent

When creases intersect, even the simplest model poaegroaches.
challenges, since the mechanism is a closed chain. MoThere is a rich field of work on origami de-
tion of closed chain mechanisms can be simulated efgn in the mathematics community; Demaires
ficiently (see Ascher and Lin [Ascher and Lin, 1999]rl. [Demaine and Demaine, 2001] provides a sur-
and the configuration-space topology of spherical closegly. Robert Lang’s papers and TreeMaker soft-
chains of the type found in origami has been analyzed ware [Lang, 2001] and Hull [Hull, 1994] are usually
Kapovich and Millson [Kapovich and Millson, 1995]; ourcredited with being the first in-depth work.
approach is based on work on planar closed chains by Mil-
gram and Trinkle [Milgram and Trinkle, ming]. 13 Pi . . : :

; . . . . |eceW|se-r|g|d origami

In fact, the kinematics of origami mecha-
nisms may provide inspiration for new mechaAlthough the mechanics of folding require that paper
nism designs, as suggested by Rodrigues-Leal d&mehd, it is useful to consider a very simple model of
Dai [Rodrigues-Leal and Dai, 2007]. origami composed of rigid polygonal facets connected by

One of the interesting properties of paper ievolute joints at the creases. Define tregami pattern
that it bends but does not stretch; such surfadesbe the placement of the creases on unfolded origami.
are said to bedevelopable Hilbert and Cohn- Creases meetatinterior vertices of the patterngfeases
Vossen [Hilbert and Cohn-vossen, 1952] is a goaddeet, we say that a vertex is dégreen. The angles be-
reference.  Several authors have used developdiseen creases around a vertex in the pattern are called
surfaces to approximate the state of paper asector angles
cloth, including Redont [Redont, 1989], Sun and Each crease connects two facets. We associate with
Fiume [Sunand Fiume, 1996], Leopoldseder arhch pattern &acet graph whose nodes are facets and
Pottmann [Leopoldseder and Pottmann, 1998], Pottmagdges are creases. Any tree that spans the facet graph is a
and Wallner [Pottmann and Wallner, 1999], Weidsicet tree Facet trees are easy to construct; any complete
and Furtner [Weiss and Furtner,1988], and Awsearch method such as breadth-first or depth-first search
mann [Aumann, 1991]. Huffman [Huffman, 1976]s suitable.
considers creases as limiting cases of developabledh facet tree implies a parent-child relationship between
particularly networks of creases and curved creastgo facets connected by a crease. We will choose the
Sometimes creases occur because there are constramtgention that all facets are described by a counter-
applied that are inconsistent with the paper remaidockwise set of points in the pattern; we will associate
ing a smooth developable surface; see Kergosena unit vector with each crease such that the vector’s direc-



tion agrees with the order of vertices in the child facet. We What can be folded using a sequence of simple folds?

then describe therease anglas the angle between a parFigure 7 shows two examples: a simple paper cup, and a

ent facet and its child; the sign is chosen to be consisteithple paper airplane.

with the right-hand rule applied to the crease vector. The design of the machine is based on the observation
Given a pattern and any facet tree, the crease andl&t it is not necessary to flip the paper over at any step, if

associated with all uncut creases determine the confitjie sequence of folds is planned carefully:

ration of the origami mechanism — the pose of each facet . o
and the angle of each cut crease can be determined 8§t 1 Any origami piece that can be folded by a se-

traversing the facet tree applying rotations to descend@Hgnce of flips and simple folds can be folded by a single
facets. initial flip and a sequence of valley simple folds.

Since origami can be folded essentially flat, it is con- Proof: A mountain simple fold is equivalent to a flip,

venier_n to "’.IHOW crease angles in the raﬁ:g@, w]. The valley simple fold, flip sequence; write = fvf. Sec-
order in which facets are folded becomes important WhSHd 71 is the identity. Third, either the facets on the

crease angles reach extreme values and facets bec%rﬁ!%r on the right of the crease line can be chosen as the

coplanar. We will call a group of coplanar facetsam- base. Using similar notation; f = v,, andv, f — v

| d il orderi iy h df’hese substitution rules imply that any fold sequence can
normal vector and a partial ordering of facets that dfg, o, \ritten to include only a single initial flip and a se-

scribes the or_der in which the compour_ld facet may be ﬁﬁ'ence of valley simple folds. First, remove all mountain
sembled or (_jlsasgeml_aled: the faskamg The h_elght olds from the sequence. Then removejafl. Then each
of a facgt IS 1ts helght n the.stackmg, and the height Ogﬁp except the first is preceded by a vailéy fold. Remove
crease is the height of its child facet. the flips by changing the direction of each of these valley
folds. ]
. . . . . The most obvious limitation of the machine is that sim-
2 Slmple folds: an Ongam"fOldmg ple folds cannot be used to separate two co-planar flaps of
machine paper. In some cases, careful p_re—planning can help with
this problem, too. A human being would probably fold

The most basic origami fold takes all paper on one sidelBf Pody of the airplane shown in figure 7 first, and sep-
a crease line and folds it to the other side. Figure 5 sho@/@te and fold the wings down as the last step. However,
a sequence of two simple folds, described using the rigl folding the wings first, as shown in steps 4 and 5, this
origami model, and figure 3 shows a human executin&gparatpn step can be avoided. Sect|_on 3 WI|! d|sc_uss an
simple fold. Figure 6(a) shows a machine designed qytomatic fold-sequence planner for simple origami.
allow a 4 DOF SCARA robot arm to make simple folds.
The folding procedure is outlined in figure 6(b). Th :
arm grasps the paper using a vacuum pad, and positi?ns Reflegtlon folds and fold-sequence
the paper over the folding mechanism. A blade presses plannlng
the paper into a slot in the folding mechanism (step 2);
friction holds the paper in the slot as the blade is removédthe foldings of the hat and paper airplane were planned
The slot clamps shut, forming the crease (step 3). Stepgomatically by a complete sequence planner for simple
4 and 5 show a method for removing the paper from tleeigami. The input to the planner is the origami pattern
slot and placing it flat on the table; this is required sin@nd the desired final stacking of the facets in the folded
the arm only provides one rotational degree of freedomstate. The output is a sequence of folds to make, and a
the wrist. First the blade sweeps across the paper, forcagg of configurations where the robot arm must place the
it to lie flat. The clamp is released while the blade holgmper for each fold.
the paper against the table; the springiness of the papéefhe algorithm is a simple breadth-first search — the flat
allows it to swing free of the slot. pattern is the root node of the search tree, and children
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(a) The design. (b) Making a simple fold with the machine; side view.

Figure 6: A machine that can fold simple origami.

N

Figure 9: Two designs that can be reflection-folded but not
simply-folded.

6
Q The algorithm is unfortunately exponential in the num-
N ber of creases in the pattern. Some efficiency can be
Figure 7: Simple foldings of two traditional origami designs. 92ined by storing intermediate configurations and pruning
branches of the tree that reach previously-explored con-
figurations; this is described in more detail in section 3.2.
of each node are generated by enumerating all possible
simple folds. . 3.1 Reflection folds
Given a flat origami state, what simple folds are possi-
ble? First, find the minimal set of lines that contains afligure 9 shows two examples of origami that cannot be
creases. Discard any crease lines that cross a facet. Eaciply folded. We define &eflection fold any fold for
remaining crease line divides the facets into two corwhich all the active creases are colinear such that the con-
pound facets; we arbitrarily assign one to be the ‘bas#iuous rigid-body rotation of the moving facets does not
and one the ‘flap’. During folding, the base will not movecause self-intersection of the origami or tear any creases.
The flap can folded either up (ealley simple foljl or We will call the moving facets the flap, and the fixed facets
down (amountain simple fold the base. All facets lie in a plane both before and after the
To execute the fold, all creases colinear with the credséd.
line are folded simultaneously. During folding, the The simple folds from an origami state are easy to enu-
heights of facets in the flap are reversed, and then eithegrate. Finding the possible reflection folds is somewhat
stacked above or below the base, forming a single nevore complicated. The following observation is useful to
compound facet. limit the number of possibilities that must be considered.



Figure 8: Robotic folding of a paper hat. Subfigures a) through d) shaitst crease, e) through i) the second, j) through m) the
third, n) through q) the fourth, r) through u) the fifth, andavjd x) show the final product — a folded hat.



Fact 2 The set of active creases in any fold cuts the facet 2 3 4
graph, separating each pair of relatively moving com, % _4
pound facets. o 9
3 ¢ ’ ' £y2
Proof: Choose two compound facets that move reW‘ =

ative to one another; call one the base, and one the flap.

AT‘V crease that (.:onneCts the base ?nd flap and is COllqgalGre 10: Automatically-planned folding of the samurai hat.

with the crease line must be active; the crease a_ngle ' h the exception of the reflection fold in step 7, all folde a

be the angle between the base and flap, up to sign. Agm]pb,_

crease that connects the base and flap but is not colinear

with the crease line will be torn by any rotation of the flap

around the crease line. B planner for reflection-foldable origami; the nodes of the
We can determine the set of all reflection folds fromjraph are flat origami states. Figure 10 shows an auto-

an origami state, using the following algorithm. Firsinatically planned folding of the samurai hat comprised

enumerate all crease lines. Sort the creases by heigihdight simple folds and one reflection fold.

in the stacking. Consider all sequential combinations ofThe input to the planner is the pattern and the desired

creases that contain either the minimum- or maximumtacking of the facets. The algorithm is as follows. Use

height crease. Test each of these crease sets to deterlmi@egom stacking and the pattern to determine signs on

ifit cuts the facet graph into at least two pieces. All piecgge crease angles. Insert the pattern into the search queue

strictly to the left of the current crease line that do nefs the initial state. While the search queue has elements,

include the root node of the facet tree (Wh|Ch is alwaﬁ)p’ test for goa' State' and if goaL backchain to find the

fixed) are candidate flaps, as are all pieces strictly to ty@n. Otherwise, determine the reflection folds from the

right. (For simplicity, we do not consider combinations aftate and generate successor states. Cull any states that

pieces of the graph as candidate flaps, since combinatiggge crease angles that do not agree with those of the goal

can be folded by a sequence of reflection folds.) Test eaghte. Also cull any states that have been previously vis-

candidate flap to see if and in which direction(s) folding jged. Insert remaining states into the visited list and into

possible without self-intersection of the origami; thisicahe search queue.

be accomplished by polygon intersections in the plane ofrpe yisited list is implemented as a hash table that

the compound facet. _ . hashes on the integer heights of facets in the stacking.
The state of the origami after a reflection fold is eagyefore testing against the visited list, the compound facet

to determllne: reflect the flap across the crease line, §ipihe state is collapsed to determinenimimal stacking

flap stacking, and stack the flap either above or below thge aigorithm to find the minimal stacking is essentially a

base, depending on the direction of the fold. bubble sort — each facet is allowed to bubble downwards
in the stacking as long as it does not intersect with any
3.2 Reflection-fold sequence planning facets in the level underneath it.

) ) ] _ ) The planner implementation is about 5000 lines of C++
Origami that can be folded using reflection folds is flat af,qe  and was run on a 500 mhz Pentium 1II. The table

ter each fold. Since the motion of the flap occurs out of thg o\, shows results for four traditional origami designs.
plane of the base, collision detection is only necessary at

the beginnings and ends of folds, and only requires simpl©rigami | creaseg nodes| CPU time (sec)| folds

polygon intersection tests. Futhermore, the origami state Cup 9 30 1 5
after each fold is just the stacking of the facets, togetheairplane 9 24 1 5
with the set of creases that have been folded, and is thus Hat 14 75 5 5
discrete. (Note that crease angles can be determined fiogmurai hatt 20 4250 110 9

the stacking, as long as we know which creases have been
folded.) We have implemented a complete graph searchor the samurai hat, more than 99% of the CPU time
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Figure 11: Frames from an animation of the initial ‘prayer fold’ Figure 12: Huffman’s notation for a degree-four vertex.
of a crane.

was spent in polygon intersections to determine minini#” @nd one ‘elbow-down’.  Huffman [Huffman, 1976]
stackings and to find reflection folds. derives a relationship between opposite crease amgles

andn for degree-four origami,

4 Kinematics of rigid origami | —cosn = SBASMB (o) (1)
sin C sin D ’

Many origami designs cannot be reflection folded; fig- i
ure 11 shows an example. Inside and outside reve%\%e{;fl' D, C, andB are sector angles as shown in fig-

folds, squash folds, and petal folds all manipulate follf ) ) _
The sequence planner for reflection folding described

creases simultaneously. b | K b ; i ;
Analysis of foldability requires that we consider botRPOVE relies on a key observation — seli-intersection can
gecur only when the origami is flat. We can use Huff-

the kinematics of degree-n folds and the possibility ) o
self-intersection. It is well-known that piecewise-rigi&n‘_"‘ns formula to show that a similar result holds for

origami with a single vertex has the kinematics of a Sph&r_lga_lmllwhgre_ foulr creasels that intersect at a vertex are
ical linkage. The kinematics of degree-four sphericaHink"anipulated simultaneously. _
ages are understood, and we draw on some of these resull® Show this, we need a simple lemma:

to further show that self-intersection can only occur when
the origami is folded completely flat. Lemma 1 Continuous motions of degree-four origami

For higher-degree vertices, and origami patterns cdRéchanism cannot cause self-intersection without at least
taining several vertices connected by a network of creas@¢ joint angle reaching either zero at
the problem is more challenging. We present a parame-
terization of the configuration space for these more com- Proof: Adjacent links cannot intersect without the
plicated mechanisms, but the parameterization describidgrnal angle between them reachingPick a link; call
only the local motion of the mechanism, and not thkthe base. (See figure 13.) Call the endpoints of the
global structure of the configuration space. In sectionopposite linka andb. Intersection between the links must
we present a graphical method for determining this glodaist occur wheru or b is coplanar with the base. if is
structure, and analytical results based on Milgram aadplanar with the base, then the joint angle between the
Trinkle’s work on the topology of the configuration spacdsase and the adjacent link containimgnust be one of
of planar n-bar linkages. or «; if b, then the joint angle between the base and the
adjacent link containing must be one of or . ]

If we assume that the origami design is such that it can

4.1 Self-intersection around degree-four be folded flat, a stronger result holds:

vertices

If one of the crease angles is known, then there are Tipeorem 1 Rigid flat-foldable degree-four origami can
to two possible configurations of the paper, one ‘elbownly self-intersect when flat.



Figure 13: A ‘cut’ degree-four origami mechanism. Figure 14: Solving for three dependent crease angles.

Proof: Assume that there is a collision. Fro
lemma 1, at least one crease anglé® isr . Label the
mechanism so that crease angleisand label the sector
anglesA, B, C, andD as shown in figure 12.

For flat-foldable origami, Kawasaki’'s theorem co
strainsA + C = mw andB + D = T, thus for flat-foldable

rTﬂ)ossible using the inverse kinematics approach described
in [Han and Amato, 2000].)

Figure 14 shows the procedure;, ¢2, andyps are the
crease angles to be solved for. First cut the crease corre-
r’s'ponding tops, and flatten the paper. For any valid con-

: . . . , ) ) figuration of the paper, the two cut edges must ‘line up’
origami, there exists an integes.t. n = m + ir. Since 'y -y, a way that they could be re-glued together.p et

mis 0 or ata collisionn is an integer multiple of:. andp, be points along these edges a unit distance from
Since at least creases andn are folded flat, facets A 4 o artex

and B are Cop'a”aF asare CandD. Let (AB) be the COM-Anchor the facet clockwise from thes crease, and
pound facet conta_un_mg A and B, and (CD) be the COMhoose a coordinate system with origin at the vertex and
pound facet containing C and D. If these compound facg\;ﬁh the z-axis along thep; crease. The poini, lies at

are coplanar, we are done. If they are not, the structureaiﬁxed position within the: — 0 plane in this coordinate
that of a simple pair of hinged planes that is coIIision—l‘reS(§/Stem

unless flat. (In fact, this a a ‘simple’ fold.) If p; were permitted to move, then its location would be

given by a sequence of rotations about each of the creases.
4.2 Single-vertex origami Let R, and R, be matrices describing rotation about the
- and z axes respectively. LeR;, R, and R3 be ma-

More advanced origami skills require the simultaneoysces corresponding to rotations about the independent
manipulation of more than four creases. In the remaindgease angles, as shown in figure 14.

of the section, we present the relationship between creasghe closure constraint can now be written as
angles for vertices of arbitrary degree; our result is also
applicable to the case where there is missing or excessk R, (p1)RoR. () Ry (p2)R.(—a)R3p; = pr,  (2)
sector angle around the vertex.

The mobility of a vertex of degreew is n — 3. Our goal is to solve forp; andys, given Ry, Ry, and
We will therefore choose: — 3 arbitrary independentR3, which may be easily computed from the indepen-
crease angles as input, and solve for the remainignt crease angles and the geometry of the paper. Rewrite
crease angles. (In the special case where the depggation 2:
dent crease angles are sequential, a simpler solution is R.(v1)ZR:(p2)a =0, 3)

10



whereZ, a, andb may be computed:

7 = RyR.() 4)
a = R.(—a)Rspi ()
b= R{p,. (6)

Multiplying out equation 3 gives three equations, the first 0
of which is

ks = k1 cos pg + ko sin ¢o, (7

with k1, k2, andks computed to be

k1 = z12a2 + 21303 (8)
ko = z13a9 — z12a3 (9) Figure 15: A multi-vertex pattern with a mobility of five.
/{3 = b1 — Z1107. (10)

If k; = ks = 0, then equation 7 implies that, can D The topology of origami configu-
take on any value. Otherwise, equation 7 has the solu- ration space
tion(s)

k The parameterizations described in section 4.2 allow sim-
w2 = atan(ke, k1) £ acos 3 .

e (11) ulation and local planning for origami and other spherical
VKL + ks n-bar linkages. However, they have some disadvantages:
There may be zero, one, two, or infinitely many solutions

for ¢,. For each value of»,, the remaining two rows 1. The configuration of a rigid origami mechanism is

of equation 3 can be used to solve for, which either completely determined by the dihedral angles, but
has a unique value or is unconstrainggs is unigquely not all choices of dihedral angles satisfy the con-
determined by the angle between the normals to the facets Straints imposed by the geometry of the paper and
at either end of the cut chain. the crease pattern.

2. The parameterizations are not global: the mapping
from certain input joint angles to output joint angles

For a single vertex of degreg we can viewn — 3 of may be one-to-many.

the creases as ‘inputs’, aldof the creases as ‘outputs’.

Given the dihedral angles at the input creases, equation 1. Finding a trajectory from start to goal that satisfies

and the results of the previous section can be used to com- the constraints can be difficult. The space of config-

pute the dihedral angles at the output creases. urations may have multiple components, or sections
Some folds require that multiple connected vertices be of the configuration space may be joined only at spe-

manipulated simultaneously. Figure 15 shows a network cific regions along their boundaries. Parameteriza-

of four vertices. tions give no information about the connectedness of
An output from one vertex can be viewed as the in- configuration space.

put to the adjacent vertex. Therefore, any labeling of the

creases as either output or input that satisfies the propertyhis section describes the connectedness and topology

that each vertex has three outputs can therefore be uskdonfiguration spaces of n-bar spherical closed chains.

to construct a local parameterization of the configuratidie analysis uses techniques described in Milgram and

space, and simulate local motion of the crease networKTrinkle [Milgram and Trinkle, ming].

4.3 Multi-vertex origami

11



Now consider point B, that rotates around crease 4. The
reachable locations form a circle that lies in a plane per-
pendicular to crease 4.

If the cut is removed, point A and point B must touch;
we will call this point AB. AB must move on the intersec-
tion of the sphere cut by a plane that A moves on, and the
circle that B moves on. The locations that AB can reach
therefore form an arc of a circle.

We can describe the space of possible configurations of
the paper by the ways in which point AB can reach each
point on the arc. There are two configurations that reach
each point on the interior of the arc (crease 2 may be either
concave or convex). There is only one way in which each
9f the endpoints of the arc can be reached — crease 2 is flat

Figure 16: Four flat configurations of a square piece of pap

with two diagonal creases, and the topological structurthef at €ach endpoint. .
associated configuration space. Each point on the arc corresponds to a slice of the space

of configurations of the paper, described by crease angles

1 and 2. Starting at one endpoint of the arc, the slice is a
5.1 Four- and five-bar mechanisms single configuration. Moving continuously along the arc,

each new slice corresponds to two configurations. At the
Figure 17 shows an example, for the case where the ffigl slice (at the other endpoint of the arc), there is only
two sector angles counterclockwise from the horizontahe configuration. The topology of this shape, and thus
are equal. We first cut the paper along one of the creassfshe configuration space, is a circle — a 1-dimensional
as shown. If the crease angles were known for creasesidnifold with one component.
and 2, then the configuration of the mechanism would bein general, the set of reachable locations of point A is a
completely determined. However, there is an additiorgdhere bounded by two planes perpendicular to crease 1.
constraint — that the crease angles of the uncut creases e intersection of this surface with the circle reachable
such that the edges of the cut crease ‘line up’. We Wiy point B can be a circle, an arc of a circle, or two arcs
therefore analyze the behavior of a point on the cut creagea circle. Depending on the shape of this workspace,
(points A and B in the figure), and see how it restrictnd the ways in which point AB can reach each point on
motion of the other creases. the workspace, the configuration space may have one of

We label the creases as shown in figure 17, cut creaseeral different structures, as shown in figure 18.

3, and rigidly attach the facet between creases 1 and 4 to ) . ) )
the ground. Consider the motion of the point A as the ® Nullintersection One side of the circle may be com-
paper is allowed to fold along creases 1 and 2. Point A Pletely contained in the workspace. The pre-image
is a fixed distance from the central vertex, and can move Of an arc completely contained within the workspace
on the surface of a sphere. Its motion is also bounded IS two arcs.

on the left by a plane normal to crease 1, and containing, tr3nsverse intersectiorOne side of the circle may
point A. There are two configurations of crease angles 1 be cut by the bounding plane at two points. The pre-

and 2 that allow point A to reach most locations on the image of an arc touching the bounding plane is an
sphere: crease 2 may be convex, or concave. There are arc

some locations that can only be reached in one way: those

that fall on the plane normal to crease 1 and containinge Tangent intersectian The circle just touches a
point A. There is also one point that can be reached in an bounding circle of non-zero radius. The pre-image
infinite number of ways, at the intersection of crease 1 and of an arc tangent to the bounding circle is a pair of
the sphere. arcs touching at a single interior point.

12



e Radius-zero intersection The circle touches the
Crease 2 .

s bounding plane at one of the poles of the sphere on
Crease 3 thex axis. The pre-image of this point is a circle of
configurations corresponding to spinning links about
thex axis; the pre-image of an arc through this point
is two arcs connected by a circle.

A

Crease 1
* e We ignore the case where the circle is com-
B pletely contained within the boundary of the open
workspace.

Crease 3

Fixed

facet Five-bar mechanisms may be analyzed by fixing one
of the dihedral angles, analyzing the resulting four-bar
mechanism, and considering how the topology of the

Crease 4 four-bar configuration space changes as the (initially)

fixed dihedral angle is varied.

Figure 17: A degree-four vertex, cut along crease 3.

5.2 Many-link mechanisms

null-null transverse-transverse As can be seen from the analysis of four-bar mechanisms
> O O O O in the previous section, the structure of the configuration
null-tangent transverse-tangent space origami can be very complicated, even if we ignore

(4 CD M self-intersections. In order to design a motion planner,
or to write an algorithm that determines if paths between

null-transverse transverse-null ! . . .

— — two configurations exist, we would like to know whether
the configuration space is a manifold, where it branches
into separate sections, and if there are lower-dimensional

tangent-null

radzero-null regions that connect different sections of the space.

The idea behind the graphical analysis of the topology
of configuration spaces is to cut the mechanism and ana-
lyze an open chain with — 2 revolute joints to determine
the ways that the open chain can reach each point in the
workspace. We then consider the curve of points, that the
endpoint of the remaining chain, with one revolute joint,
can reach. The pre-image of the forward kinematics map
for the (n — 2)-joint arm at each point on that curve corre-
sponds to a slice of the configuration space for the mecha-
nism. The topology of these slices only changes at critical
(or singular) configurations of the arm.

Figure 18: Thirteen of the sixteen possible ways a circle can in- Inthis Se,Ctlon’ we more fgrmally_gnalyze the configura-

tersect the workspace of an open three-bar spherical chain, 0N SPace in terms of the_smgu_larmes and the workspace

each class, the ellipses on the left show the workspaceiithe f @n open spherical chain, using tools from Morse the-

cles on the right show the configuration space (the pre-imagely. In this analysis, we ignore joint limits and self-

the workspace). There are seven distinct topological etae$ intersections.

configuration space. We have not developed a practical planning algorithm
for high-degree-of-freedom origami closed chains, but the

— CO

tangent-tangent
tangent-transverse

radzero-transvers
.

radzero-radzero

O

radzero-tangent

|

O

|
DEHS 08
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theorem and corollaries in this section yield some ite the workspace of an endpoint on the last facet. The map
sight into the structure of the configuration spa®g, can be written as a product of rotation matrices applied to
The theorems and proofs essentially track Milgram atte initial location of the endpoint, and is smooth.
Trinkle’s[Milgram and Trinkle, ming] results for planar The workspaceéV may be constructed iteratively. Spin
and spatial closed chains with ball joints, which they hatlee endpoint around the — 1 axis, creating a circle with
used to design a complete motion planner for those syadius dependent on sector anglg_;. Call this circle
tems. N,,,—1. Spin the circle around the — 2 axis; call the re-

A possibly more complete, analysis of the configult NV,,_,. Since all axes intersect at the origi,, - is
uration space of origami mechanisms is presented dgection of a sphere, bounded by two half-planes perpen-
Kapovich and Millson [Kapovich and Millson, 1995]; oudicular to them — 2 axis. Spin each resulting workspace
method has the advantage of a relatively simple geomateund the preceding axis. The workspacés equal to
ric interpretation, and a graphical method for determining;, and is the intersection of the unit sphefewith two
whether the configuration space is a manifold. halfspaces with normals pointing along the first axié.

Theorem 2 describes the singularities, or critical poinis,therefore either a two-manifold or a two-manifold with
of the forward kinematics map for ti{e — 2)-joint chain, boundary.

n terms of the crease an_gles. Corollary 1 descnpes T'H%aeorem 2 Consider an open spherical chain with all
image of these critical points on the sphere on which the - )
. . ) . sector angled; . . . B,,_1 less thanr. The critical points
endpoint of the cut chain can move: a set of circles a : ) : )
. ! ) . - of the forwards kinematics map which sends a configu-
perpendicular to the first axis. (The circle containing the.. ) . ; ) .

. - . : ration of the chain to its endpoint are the configurations

point A in figure 17 is an example of such a circle, but i : ' :
. . '~ Tor which the first dihedral angle ranges oviér 27), and
longer chains, there may also be several circles interior 0 L . ;
each of the remaining dihedral angles is ong0f 7 }.
the workspace of A.)

Corollary 2 then considers the relationship between the Proof: The configurations of the system can be de-
workspace of thén—2)-joint chain, and the configurationscribed by a list of vectors corresponding to the current
space of the entire origami mechanisi¥i, Specifically, location of the endpointX,, and each axisX; in the
we lety be the curve traced by the single-link mechanisworkspace,

(the circular arc traced by B, in figure 17; the configura- qg=(X1,Xo,..., X,), (12)
tion spacéV is the pre-image of the intersectionp&ind \yith the constraints

the workspace of thé: —2)-joint chain under the forward

kinematics map. Specifically, we show that the configura- Xl =1 (13)
tion space is a manifold iff intersects each critical circle /X Xiv1 = Bi (14)

transversally. The linear mapify between the tangent spaces of the

The. following - definitions are taken from Mil torus and the workspace can be described by the Jacobian
nor [Milnor, 1997]. We say that a map between two manis . L
) . ) S . of f. Use the cross-product method to write the Jacobian:
folds issmoothif all of the partial derivatives exist and are

continuous. Consider asmoothmgp M — N, froma J;=[ X; xX,, | Xox X, | ... | X1 xX, |
manifold of dimensionn to a manifold of dimensiom. (15)
Let C be the set of alk € M such that If X;1...X, liein a plane, then the Jacobian has rank

less than two, and the configuration is a critical point.
Proof of the converse:X; and X, are linearly inde-
has rank less than (is not onto). TherC' will be called pendent, so at least one column of the Jacobian (either
the set ofcritical points f(C) the set ofcritical values X; x X, or X» x X,,) is non-null. All axes and the end-
and the complemenV — f(C) the set ofregular values point must lie in a plane perpendicular to this column.

dfy : TMy — TNy(y

of f. Since X ... X, lie in a plane iff all of the dihedral an-
Consider theforwards kinematics mag : M — N gles except the first are one fi, 7}, this completes the
from the torus\ = S x S x...x S* of dihedral angles proof. [
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Corollary 1 The critical values off are the circles
formed by rotating the point&os px, sin p;) around the

X, axis, wherek ranges ovef ...2" !, and ‘ Front -
n—1
=3 (-1 B, (16)

=1

with e; (k) denoting theth bit of k.

Lemma 1 from Milnor [Milnor, 1997] states that if
f: M — N is a smooth map between manifolds of di- ~
mensionm > n, and ify € N is a regular value, then
the setf~'(y) C M is a smooth manifold of dimension \ d
w

m —n.

Corollary 2, .Let'y.be a curve on .the unit SPhere that In'Figure 19: A shopping bag with the traditional crease pattern.
tersects critical circles only at discrete points, and that

does not contain any critical circles of radils and let

W = f~1(y). W is a differentiable manifold if and only
if v intersects each critical circle transversally.

Proof: Assume the curve is described by a pair of
constraints of the form

Pz =0 SO Ed C {
IQ 4 y2 4 2'2 _ 1’ (18) 1de vertex g€ vertex orner vertex

Where?? has the property that its gradiemp is normal to Figure 20: The three types of vertex found in a shopping bag.
the unit sphere.

The algebraic variet{¥ is a subset of the torus of dihe-

dral angles, and can described by the composition of #1®ss products will be linearly independent, and the rank
constraints described by equation 17 with the forwargsg j,,, is therefore one. At a critical point gf wherey is
kinematic mapf. Since the forwards kinematic map altransverse to the critical circle,p makes a non-zero dot
ready constrains the endpoint to lie on the unit Sphefﬁoduct withX; x X,,, and the rank off; is one. At a

along any patf(¢) contained in the varietyy’, critical point of f where~ is tangent to the critical circle,
d . . every dot product is zero, anfly is degenerate. ]
ZP(FO0) = vp' f=9pT 6 =0.  (19)
So the Jacobian of the variely/ is 6 An example of 3D (non)-
Jo = vpT (20) foldability: the paper shopping
= [ v (X1 x Xp) ... VT (KXo x Xy) - bag
21
1) The Bellows Theorem, proven in 1997

The Jacobian has only one row, and describes the ri@ennelly et al., 1997] states that “any continuous
mal to W. At any regular point off, at least two of the flex that preserves the edge-lengths of a closed triangu-
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cannot be folded by bending facets.

Fact 3 A piecewise rigid shopping bag with the tradi-
tional crease pattern cannot be continuously folded be-
tween the open and closed states.

Proof: Consider an ‘edge’ vertex. There are fayi2
Figure 21: The vertex graph for a shopping bag. The nodes repector angles, so equation 1 implies hat the two vertical
resent ‘edge’, ‘'side’, and ‘corner’ vertices, and the edggse- creases that meet at this vertex have crease angles that are
sent creases that connect vertices. equal in magnitude. Assume that the magnitude of these
crease angles i3or 7. In this case, it is easy to show by

lated surface of any genus in three-space must ﬂextri%versmg the vertex graph and applying 1 that the bag is

. ._flat, and we are done.
such a way that the volume it bounds stays constant. ‘ th itude i h h hori |
This implies that no polyhedron with a fixed, finite If the magnitude is nob or , then the two horizonta

number of creases is sufficient to model the deflation §E2S€S from this vertex must be one{0f7}. Choose

a closed airbag, or the inflation of a teabag or origami —C{E?ﬁe that i8 or T\A/ankq conrrlle(;ttehd tlo fftmotdhe_r \r/]?rt%x.
terbomb. But where are the boundaries? What orig f € crease network, each ot the 1efl and right sides

structures can or cannot be satisfactorily modeled W*ﬁ“\{lat (open or lfloldedc)j, and each of the corners is either
fixed crease patterns? ully open or coflapsed. u

In this section, we consider what is probably the mostThe following observations can be made:
commonplace origami-like structure: the paper shopping ) . ) .
bag. Perhaps surprisingly, it turns out that a shopping bag- A Shopping bag with creases in the ‘usual’ places is
with rigid facets, and creases in the usual places, cannot rigid.
be folded flat. Specifically, the bag has a configuration
space that is just isolated points corresponding to the fla2. Two shopping bags taped together at their tops can-
and fully open states. This might be considered a design not be flattened with a finite number of fixed creases.
feature; since the facets resist bending and crinkling, the (Thanks to Robert Lang for this example of the bel-
bag tends to stay in its current configuration, either open lows theorem.)

or closed.

Figure 19 shows the traditional crease pattern for &. A shopping bag cannot be turned inside-out with a fi-
shopping bag. The height of the bagtisthe width is nite number of fixed creases. (According to Erik De-
w, and the depth ig. We assume thdt > d/2; this en- maine, is has been proven by Connelly that a convex
sures that the diagonal creases on the right and left sides yertex cannot be turned inside out using a finite num-
of the bag meet. ber of creases, but this work may not yet have been

We can distinguish three types of vertex; see fig- published.) Robert Lang points out that this work
ure 20. The vertices in the middle of each of the implies that the ‘closed sink’ origami move that in-
right and left sides of the bag have sector angles of vertsaconvexvertex cannot be modeled with a finite
(90°,135°,90°,45°). There is a vertex along each of the  number of creases.
two of the upright edges of the bag, with sector angles
(900, 900, 900, 900). There are vertices at the corners of A natural question is whether a Shopping bag can be
the bag with sector anglg¢80°, 90°, 45°, 45°). folded by adding a finite number of creases. With Erik

Some pairs of vertices share a crease; figure 21 shewg Martin Demaine, we have shown that it can, and a
how vertices of each type are connected to one anothefuture paper will discuss this and other problems of 3D

We can use equation 1 to show that the shopping Hatdability.
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7 Conclusion [Balkcom, 2004] Balkcom, D. J. (2004). Robotic origami
folding. Ph.D. Thesis, published as Carnegie Mellon

The paper has presented the first origami-folding robot, University RI TR 04-43.

and an initial exploration into issues regarding foldin

manipulation. %alkcom and Mason, 2094] Balk(_:omZ D. J_. and_ Mason,

There are several promising directions for future work, M- T- (2004). Introducing robotic origami folding. In
including far more capable machines for folding, and IEEE .Internat|onal Conference on Robotics and Au-
mathematical tools for analyzing more general models of t°Mation pages 3245-3250.

foldability. [Baraff and Witkin, 1998] Baraff, D. and Witkin, A.
We are particularly interested in ‘low-level’ manipula- (1998). Large steps in cloth simulation. BIG-
tion skills (like landmarking) that humans use to precisely GRAPH pages 43-54.

and reliably place creases in flexible paper. We also in-

tend to explore further aspects of complex closed-chaifidson et al., 2002] Bridson, R., Fedkiw, R., and An-
manipulation. The configuration spaces of closed chainsderson, J. (2002). Robust treatment of collisions, con-
can be complicated, and understanding connectedness dfct, and friction for cloth animation. IBIGGRAPH

these c-spaces is still an open problem. _ [Choi and Ko, 2002] Choi, K.-J. and Ko, H.-S. (2002).
Another interesting problem is understanding multi- Stable but responsive cloth. 8IGGRAPH
vertex patterns like that shown in figure 15. Although we ' '

have presented a simple parameterization of the confif@ennelly et al., 1997] Connelly, R., Sabitov, I., and
ration space for multi-vertex patterns, topological analy Walz, A. (1997). The bellows conjectureontribu-
sis to determine the connectedness of such spaces seertisns to Algebra and Geometrg8(1):1-10.

tob hallengi blem. . .

0 be a challenging probiem [Dai and Jones, 1999] Dai, J. and Jones, J. R. (1999).
Mobility in metamorphic mechanisms of fold-
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