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Abstract— This paper presents a definition of convexity useful
for describing local optimality in configuration spaces, proves
that finding convex regions is relatively easy, and presents an
algorithm for approximating the free configuration space using
a set of such convex regions. The paper examines simple but
interesting systems: serial planar arms with revolute joints,
and a Reeds-Shepp car. The paper experimentally explores an
approach for finding good (although not necessarily optimal)
trajectories using the derived data structure.

I. INTRODUCTION

This paper examines how an optimal steering method,
which finds optimal trajectories if there are no obstacles,
may be used to build a good approximate cell-based repre-
sentation of a configuration space with obstacles. The paper
also presents algorithms that make use of this representation
to find good, although not necessarily optimal, paths.

Approaches to finding optimal paths among obstacles can
be loosely classified into two types: cell decomposition (for
example, early work by Barraquand and Latombe [1] and
Xavier and Donald [2]), and sampling methods, such as
PRM* [3]. Cell-based methods have the advantage that it
can be easier to prove results about path quality after finite
computation time, but typically require division of the space
into a number of cells that is explicitly exponential in the
dimensionality of the space. Sampling methods, on the other
hand, can quickly return reasonable paths if there are large
open spaces in the environment, even in high dimensions.

The current paper begins to explore the idea that some easy
spaces (with large open regions, or large obstacle regions)
can be represented easily, without giving up optimality, using
a variable-sized cell decomposition approach. Figures ??
and 1 show an example of such a decomposition for the
configuration space for a serial planar arm with two revolute
joints, as well as a path obtained by a simple A* search
across points on the boundaries of the cells. Note that
because optimal trajectories are not unique for the chosen
metric (Section III-A) some “wiggle” can occur even in
optimal trajectories.

Variable-sized cell-decomposition methods are hardly
new; the unique contribution of this paper is an exploration of
the implications of optimality under some metric, for systems
with and without non-holonomic constraints.

The key idea is to exploit convexity of regions in con-
figuration space. Intuitively, between any pair of boundary
points of a convex region, there should exist a path that does
not leave the region. So, paths within the region need not be
sampled or stored.
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Fig. 1: Initial and final positions are represented by thick
lines, while others are intermediate positions of the arm.
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Fig. 2: Decomposition of C-space and the corresponding
trajectory in C-space. Shaded cubes are explored by the
search algorithm.

In this paper, we show that a form of convexity can be
defined (Section II) that is suitable for configuration spaces
with optimal steering methods and corresponding shortest-
path metrics, and that a variant on this form of convexity,
subconvexity, is available locally everywhere there is a
reachable ball in the free configuration space. We consider
some example systems, including a planar arm and a Reeds-
Shepp car [4], and present an algorithm for decomposing the
free configuration space into cells (Section IV). We search
this data structure for good paths (Section VI), and show
some results for a few simple systems.

The work in this paper is quite preliminary, but we
believe that the theoretical framework hints at new ways to
tackle issues such as ensuring good path quality after finite
computation time (vs. weaker guarantees such as asymptotic
optimality), topological analysis of configuration spaces, and
compact representations of configuration spaces. Concretely,
the current work suggests some bounds on how densely a
space may need to be sampled to capture optimality over



“most of” the configuration space. We believe that this is
an important step to begin to understand the behavior of
sampling-based planners near obstacles (a primary focus of,
for example, variations such as obstacle-based PRM [5] and
Toggle PRM [6]), after finite computation time.

A. Related work
One inspiration for this paper is early work by Xavier and

Donald [2] that showed that shortest paths can be provably
approximated for a particle among obstacles in R3 subject to
kinodynamic constraints; by growing the obstacles slightly,
a lower bound on the required size of cells used to represent
configuration space can be computed. Similarly, in collision
detection, temporal coherence is frequently used to compute
the frequency at which collisions need to be checked for;
LaValle [7] provides a survey.

Recently, Bialkowski et al. have reduced the time cost
of collision detection with RRT*, by building balls in free
(Euclidean) space in which collision detection needs to be
performed only once [8]. The current paper extends these
ideas to compute a nearly complete representation of the
space, under a general shortest-path metric.

Recent sampling-based algorithms by Li, Littlefield, and
Bekris [9] achieve asymptotic optimality of path length in
parameter space without the need for a steering method.
Deits shows a numerical optimization approach to computing
large convex regions, also in a Euclidean space [10]; a key
contribution of the current work is extending this notion of
convexity to non-Euclidean metrics.

Extensive work has been done on optimal steering meth-
ods. In fact, for some specific systems, the exact optimal tra-
jectories can be found analytically, or by relatively efficient
algorithms [11], [4], [12], [13], [14]. Work by Venditelli [15]
demonstrated that for the Dubins car [11], the shortest
distance to obstacles in configuration space can be computed
exactly; the current paper is strongly motivated by the idea
of finding bounds on such distance functions, in a way that
can be easily extended to a variety of systems.

Lafferriere and Sussman [16] and others [17] have used
the property of small-time local controllability (STLC) to
approximate paths that do not respect differential constraints
by paths that do; the definition of shortest-path subconvexity
in this paper is inspired by the “inner ball/outer ball” aspect
of the definition of STLC. The Ball-Box Theorem [18] shows
that, given a locally-defined metric satisfying Lipschitz con-
tinuity properties, the reachable configurations from a given
point contain and are contained by a pair of boxes in the
configuration space parameters.

II. PATH CONVEXITY AND SUBCONVEXITY

In this paper, we assume that an optimal steering method
is available, together with a shortest-path local metric, d,
that would describe the minimum cost of traveling between
two configurations if there were no obstacles. The steering
method and metric might be known exactly, or in practice,
might be computed approximately using numerical tech-
niques. Metrics are typically only available for symmetric
systems.
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Fig. 3: Subconvexity of set X with respect to set Y , under
an optimal steering method. The path between p and q does
not leave Y .

The central idea is to cover most of the obstacle-free
portion of the configuration space, Cf, with some convex
closed cells, so that optimal paths cross through boundary
points of the cells, and are well-behaved within the cells.
However, for systems with a given metric, or subject to
non-holonomic constraints, the straight lines used to define
convexity in the usual sense might not be geodesics or even
feasible.

It is natural to define convexity in terms of the steering
method for the system. Let a steering method S of a metric
space be a family of continuous curves (parametrized by arc
length) such that for each ordered pair of points (a,b) in the
metric space there is a corresponding curve in S from a to
b.

We say that a set X of a metric space with steering
method S is path convex if between any two points in X ,
the corresponding path from S is contained entirely within X .
(This definition is somewhat related to definitions of geodesic
convexity described in [19].)

As a simple example, let the metric space be the surface
of a solid globe that has been cut in half through the equator,
with the metric defined by the shortest path along the surface,
measured using the Euclidean distance in R3. Consider an
optimal steering method S that contains some shortest path
on the surface for each pair of points.

First consider the set F , the flat disc where the globe was
cut. The shortest paths between points in F are straight lines,
and they do not leave the disc, so F is path convex (under
S). Now consider P, consisting of all points on the surface
within 15 degrees of the pole. The shortest paths between
points in P are arcs of great circles on the sphere and those
arcs do not leave P, so P is path convex.

Finally, consider the set H, the entire curved hemisphere
within 90 degrees of the pole. For some pairs of points in H,
the connecting shortest path is an arc of a circle contained in
H. But for other points (along the equator, for example), the
connecting shortest path takes a shortcut through F , leaving
H. So H is not a path convex set.

For the purpose of motion planning, we would like to be
able to place a convex cell almost anywhere in the space, but
for many systems, path convexity is too strong a requirement.
We cannot cover H with path convex cells contained within
H under an optimal steering method, so if there are obstacles



in F , motion planning requires knowledge of F even if we
care only about planning paths between points in H.

Given sets X and Y of a metric space, under a steering
method S, we say that X is path subconvex to Y under S if
between any two points in X , the corresponding path in S is
contained within Y . For the purpose of motion planning, Y
may be an obstacle-free region large enough to allow optimal
maneuvering of the system between points of X .

A closed metric ball of radius c at a point x in a metric
space Z under metric d, defined in the usual way as Bd

c [x] =
{z ∈ Z : d(x,z) ≤ c}, represents the set of points reachable
from x with cost no greater than c. Although we might like
to sample some points using closed metric balls at those
points to cover some part of the free configuration space, we
can see from the half-globe example (H is a closed metric
ball centered at the pole) that a closed metric ball is not
necessarily path convex with respect to an optimal steering
method; the shortest path between points on the boundary
might leave the ball, into regions we don’t necessarily know
anything about.

Although a closed metric ball (reachable set) at a sampled
point might not be path convex, we can find a pair of balls at
a any point in Cf such that the inner, smaller ball is subconvex
to the outer:

Theorem 1: Given an optimal steering method S, a corre-
sponding metric d over a metric space Z, a point x ∈ Z, and
a positive constant r, the closed metric ball Bd

r/2[x] is path
subconvex to Bd

r [x] under S.
Proof: Consider two arbitrary points p and q in Bd

r/2[x],
and a postulated shortest path between them. Let m be an
arbitrary point along this shortest path. We will show that
d(x,m) is no larger than r, implying that the entire path is
contained within the larger ball. By the triangle inequality,

d(x,m) ≤ d(x, p)+d(p,m) (1)
d(x,m) ≤ d(x,q)+d(q,m). (2)

Summing 1 and 2,

2d(x,m)≤ d(x, p)+d(x,q)+d(p,m)+d(m,q). (3)

Since d(x, p) and d(p,m) are each less than or equal to r/2,

2d(x,m)≤ r+d(p,m)+d(m,q). (4)

Since the path from p to q through m is a shortest path,
d(p,m)+ d(m,q) must be less than or equal to the length
of the path from p to q through x. Therefore, d(p,m) +
d(m,q)≤ r. Combining with Inequality 4, d(x,m)≤ r.

III. COMPUTING REACHABLE BALLS

From a particular configuration, how far, under a given
metric, can the robot or system travel before hitting an
obstacle? We expect this question to be hard to answer in
the configuration space, since we do not typically know the
shapes of configuration-space obstacles, and since we do not
necessarily expect to even know the shapes of metric balls
in configuration space. However, it is perhaps good enough

Fig. 4: Different size cells at various configurations in the
configuration space of the 2R arm.

to find a conservative estimate of the size of the safely-
reachable ball, and this section will show that computing
such an estimate might not be too difficult.

Many robotic systems of interest are embedded in two-
or three-dimensional Euclidean workspaces, where geometric
quantities like distance are much easier to measure. Recall a
few classical definitions related to configuration space [20].
A system is a collection of particles embedded in a space,
perhaps R2 or R3. We assume that the system is divided into
two closed sets: the robot(s), which we control, and obsta-
cles, which we don’t. A configuration gives the locations of
all particles. There are typically constraints on the possible
configurations of the particles; the configuration space is the
space of configurations satisfying the constraints.

In general, assume we have a configuration space
parametrized by a vector q ∈ Rn (or by an overlapping set of
such parametrizations, an atlas). We will further assume that
the parameters are bounded; let Cf be a bounded subset of
Rn, or a finite collection of such subsets representing possible
values of the parameters for which there is no collision.

In order to compute a lower bound on how much the con-
figuration can change before a collision, we relax constraints
on how particles can move. At a particular configuration,
there is some minimum Euclidean distance from the ob-
stacles, over all particles, e(q). We also expect that, over
all particles, and over all possible configurations, there is
some maximum rate of change of location of any particle
(measured by Euclidean distance), vmax, with respect to a
unit rate of change of the metric. Then define

dsafe(q) = e(q)/vmax, (5)

the lower bound on the change in the metric before a
collision; different sizes of cells are show in Figure 3.

A. Example: 2R planar arm

As a concrete example, consider a planar, serial robot arm
with a fixed base, and two links that are each line segments of
length one, shown in Figure 1. Let the configuration space be
parametrized by q = (θ1,θ2), and for simplicity, place joint
limits such that each parameter falls in the range [0,π].

We need a locally accurate metric d, which will describe
distances in the configuration space with obstacles removed,
together with an optimal steering method. Motivated by
the observation that if each joint has the same constant



upper bound on velocity, the time cost of moving from one
configuration to another is determined by the joint that needs
to move the farthest, define

d(q,q′) = max(|θ ′1−θ1|, |θ ′2−θ2|). (6)

For this simple example, we know the shape of a metric
ball: a square in the parameter space (θ1,θ2), possibly cut by
the joint limits. One simple optimal steering method would
be to move the joint that has farther to travel at maximum
velocity towards the goal angle, and the other joint at a scaled
rate, so that both joints reach their final angles at the same
time: a line segment in the parameter space. The metric ball
is path convex with respect to this steering method.

If we sample a point in the parameter space (θ1,θ2), how
big of a ball can we place? We can compute the minimum
Euclidean distance of points in the arm from the obstacles,
e(q), easily. We can also compute vmax, the maximum rate
of change of e(q) over all trajectories in the configuration
space, if configuration-space trajectories are parametrized by
arc length measured by the metric. Notice that the “fastest”
particle, over all particles, over all configurations, and over
all unit-metric velocities of the joints is the point at the far
tip of the arm, when the arm is fully extended, as the two
joints move in the same direction at equal velocity. Simple
differential kinematics indicate that the maximum speed of
this particle is 3. So for this arm, dsafe(q) = e(q)/3.

B. Reachable balls for systems with Lipschitz continuity

In general, in order to ensure that a vmax exists that gives
an upper bound on the rate of change of distances in the
workspace with respect to the metric, we can verify that two
properties hold for the system, metric, and steering method.
First, that there exists a Lipschitz constant that bounds the
workspace velocity (over all particles) with respect to change
in configuration-space coordinates. Second, that there exists
a Lipschitz constant that bounds the rate of change of each
of the configuration-space coordinates with respect to the
metric along any path returned by the steering method. The
upper bound vmax can then be computed as the product of
the Lipschitz constants.

IV. SAFE COVERS OF FREE CONFIGURATION SPACE

There are two structures of interest: the free configuration
space Cf, which we are trying to approximate, and which will
contain the union of “outer balls” described in Theorem 1,
and a slightly smaller subset Cε , all configurations that have
distance at least ε > 0 to obstacles in workspace, which we
will actually cover with cells that are subconvex with respect
to Cf. We will call this collection of cells a safe cover, since
paths from the steering method between boundary points of
the cells remain safely within Cf.

The shape of a metric ball in the configuration space is
typically hard to obtain (although this was easy for the toy
example of the serial arm), and it can be hard to understand
how metric balls overlap and connect. We would also like to
sample the configuration space efficiently, and not place new
samples inside cells that have already been explored. Thus,

in this section, we show how to construct a cover of Cε by a
set of hypercubes that only overlap along their boundaries;
each hypercube is path subconvex with respect to a subset
of Cf.

A. Reachable hypercubes

Given the maximum velocity, vmax, of the robot over all
configurations, at any configuration q not in contact with a
workspace obstacle (e(q)> 0), we can compute a safe metric
ball centered at q, and by Theorem 1, a subconvex inner ball
with half the radius. We would like to place a hypercube
entirely within this subconvex ball.

In general, given a ball of radius r centered at a config-
uration q, how large a hypercube (also centered at q) can
we place within the ball? Let ch = {p ∈Cf : pi ∈ [qi−h,qi +
h],∀1≤ i≤ n} be a hypercube with side length 2h. We need
to choose h so that every point of ch is reachable in time (or
more generally, metric cost) r.

For some systems, there may be particularly good methods
for computing such an h. Here is a method which is perhaps
more conservative than we might like, but which is a fairly
general approach.

Let a coordinate-steering function Si be a steering method
that provides a path between a configuration q and a configu-
ration q+(0,0, . . . ,x,0,0), such that the result of the motion
is a change only in the ith parameter. (In the simplest case,
each Si might simply be the optimal steering method that we
assume is available for the system, S.) Let di(x) be the cost
of applying steering method Si in coordinate direction i to
move a coordinate-distance x. For a symmetric system, if

n

∑
i=1

di(h)≤ r, (7)

and if each di(x) is non-decreasing in x, then ch⊂Br. We can
find a suitable h value by binary search on h, recomputing
costs of coordinate steering methods and adding them, and
checking if 7 is satisfied.

For many systems, including systems without non-
holonomic constraints, the Reeds-Shepp car, and kinematic
differential-drive models, each di(x) is non-decreasing. We
must note that for non-STLC systems, such as the Dubins
car, this is not the case.

B. Uniform grid cover

A simple approach to covering the space is to divide the
space into cells of equal size placed on a uniform grid. We
want the cells to cover Cε , while being completely contained
within (and at least subconvex to) Cf. The following obser-
vation indicates that small enough cubes, at configurations
for which the workspace distance from obstacles is small
enough, are not part of Cε , and may be safely ignored.

Theorem 2: Let e(q) be the minimum Euclidean distance
to obstacles and 2h(e(q)) be the side length of a subconvex
hypercube inside the metric ball Bd

e(q)/vmax
[q] computed in

Section IV-A. For any number ε > 0, and any hypercube
Q centered at q with side length 2s, if e(q) < ε/2 and s <
h(ε/2), then Q∩Cε = /0.
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Fig. 5: Illustration of proof of Theorem 2.

Proof: Since e(q) < ε/2, the ball Bouter = Bd
ε/(2vmax)

[q]
is in Cf. Consequently, the ball Binner = Bd

ε/(4vmax)
[q] does not

intersect with Cε and is subconvex with respect to Bouter. If
Q’s side length is at most h(ε/2), then Q must lie in the ball
Binner by construction and hence Q∩Cε = /0; see Figure 4.

Theorem 2 suggests a naı̈ve algorithm: partition the config-
uration space by a set of hypercubes with side length h(ε/2)
and discard all hypercubes with centers with Euclidean dis-
tance less than ε/2 to obstacles in the workspace. Although
this naı̈ve algorithm creates a safe cover of Cε , the algorithm
is not efficient, since the algorithm generates hypercubes with
a uniform size.

C. Cube subdivision cover

In order to obtain some larger hypercubes, we use a
recursive approach: for a hypercube Q, if Q is subconvex
with respect to Cf, then we keep this hypercube. Otherwise,
subdivide Q into 2n sub-hypercubes and find a cover recur-
sively. By Theorem 2, we can stop subdivision when the
center has Euclidean distance less than ε/2 and has a size
smaller than h(ε/2). The result is a quadtree-like structure
in n dimensions; Figure 1 shows a simple example for the
2R arm.

The crucial part is to test if some cell is subconvex with
respect to Cf, without false positives. One way to test if a
cell is subconvex is to compute a reachable ball centered at
the center of the cell. Then divide the radius of this ball in
half, to get a subconvex ball. Finally, compute the size h of
a hypercube that fits in the smaller ball, and compare h to
the size of the cell.

Algorithm 1 shows the approach, which builds the cell
cover in depth-first order. Alternatively, one could explore
the cover in a breadth-first order, so that large cells would
be explored first, and the space could be constructed in an
on-line fashion.

We use the 2R planar arm as an example. Since any
hypercube in the free space of the arm is convex, testing the
subconvexity of a hypercube only requires checking whether
the hypercube is collision-free. Because reachable balls are
themselves hypercubes for this simple example, if the side
length of Q is smaller than dsafe(q), then Q must be collision-
free. Thus, the decomposition algorithm can be applied very
simply to the 2R planar arm system; see Figure 1.

Algorithm 1: cubeCover
input : Configuration space C, error parameter ε

output: A cover of Cε by a set of hypercubes.
Let q be the center of C and 2s be the side length of C.
if C passed subconvexity test then

return a hypercube of C.
else if e(q)< ε/2 and s < h(ε/2) then

return /0.
else

Divide C into 2n hypercubes and recurse.
return the union of all results.

D. Covering collision space

Even if sampling a hypercube center results in an actual
collision, Algorithm 1 subdivides that cube, since the hyper-
cube may contain smaller hypercubes that are collision free
and convex, or subconvex to Cf, with respect to the steering
method. This is problematic, since the effect is that all of
collision space, the part of C inside obstacles, is divided into
hypercubes of size that may be as small as h(ε/2), typically
dominating computational and space costs for the algorithm.

Fortunately, there is a relatively easy solution. For each
sampled hypercube center that results in a collision, we
may compute a conservative bound on penetration depth:
the minimum distance (as measured by d in the config-
uration space) required to escape the collision space. We
use a technique similar to that used to compute bounds on
distances to obstacles in configuration space. First, for a
given configuration, we compute the maximum Euclidean
distance, over all points on the robot, to the surface of
the obstacle in the workspace, eescape, a quantity analogous
to e(q). Then the penetration distance is at least equal to
descape = eescape(q)/vmax.

If the current hypercube fits inside a ball of size descape,
then the hypercube need not be subdivided. The hypercube
may be discarded if we are interested only in the free space;
in fact, we may add ε/2 to eescape(q), allowing many of the
smallest hypercubes along the boundary be to discarded. Or,
we may store these hypercubes if we are interested in prob-
lems that require information about topological properties of
the obstacle space, such as proving non-existence of paths
(McCarthy et al. [21]).

E. Larger cells, and cell merging

The computations of dsafe and of descape based on
workspace information, as described above, are simple, fast,
and too conservative. There are several ways in which the
estimates may be improved, allowing larger cells.

First, e(q) is the distance of the closest point on the robot
to the obstacle, but the fastest point (with respect to the
metric) may be some other point. So at some configuration,
consider each point on the robot individually. For a given
point p, compute the distance to the obstacles in workspace,
e(q, p). Now also compute the maximum speed for that
point, vmax(p), over all configurations. For example, for



the 2R arm, a point at the end of the first link would
have a maximum workspace speed of one, not three. Divide
to compute dsafe(p), and choose dsafe as the minimum of
dsafe(p) over all points p on the robot.

Since we expect the robot to contain a continuum of
points, finding this minimum can be difficult. We may,
however, divide the robot up into pieces (for example, links
on the arm), and for each piece, compute a shortest distance
and highest speed. In our implementation of the hypercube
cover algorithm for the arm, we took this approach, dividing
the arm into links, computing dsafe for each link, and taking
the minimum.

Second, computing vmax over all configurations is too
conservative, since we are only interested in whether con-
figurations near the current sample, q, may collide. For
example, if the arm is folded back on itself (θ2 = π), then the
maximum speed of any point should be much less than three
in the local region. It is not clear how to directly compute
a dsafe value taking this into account, since the maximum
speed over the dsafe interval depends on the change in the
configuration, and the change in the configuration depends
on the speed and the length of the interval.

However, we can conduct an exponential search [22] for
dsafe. First, assume that we’re given some interval d̂ and an
initial configuration q. We can construct an oracle that will
tell us whether d̂ is either definitely safe, or possibly unsafe.
For example, for the arm, we might choose motions that
move the maximally extend the arm within the permitted
interval, use the farthest point of extension to compute
vmax, and check if d̂vmax > e(q). If so, the interval d̂ is
possibly unsafe; divide d̂, and repeat until a satisfactory
(but conservative) approximation of dsafe value has been
found. We used such an exponential search in the example
hypercube decompositions for the nR arms below.

Finally, it should be noted that adjacent free convex cells
may be merged into a single cell, and we used this fact
to merge some cells for planar arms. Interestingly, adjacent
subconvex cells cannot necessarily be merged; we do not
merge adjacent cells for the Reeds-Shepp car example, but
would like to understand better how compression of groups
of such adjacent cells might be done.

V. EXISTENCE OF OPTIMAL PATHS IN THE COVER

Sometimes, optimal trajectories do not exist in the free
configuration space; for example, Desaulniers showed [23]
that for the Reeds-Shepp car among simple polygonal obsta-
cles, there can exist pairs of configurations such that given
any connecting trajectory with a finite number of control
switches, there is a shorter connecting trajectory: chattering.
However, optimal trajectories exist in finite sets of subconvex
cells and chattering does not occur:

Theorem 3: Given a pair of points contained within a
finite, connected set of cells subconvex to the free config-
uration space, with corresponding metric that is continuous
along the boundaries of each cell, there exists an optimal
trajectory that can be described by a non-repeating sequence
of cells c1, . . . ,cm, together with one point pi ∈ ci for each

(a) 3R planar arm (b) 4R planar arm

Fig. 6: Example trajectories of 3R and 4R planar arms.

cell except the last, such that this optimal trajectory consists
of optimal trajectories connecting the start to p1, p1 to p2,
etc, and finally from pm−1 to the goal.

Proof: Since the cells are connected, there is a set
of curves that connect the given points; let these curves be
parameterized by arc length under the given metric. Any such
connecting curve will enter a cell for a first time, and exit
each cell (except the last) for a last time, sl . If we replace
this section of the curve with an optimal trajectory within
the cell, the new curve will certainly be no longer than the
original.

Thus, to find an optimal curve, it is sufficient to consider
the set of curves connecting the start and goal, with one
locally optimal section per cell. Each such curve can be
described by the discrete structure of the curve (the non-
repeating sequence of cell indices, sorted by increasing
order of sl values), together with parameters describing the
configurations at which the curve leaves each cell for the last
time. Since there are finitely many structures (upper bounded
by the cardinality of the power set over the set of cells), we
need only show that for each structure, an optimal trajectory
exists.

The problem of finding the minimum cost for a par-
ticular structure is a finite-dimensional optimization (there
are finitely many parameters describing final exits from
cells) over a compact set (the boundaries of the cells) of a
continuous function (the finite sum of metric functions over
the cells); an optimal solution therefore exists, as does a
corresponding optimal trajectory.

We expect Theorem 3 to be useful for designing motion
planning algorithms: no cell ever needs to be visited twice,
although both the sequence of cells and the final exit points
from each need to be determined.

VI. CASE STUDY: PLANAR ARMS

To find a trajectory connecting an initial configuration
q0 and a goal configuration qg, we create samples along
the boundary of all hypercubes at some resolution. We use
the steering method to compute the distance between every
pair of samples in the same hypercube. Then, we find the
shortest path in the graph induced by these samples, using a
straightforward A* search.



scenario ε number of cells running time
Figure 5a 0.2 1350697 148
Figure 5b 0.3 4630896 332

TABLE I: Performance for robot arm system.

The heuristic function we used is a lower bound on
the distance between the sample represented by the state
to the goal, which can be easily computed based on the
Euclidean distance in the workspace and the maximum
velocity. For specific systems, we expect designing a more
accurate heuristic function to be possible.

We take the 3R planar arm 4R planar arm as test cases for
the planning algorithm; two example resulting trajectories are
shown in Figure 5. We implement the algorithm in C++ and
conducted tests on a modern desktop machine (iMac) with an
Intel Core i5 2.7 GHz CPU and 16GB RAM. Table I shows
the running times, memory, and number of cells generated
while constructing representations of c-space for the figures
shown. Most of time is spent in the collision detection, since
we only use an elementary method to check collision.

VII. CASE STUDY: REEDS-SHEPP CAR

In this section, we show how to apply the decomposition
algorithm to other systems, in which metric balls are hard to
compute, including non-holonomic systems, using the Reeds-
Shepp car as an example. Remember that the crucial part of
the decomposition algorithm is to test a given hypercube
Q is subconvex with respect to Cf without false positive.
We gave a general approach based on Lipschitz continuity
of the steering method in Sec. IV. However, the resulting
hypercubes tend to be smaller than we would like.

Here, we give another (numerical) procedure for testing
the subconvexity of a hypercube. Compute the swept volume
in the workspace for all trajectories connecting all pairs
of configurations in the hypercube. If the swept volume is
collision free, then this hypercube is subconvex by definition.

Computing this swept volume analytically is difficult for
most systems. Thus, instead of computing swept volume
analytically, we approximated the swept volume numerically
in the following way: first, densely sample configurations
within the hypercube and use the steering method to com-
pute trajectories between all pairs of configurations. Second,
compute an approximate bounding volume for all trajectories
in the workspace. If the bounding volume is collision free,
then this hypercube can be considered subconvex. By using
this numerical testing procedure, the size of the subconvex
hypercube found by the decomposition algorithm can be
greatly increased.

Optimal trajectories for the Reeds-Shepp car can be found
analytically, and we use the optimal trajectory solver as the
steering method [17]. The configuration space to be [−π,π]3

and the car is represented as an isosceles triangle with base
length 0.25 and height 0.25. The resulting trajectories are
shown in Figure 6 and the performance of Algorithm 1 for
4R planar arm system is in Table II.

(a) (b)

Fig. 7: Several example trajectories in different environ-
ments of the Reeds-Shepp car. Orange triangles indicate
common goal configurations. Shaded polygons are obstacles
in workspace. Solid curves around obstacles are the boundary
Cε in work space. Subconvex hypercubes are projected into
workspace as cubes. Dark green boundaries show the grown
obstacles in the workspace.

scenario ε number of cells running time in seconds
Figure 6a 0.2 24216563 312
Figure 6b 0.15 25218358 66

TABLE II: Performance for Reeds-Shepp car.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a definition of convexity that we believe
is useful for understanding the interplay between local,
optimal steering methods and the global structure of the
configuration space. This is our first work on this problem,
and we have not yet conducted exhaustive experimental
exploration of the properties of the cell decompositions
described. Initial results are promising, however, in that for
low-DOF systems, we are able to construct apparently very
good trajectories from constructed cell-decompositions, and
cells corresponding to large open spaces in the workspace
are quite large.

It may not be too surprising that a very large number
of cells is needed to represent the area of the configuration
space near obstacles, or that we do not escape the curse
of dimensionality. We intend to explore methods, perhaps
exploiting properties such as visibility, that allow sparser
representations near obstacles while still allowing some
approximation guarantees about optimality to be maintained.
We would also like to explore topological properties of
configuration spaces using these cell decompositions, along
the lines of recent work by, for example, Bhattacharya et
al. [24].

REFERENCES

[1] J. Barraquand and J.-C. Latombe, “Nonholonomic multibody mobile
robots: Controllability and motion planning in the presence of obsta-
cles,” Algorithmica, vol. 10, pp. 121–155, 1993.

[2] B. Donald and P. Xavier, “Provably good approximation algorithms
for optimal kinodynamic planning: Robots with decoupled dynamics
bounds,” Algorithmica, vol. 14, no. 6, pp. 443–479, 1995.



[3] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, June 2011.

[4] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards.” Pacific Journal of Mathematics, vol. 145,
no. 2, pp. 367–393, 1990.

[5] H. Yeh, S. L. Thomas, D. Eppstein, and N. M. Amato, “UOBPRM: A
uniformly distributed obstacle-based PRM,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2012, pp. 2655–2662.
[Online]. Available: http://dx.doi.org/10.1109/IROS.2012.6385875

[6] J. Denny and N. M. Amato, “Toggle PRM: A coordinated mapping
of c-free and c-obstacle in arbitrary dimension,” in Algorithmic
Foundations of Robotics X - Proceedings of the Tenth Workshop
on the Algorithmic Foundations of Robotics, 2012, pp. 297–312.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-36279-8 18

[7] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cam-
bridge University Press, 2006.

[8] J. Bialkowski, S. Karaman, M. W. Otte, and E. Frazzoli, “Efficient
collision checking in sampling-based motion planning,” in Algorithmic
Foundations of Robotics X - Proceedings of the Tenth Workshop on the
Algorithmic Foundations of Robotics, WAFR 2012, MIT, Cambridge,
Massachusetts, USA, June 13-15 2012, 2012, pp. 365–380.

[9] Y. Li, Z. Littlefield, and K. E. Bekris, “Sparse methods for efficient
asymptotically optimal kinodynamic planning,” in Workshop on the Al-
gorithmic Foundations of Robotics (WAFR), Istanbul, Turkey, August
2014.

[10] R. Deits and R. Tedrake, “Computing large convex regions of obstacle-
free space through semidefinite programming,” in Workshop on the Al-
gorithmic Foundations of Robotics (WAFR), Istanbul, Turkey, August
2014.

[11] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, no. 3, pp.
497–516, July 1957.

[12] H. Sussmann and G. Tang, “Shortest paths for the Reeds-Shepp car: a
worked out example of the use of geometric techniques in nonlinear
optimal control,” Department of Mathematics, Rutgers University,
New Brunswick, NJ 08903, SYCON 91-10, 1991.

[13] D. J. Balkcom and M. T. Mason, “Time optimal trajectories for
bounded velocity differential drive vehicles,” International Journal of
Robotics Research, vol. 21, no. 3, pp. 199–218, 2002.

[14] W. Wang and D. J. Balkcom, “Analytical time-optimal trajectories
for an omni-directional vehicle,” in IEEE International Conference
on Robotics and Automation, ICRA 2012, 14-18 May, 2012, St. Paul,
Minnesota, USA, 2012, pp. 4519–4524.

[15] M. Vendittelli, J.-P. Laumond, and P. Soueres, “Shortest paths to
obstacles for a polygonal car-like robot,” in Proceedings of the 38th
IEEE Conference on Decision and Control, vol. 1, Dec 1999, pp. 17–
22.

[16] G. Lafferriere and H. J. Sussmann, “A differential geometric approach
to motion planning,” in Nonholonomic Motion Planning, ser. The
Springer International Series in Engineering and Computer Science,
Z. Li and J. Canny, Eds. Springer US, 1993, vol. 192, pp. 235–270.

[17] J. Laumond, Robot motion planning and control, ser. Lectures Notes
in Control and Information Sciences 229. Springer, N.ISBN 3-540-
76219-1, 1998.

[18] A. Bellaı̈che, “The tangent space in sub-Riemannian geometry,” in
Sub-Riemannian Geometry, ser. Progress in Mathematics, A. Bellaı̈che
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