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Abstract—This paper investigates the connection between the
kinematics of robots arms and the shortest paths for mobile
robots. Lagrange multipliers are used to show that the shortest
paths are equivalent to arms in configurations that balance an
external force, while applying equal torques and forces at each
joint. Analysis of the arm Jacobian yields a further geometric
interpretations of optimal paths, constraining the locations of
rotation centers and the directions of translations that may occur
along optimal paths.

I. INTRODUCTION

The kinematics of serial robot arms are taught in university
robotics courses and textbooks using standard notation. Mobile
robots driven using constant controls are much like arms:
controls rotate or translate the robot, creating an arm-like
path that reaches different locations based on the durations
of each control, as shown in Figures 1 and 2. This paper
explores the connection between kinematics of robot arms and
particularly, the shortest or fastest paths for simple models of
mobile robots.

The primary contribution of this paper is in providing in-
sights into the geometry of mobile robot systems, and bringing
the notation in line with that for robot arms. The insights of
the paper do not directly enable theorems or algorithms that
could not be derived some other way; we nonetheless hope
that this interpretation will be as useful for others studying
efficient motion of mobile robots as it has been for us.

We will show how to write a generic parameterized repre-
sentation of the kinematics of mobile robot paths, much as the
Denavit-Hartenberg conventions and homogeneous transform
matrices provide kinematics for robot arms.

We then turn to shortest or fastest paths for mobile robots.
Although a motion planner may optimize any of several
objective functions, a natural first step is to understand shortest
paths for a vehicle. We study time-optimal trajectories, as a
generalization of shortest paths – the shortest paths are time-
optimal if each segment is followed with equal speed. We show
that the time-optimal paths for the Dubins car and similar
systems are entirely analogous to robot arms in geometric
configurations in static balance with an external force applied
to the arm, and unit forces and torques applied at the joints.

We focus on planar systems in this paper, but most of the
principles are easily extensible. We show how the derived ge-
ometry applies to a 3D Dubins airplane or submarine model, a
system which has been of some interest to the robotics optimal
control community, but which is not yet well understood.

II. MODEL AND ASSUMPTIONS

Detailed models of mobile robots involve dynamics de-
scribed as differential equations that must be integrated. How-

ever, simpler kinematic models are often useful for gaining a
basic understanding of robot behavior, and have been used in
motion planning and design planning for systems ranging from
wheeled or humanoid robots, to parts pushed by arms [24], to
steerable medical needles [2].

The Dubins car, the Reeds-Shepp car, the differential drives,
and the omni-directional robots for which the time-optimal
trajectories are known analytically are all kinematic models.
The Dubins car, for example, may be thought of as a particle
at a location (x, y) in the plane, with a heading of θ, and a unit
forwards velocity v = 1; the control is the angular velocity of
the vehicle, which is bounded to be in some symmetric range,
ω ∈ [−1, 1]. The obvious kinematic controls for the differential
drive and three-wheeled omnidirectional robots are the speeds
of the wheels, which are independently bounded.

To unify the disparate models, the thesis of Furtuna [17]
shows that any of these four systems can be modeled as a
rigid body in the plane, with generalized velocity controls
(vx, vy, ω), where vx is the forwards velocity in the frame of
the robot, vy the sideways velocity, and ω the angular velocity.
We have ẋ

ẏ

θ̇

 =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 vx
vy
ω

 . (1)

The trajectory of the body is then given by Lebesgue integra-
tion of the right hand side of the equation, with the controls
Lebesgue-integrable functions of time.

Constraints on the controls can be mapped into this space,
and in each of the four cases described, are linear. Other
systems, such as rigid objects under frictional pushing manipu-
lation by an arm, are also described by this model, with linear,
but perhaps asymmetric, bounds on the generalized velocity
controls.

Some motion planners, including Rapidly exploring Ran-
dom Trees (RRTs) [23], require the system to be described
using a small set of motion primitives. For the Dubins car,
for example, one might select a left-arc of a circle, a right-
arc of a circle, and a forward translation action, each of
fixed duration, as the primitives. Very conveniently, the work
of Dubins [16] showed that the corresponding controls are
sufficient to provide optimality, if there are no obstacles.

Both the fixed duration of the primitives, and the presence
of obstacles, may prevent planners from achieving optimality
or even an approximation. For example, consider a space in
which a single circular arc of radius greater than 1 is cut out of
a rectangular obstacle. The Dubins car can follow the curve,
and there is only one path, so it is optimal – but the chosen



motion primitives are not sufficient. Nonetheless, the common
use of motion primitives motivates the study of optimal paths
for a given finite set of controls; we would at least like motion
planners to do as well as possible with the primitives they are
given. Further, a technique for computing the optimal paths
in an obstacle-free space may serve as the steering method
required for other planners that provide probabilistic approx-
imate optimality (PRM* [22]), or guarantees of approximate
optimality [3].

We choose a model in which the motions are a finite set of
planar rotations and translations, or for 3D problems, twists.
Each of these motions is generated by applying a constant
control in Equation 1. The problem of finding optimal paths
is then to find the correct sequence of motions, and a duration
for each motion. We focus primarily on time optimality in
this paper, as a generalization of the shortest paths studied by
Dubins [16] and Reeds and Shepp [29].

A twist is a rotation around a rotation axis combined with a
translation parallel to that axis; Chasle’s theorem indicates that
every 3D rigid body displacement is a twist [27]. A differential
twist has an axis and a pitch, the ratio of translational to
rotational velocity. We define a constant-velocity arm-like
system to be a system whose kinematics are described by
a sequence of constant-velocity differential twists connected
by rigid links. Further, the twists must be selected from a
finite set, such that each twist axis is fixed with respect to the
previous link, with known pitch.

A planar 2R arm for which the joint angles θ1 and θ2
are driven with constant velocity of ±1 is a simple arm-like
system; the two zero-pitch twists are described by the two joint
axes, which are perpendicular to the plane and move with the
joints. In a 3D arm with revolute and prismatic joints, the
joint axes locations with respect to the prior joint frames are
described by Denavit-Hartenberg parameters [13].

The primary generalization of arm-like systems (with re-
spect to arms) is that we permit each following joint to be
selected from some finite set, rather than being of known type.
For example, a shortest path for the Dubins car may be thought
of as an {Rl, P,Rr}{Rl, P,Rr}{Rl, P,Rr} arm-like system,
where left-revolute, prismatic, or right-revolute joints must be
selected from each of the three sets to describe the sequence of
actions for the particular path. Once actions have been selected
giving the structure of the trajectory, the trajectory is now a
simple arm.

For the Dubins car, a three-link arm is sufficient to describe
all shortest paths; for the Reeds-Shepp car, four links may
be needed. For other vehicles, more links may be needed. The
goal of finding an optimal trajectory is to both select a suitable
structure, and a duration for each control.

III. RELATED WORK

Much current work on optimal motion for robots is built
on either the Hamilton-Jacobi-Bellman (HJB) equations [6],
or Pontryagin’s Maximum Principle (PMP) [28]. The HJB
equations provide sufficient conditions for optimality, suitable
for numerical solution. On the other hand, PMP provides
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Fig. 1. A three-action and a four-action trajectory from a start (1) to a goal
(4 or 5), for a Reeds-Shepp car. The ‘simple’ trajectory is slower than the
optimal trajectory, ‘generic’.
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Fig. 2. Arms with kinematic structures (RPR and RRRR) corresponding to
the trajectories in Figure 1.

a strong necessary condition on optimality and the local
structures of control functions, leading to analytical results
for some systems.

In 1957, Dubins solved the problem of finding the shortest
planar curve of bounded curvature that connects to given
tangent vectors [16] using what he called R-geodesics. The
control strategy following these curves corresponds to the
kinematic time-optimal control strategy for a cruising airplane
at a given altitude, or for a car with bounded steering radius.
Later in 1990, Reeds and Shepp extended the approach to
find time-optimal trajectories for a planar robotic cart that can
move both forwards and backwards, and turns at a bounded
angle [29]. The optimal control problem was then further
invested by robotics community for application to mobile robot
planning. The solution proposed by Reeds and Shepp was
further generalized for the given model [8, 34], and control
synthesis was later presented by Soueres and Lamound [31].
PMP was the basis for much of this work.

Other kinematic models of mobile agents have also
been studied, including differential-drive [5, 11] and omni-
directional vehicles [4, 36]. The PMP-based approach was
further extended to derive an algorithm to find time-optimal
trajectories for arbitrary planar rigid bodies with arbitrary
translation and rotation controls [20, 19, 18].

Dynamic models of mobile robots may be more accurate



than simple kinematic models, but analysis of optimal motion
for dynamic systems appears difficult, and analytical solutions
can be hard to find. In fact, it has been shown that optimal
trajectories do not even exist for apparently obvious models of
motion for bounded-acceleration vehicles [32, 33]. Chyba et
al. have studied the motion of motion of simple underwater
vehicles [12], and found some interesting characterizations
of trajectories. Ships are affected by the wind, and optimal
trajectories under a constant velocity field have been studied
by Dolinskaya [15].

Recently, Lyu et. al. [26, 25] studied the implications of
introducing a cost for control switches, to simulate the effect
of acceleration, or to penalize jerky trajectories with many
switches, using Blatt’s Indifference Principle (BIP) [7].

Much of the existing work on optimal control focuses on
scenarios where there are no obstacles, as the introduction of
obstacles makes the already complex problem even more chal-
lenging. However, for simple systems, there has been study on
shortest paths among obstacles, including work by Vendittelli
et. al. on how to measure the distance between a car-like robot
and obstacles [35, 21]. For simple car-like systems, planning
among simple obstacles has also been studied [1, 14].

Chitsaz and Lavalle considered a simple extension of Du-
bin’s car to allow motion in 3D [10], and modeled the
airplane as a Dubin’s car with altitude control. Building upon
the extensive results on Dubin’s car models, analytical and
numerical approaches have been used to study optimal control
problems in 3D [37].

IV. FORWARD KINEMATICS FOR SIMPLE MODELS OF
MOBILE ROBOTS

Forward kinematics relations for an arm are described
using homogeneous transform matrices, parameterized using
Denavit-Hartenberg conventions that provide a standard way
to measure the geometry of a robot arm. In this section,
we describe how transform matrices may similarly describe
kinematic motion of mobile robots.

The kinematics of a 3R arm might be given in the form
0T3 = 0T1

1T2
2T3, (2)

where transform matrix iTj expresses the location and orien-
tation of frame j with respect to frame i; each new link in the
arm can be analyzed in isolation, and then the homogeneous
transform matrices are simply multiplied together to describe
the relationship between the world frame and a frame attached
to the final link or end-effector [13].

The structure of each homogeneous transform matrix is
determined first by whether the joint is a revolute or pris-
matic joint, and second by the geometric relationship between
successive joints, measured by DH parameters. For an arm-
like system, we would like to write a single equation for
the kinematics, but the structure of the arm is not known in
advance: a Dubins curve might be either an RPR arm, or 3R
arm, depending on the particular path.

There are exponentially many structures for an arm-like
system, with the base determined by the number of primitives

available, and the exponent determined by the number of
actions in the path; it is exactly this exponential tree that
an RRT explores during a search. In order to avoid writing
out exponentially many kinematics equations, we need to
somehow unify translation and rotation actions, so that a single
transform matrix can express either a translation or rotation.

A well-known trick for unifying rotational and translational
rigid-body motions in the plane is to describe any rigid body
motion using a rotation center. A translation is represented
using a rotation about a point “at infinity” in a particular di-
rection, using an idea from projective geometry. This aproach
is used, for example, in Reuleaux’s geometric method for
analyzing whether an object is immobilized by point fingers,
as described in [27].

We can write out a transform matrix in terms of the location
of the rotation center. Selig [30] gives us the homogeneous
transform matrix for planar rotation around a point c:[

R (I2 −R)c
0 1

]
, (3)

where R is a 2X2 rotation matrix and I2 is the identity matrix.
The challenge is that as the rotation center gets further and

further away, and the motion becomes more translation-like,
the action becomes a shorter and shorter duration rotation
around a larger and larger circle – computing the matrix in the
obvious way becomes more and more numerically unstable,
and the matrix for a pure translation, with the rotation center
at infinity, has zero over zero terms.

However, these particular zero over zero terms are well-
behaved. If we make use of the well-known cardinal sine
function,

sinc (x) =

{
sin x
x , x 6= 0

1, x = 0
(4)

and by analogy, define a differentiable “cardinal versine”
function,

verc (x) =

{
1−cos x

x , x 6= 0

0, x = 0
, (5)

we may obtain the following transformation matrix that cor-
responds to the application of control u = (ẋ, ẏ, θ̇) for time
t:

T (u, t) =

 cos θ̇t − sin θ̇t ẋt sinc θ̇t− ẏt verc θ̇t
sin θ̇t cos θ̇t ẋt verc θ̇t+ ẏt sinc θ̇t
0 0 1

 .
(6)

A trajectory with a piecewise constant control law can be
given as a sequence of (ui, ti) pairs, where each consecutive
control ui = (ẋi, ẏi, θ̇i) is applied for time ti. Given such a se-
quence, we first assemble the T (ui, ti) integration matrices as
above. These matrices compose by post-multiplication. Thus,
the final state of trajectory [(u1, t1), (u2, t2), . . . (un, tn)],
starting from state q0 (equivalently specified by the robot frame
to world frame transform matrix T0) is:



Tf = T0T (u1, t1)T (u2, t2) . . . T (un, tn). (7)

The active control at time t ≤
∑n

j=0 tj is the control
corresponding to the largest index k such that t ≥

∑k
j=0 tj .

The state at time t is thus:

T (t) = T0T (u1, t1)T (u2, t2) . . . T (uk, tk)T (uk+1, t
′), (8)

where k is the largest index such that t′ = t−
∑k

j=0 tj ≥ 0.
Equation 6 is quite useful from a practical perspective,

and makes implementing a unified simulator for Dubins and
Reeds-Shepp cars, differential drives, omnidirectional vehi-
cles, and variations, as easy as computing the forward kine-
matics for a planar robot arm. The inputs are the structure
of the trajectory, given by indices into the control set for the
particular vehicle, and durations for each control; the output
is a transform matrix describing the final configuration of
the vehicle. Our implementation is about 30 lines of simple
Python code; the only if-statement is in the implementation
of the cardinal versine, for which we used a Taylor series
approximation of verc (x) ≈ x/2 + x3/24 + x5/720
near zero. There is an additional benefit – Equation 6 is
numerically stable even for systems that include primitives
that are nearly translations, such as a differential drive with
slightly mismatched wheel sizes or motors.

Equation 6 is in fact quite useful not just for mobile robots,
but for arms themselves, unifying the kinematic equations for
all arms composed of revolute and prismatic joints. Although
we focus on the planar case in this paper, extension to three
dimensions appears straight-forward.

V. LAGRANGE MULTIPLIERS AND TIME-OPTIMAL
TRAJECTORIES

The modern approach to studying optimal trajectories for
Dubins-like systems makes use of Pontryagin’s Maximum
Principle (PMP) [28, 34]. Based on the control equations,
a differential equation is derived. If possible, that differen-
tial equation is integrated, yielding the Hamiltonian for the
system. PMP indicates that if optimal trajectories exist, it is
necessary that the control at each instant of time maximizes
the Hamiltonian (the maximization condition). Furthermore,
for time-optimal trajectories, the Hamiltonian is constant (the
transversality condition) [28].

Applying this technique to rigid bodies in the plane, [18]
showed that for these systems, the Hamiltonian is:

H = k1ẋ+ k2ẏ + θ̇(k1y − k2x+ k3), (9)

where k1, k2, and k3 are constants of integration that must
be selected so that the trajectory reaches a given goal, x, y
and θ give the configuration of the robot at a particular time.
This necessary condition is quite strong, and with sufficient
geometric analysis of a particular system, permits the synthesis
of optimal trajectories over the configuration space to be
found.

One challenge in extending this approach to other systems,
including 3D, is that for arbitrary control inputs, the motion

of the vehicle will not typically be an analytically described
curve such as an arc of circle or straight line. This suggests
that for most systems, we will not be able to integrate the
adjoint equations to find the Hamiltonian. Another challenge
is that PMP is somewhat opaque in its results. Why should
this particular Hamiltonian describe optimal trajectories for a
rigid body in the plane, and what are the implications?

By limiting ourselves to the study of a finite set of integrable
motion primitives, we may hope to avoid the difficulty of
integrating the adjoint, and find some results using no more
than undergraduate calculus. We will see that those results
have a nice geometric interpretation; in fact, one that has
already been studied in the context of robot arms.

Given a known sequence of motion primitives, the goal is
to find durations t1, . . . tk that so the vehicle reaches a given
goal with minimum time. The objective function to maximize
is f(t) = t1 + t2 + t3 + · · · + tk. There are also equality
constraints h(t) that enforce the constraint that the forward
kinematics, as described by Equation 7, must carry the vehicle
to the goal. Using the method of Lagrange multipliers, we want
to find a vector t such that

∇tf(t) = λ∇th(t), (10)

at points where h(t) = 0.
Let us consider a case where the goal is to get some point

on the robot to a final configuration (xg, yg). The functions
x(t) and y(t) give the final location of the point after applying
the primitives. For this problem, ∇tf(t) is simply a k-vector
of ones. Writing the Langrange condition out in matrix form,
each constraint gets a column in a matrix. For an example
trajectory structure composed of four actions,

∂x/∂t1 ∂y/∂t1
∂x/∂t2 ∂y/∂t2
∂x/∂t3 ∂y/∂t3
∂x/∂t4 ∂y/∂t4

(λ1λ2
)

=


1
1
1
1

 . (11)

A. Force-torque balances and the principle of virtual work
For each particular trajectory structure, we could write out

the functions hi, and then compute the partial derivatives. But
the expressions for hi are lengthy. Instead, we will now explore
the geometry of Equation 11. The matrix of partials on the left-
hand side is clearly a Jacobian matrix of the constraints. In
fact, since the constraints express the forward kinematics of
this arm-like system, the matrix is in fact the transpose of the
Jacobian for a corresponding planar arm, which we would
more typically see with partials w.r.t. joint angle variables θi.
We have

JTλ = 1 (12)

Differential kinematics for an arm are written using a
Jacobian matrix. But also, the transpose of the Jacobian matrix
appears in the solution for a standard manipulation problem.
Specifically, the relationship between between forces at the
end effector f and torques at the joints τ when the arm is in
static equilibrium is given by

JT f = τ. (13)



Therefore, the shape of a time-optimal trajectory for a
Dubins car or any other arm-like system is equivalent to an
arm in static force-torque balance with some external force f ,
in a configuration such that all of the torques at the joints (or
forces at prismatic joints) are unit.

The static force-torque balance relationship given by 13 is
typically justified using an argument based on the principle
of virtual work [13], and the transposed Jacobian converts
the external force into torques at the joints. To find optimal
trajectories, we must find both a configuration of the ‘arm’ and
an external force such that unit forces/torques at the joints
balance the force – in some sense, each action in a Dubins
curve must make an equal contribution.

The careful reader might note that the goal for a typical
Dubins vehicle is to arrive at a particular orientation as well
as location; for simplicity we have neglected orientation. To
complete the analysis, a third column may be added to the
Jacobian transpose, and a third λ value; this is equivalent to
adding a revolute joint to the end-effector of the robot arm,
and applying an external wrench (a force and torque) and not
simply an external force. The final column of the Jacobian
transpose will then be composed of constant 1s (for rotations)
and 0s (for translations).

VI. THE CROSS-PRODUCT RULE FOR THE JACOBIAN

Textbooks typically present two ways of computing the
Jacobian for a robot arm. First, one may compute the partial
derivatives directly from the forward kinematics equation.
Second, one may observe that for a particular configuration,
columns of the Jacobian corresponding to revolute joints are
given by the cross product of the corresponding joint axis
with the vector from the axis to the end effector, yielding the
contribution to the x, y motion of the end effector due to an
infinitesimal motion of that joint.

For rotation actions, the partials in the corresponding row
of JT (Equation 11) can be computed using the cross-product
rule, treating each rotation center as a revolute joint of a
mechanical arm. Let (rxi, ryi) be the location of the ith joint,
a rotation center. Then the motion of the final location of the
body should be perpendicular to the axis of rotation (the z
axis) and to the vector from the joint to the location; the
magnitude should be proportional to the rotational velocity.(

∂x/∂ti
∂y/∂ti

)
=

(
−(y − ryi)
x− rxi

)
(14)

This observation gives a very direct geometric constraint on
the shape of optimal trajectories for arm-like systems. The dot
product of each of these vectors with the λ-vector should be
1, and for now assume that the rotational velocities all have
magnitude 1. Choose a vector (λ1, λ2). Then each rotation
center must be an equal distance from a line perpendicular to
this vector. Negative rotation centers will be on one side of
the line, and positive rotation centers will be on the other side
of the line.

If rotational velocities have different magnitudes, then there
will be a set of parallel lines (which we might refer to as

a comb, such that all rotation centers with the same angular
velocity must fall on the same line.

A similar result holds for translation actions – the transla-
tions must make unit dot product with the λ1, λ2 vector.

VII. DERIVING THE HAMILTONIAN USING LAGRANGE
MULTIPLIERS

The simplicity of using Lagrange multipliers to compute
necessary conditions for trajectories derived using a finite set
of motion primitives comes at a price. Equation 11 is not quite
as elegant as the Hamiltonian equation for the planar arm-like
systems (Equation 9). What is worse, although Equation 11
holds for any particular trajectory structure, it does not tell
us how to choose good candidate trajectory structures, while
the maximization condition on the Hamiltonian gives some
constraints on how the next control must be chosen, given the
previous.

However, some algebraic manipulation of the equation
involving the Jacobian allows an equation in exactly the same
form as the Hamiltonian, without the need to integrate any
differential equations. This is quite exciting, as it gives some
hints about cases where the adjoint equation of PMP may be
integrated analytically, and suggests an alternate approach to
computing the Hamiltonian, without requiring any particular
analytical integration cleverness. Indeed, in future work, we
hope to use this technique to derive an expression for the
Hamiltonian for a 3D Dubins vehicle. Once the form of
the Hamiltonian is known, proving that it is the solution to
the adjoint equation may be accomplished by taking some
derivatives.

Here is how we may derive the Hamiltonian from the
Lagrange-multipliers equation. The vector (λ1, λ2) has some
magnitude. Without loss of generality, replace the λ vector by
some unit vector (k1, k2), and appropriately scale the vector of
ones by some scalar H . In the following example, the arm is a
RPRP arm: a rotation-translation-rotation-translation trajectory
for the mobile robot.

−ω1(y − r1y) ω1(x− r1x)
v2p2x v2p2y

−ω3(y − r3y) ω3(x− r3x)
v4p4x v4p4y

(k1k2
)

=


H
H
H
H

 (15)

Notice that for the first action, ω1 is non-zero, and we may
imagine a translational component v1 with value zero. We may
thus add a zero-velocity component to the first row with no
effect. Similarly, we can add zero-angular velocity components
to the second and fourth rows. Thus, we may write any row
as: (

−ωi(y − riy) + vipix ωi(x− rix) + vipiy
)

(16)

We therefore have the following observation. There exist
constants such k1, k2, and H such that for any i,

k1(−ωi(y−riy)+vipix)+k2(ωi(x−rix)+vipiy) = H. (17)



Note that (−ωi(y − riy) + vipix) gives the x velocity of a
point on the robot due to control i, and (ωi(x− rix) + vipiy)
gives a y-velocity. We therefore have

k1ẋ+ k2ẏ = H. (18)

This is analogous to Equation 9, missing only the k3
term. Considering final orientation of the robot as part of the
analysis, with the third column of JT as described above,
yields the expected form. As mentioned, this result is weaker
than that derived from PMP, in that it only expresses the
transversality condition at switches, but was derived in a
straightforward way without integration.

VIII. A 3D DUBINS VEHICLE

Extending work on Dubins cars and similar systems to 3D
is a problem of some interest in the robotics community. Air-
planes are not particular well-modeled by kinematics models,
but shortest curves composed of arcs of circles and straight
lines may nonetheless be of practical interest. For example,
steerable medical needles are spatial; current approaches to
planning their paths forfeit optimality for simplicity and use
Dubins curves only in particular planes to find a path the the
goal. Results for spatial Dubins vehicles so far are exciting
but not yet satisfactory, placing either very strong constraints
on motion out of the plane [9], or achieving only analysis of
particular cases or motions [12], in the case of acceleration-
bounded models.

In this section, we provide no complete solution, but do
make a few geometric observations about an arm-like model
that might be considered a sort of 3D Dubins vehicle. To
describe the primitives for this model, attach a local frame
to the airplane, such that the local x axis points forwards,
and the x-y plane is used to describe yaw motion for the
vehicle. Select unit-speed forward translation and left- and
right- arcs in this plane as primitives. Also select up- and
down- arcs to corresponding to pitch motions. Finally, permit
left and right roll motions, with zero turning radius. This gives
a total of seven primitives: six rotations, and one translation.
Finding approximate paths for this system is well within the
capabilities of an RRT algorithm or similar.

Because the system is arm-like, we may observe that time-
optimal, or in this case, shortest, paths to get a single point
on the vehicle to a desired location must satisfy the equation:

JT

 λ1
λ2
λ3

 =


1
1
1
. . .

 . (19)

Applying the cross-product interpretation of the Jacobian,
we find that the arm must be in a configuration such that
there must be a λ vector (analogous to an external force) such
that motion of the end effector due to each joint motion must
have the same projection onto the fixed λ vector.

The set of vectors that has makes a dot product of 1 with
some other vector all have endpoints that lie on a plane. Thus
we see that joints must be aligned in a particular geometry

such that motions due to those joints lie on a plane, a strong
constraint on the locations of control switches.

IX. CONCLUSION

This paper presented a geometric interpretation of motion
for Dubins and similar vehicles as arm-like systems. There
were three main results: 1) the kinematics of these vehicles
may be described simply using easily computable homoge-
neous transform matrices computed in such a way as to
unify translation and rotation actions, 2) a Lagrange multiplier
method demonstrates that the time-optimal motion for these
vehicles are analogous to arm-like systems in configurations
of static force-torque balance, and 3) the cross-product method
for computing columns of the Jacobian for arms yields inter-
esting geometric insights into the optimal trajectories, for both
planar and spatial systems.

We also showed that the results yielded by the Lagrange-
multipliers method can be manipulated into the same form as
the Hamiltonian equation; this connection may be of potential
practical use in seeking out spatial problems for which the
Hamiltonian may be found analytically. This approach may
also provide a welcoming gateway for students interested in
studying optimal control problems, while using only familiar
tools from calculus.

A significant weakness of this paper is that it does not at
all discuss the issue of existence of optimal trajectories. The
results describe properties of trajectories, and those properties
hold across all trajectory structures. However, unlike the Max-
imum Principle, no hints as to how to choose those structures
are given. How do we know optimal trajectories exist, and
are of finite length? Prior work by Lyu [26, 25] address this
issue in part by adding fixed costs for each switch between
controls, and shows that this ensures existence with only weak
requirements on the set of available controls.

This paper also did not discuss practical search techniques
for optimal trajectories, choosing rather to focus on geometric
insights. We hope and believe that some of these insights will
prove a useful starting point for reasoning about and effective
search strategies for optimal 3D trajectories.
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