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Abstract

In this paper, we examine non-stretchable 2D polyg-
onal cloth, and place bounds on the number of fin-
gers needed to immobilize it. For any non-stretchable
cloth polygon, it is always necessary to pin all the
convex vertices. We show that for some shapes, more
fingers are necessary. No more than one third of the
concave vertices need to be pinned for simple poly-
gons, and no more than one third of the concave ver-
tices plus two fingers per hole are necessary for poly-
gons with holes.

1 Introduction

Cloth manipulation is difficult as a result of the flex-
ibility of cloth. When cloth is suspended from one or
two points, it develops buckles in a manner that is
hard to predict. Grasps that minimize buckling will
therefore make it easier to handle a piece of cloth,
such as during the flattening or folding of laundry.
If we can entirely immobilize a piece of cloth in a
flattened configuration, we have full configuration in-
formation with which we can plan further actions.

We make a few simple assumptions about the cloth
grasping problem. The cloth is non-stretchable, and
we will place some number of point fingers on the
cloth. These fingers are ‘pinned’ to the plane; once
they are placed, they do not move and directly im-
mobilize the point on the cloth underneath them.

a) b) c)

Figure 1: Three flat cloth shapes grasped by fingers.
All but b) are immobilized.

The fundamental questions in grasping ask how
many fingers are needed for a grasp, and where they
should be placed. Figure 1 shows three pieces of
cloth, all of which are immobilized except for b).

Fact 1. Any line segment with pinned endpoints that
is fully contained in a polygon (the endpoints are mu-
tually visible) is immobilized.

First order line segments of this type are indicated
by solid lines in Figure 1. If a point somewhere in the
polygon lies on a line segment between grasp points or
first order lines, then it too will be immobilized, since
the endpoints of this second order line are immobi-
lized. A few second order lines are shown as dashed
lines in the figure. This process can be repeated as
needed with higher order line segments until the en-
tire cloth is immobilized.

There are some cases where we cannot validate a
grasp by drawing immobilized lines between fingers.
Consider the polygon shown in Figure 2. No finger is
visible from another finger. However, no point in the
shaded hexagon can move further from any of the

1



x

Figure 2: Star grasped with three fingers.

(a) Arrows indicate pos-
sible instantaneous veloc-
ities.

(b) Paper polygon after
motion was applied.

Figure 3: Polygon that cannot be immobilized by
pinning convex vertices (closed circles).

fingers, so this region is immobilized; therefore the
entire polygon is immobilized.

To immobilize a cloth polygon, there must be a
finger at least at each convex vertex; otherwise, that
convex vertex will be free to move. In some cases,
pinning just the convex vertices is enough. However,
the piece of cloth shown in Figure 3 cannot be im-
mobilized by pinning the three convex vertices of the
shape. We have verified this result experimentally
(Figure 3(b)) and theoretically (Section 5.1).

This polygon is representative of a class of poly-
gons that we call pinwheels. These polygons all re-
quire more than nconvex fingers for immobilization.
In Theorem 6, we will show that the upper bound
is nconvex +

⌊
1
3nconcave

⌋
fingers for simple polygons.

This bound is tight; there exist polygons that require
this many fingers for immobilization.

2 Related Work

Minimal grasping has always been a challenging prob-
lem in robotics, with numerous papers on the subject,
as evidenced in Bicchi and Kumar’s survey of theo-
retical work on grasping [Bicchi and Kumar, 2000].
The listing here is meant to be a subset of grasp-
ing work that is closest to this paper. Nguyen
examined the synthesis of planar force-closure
grasps [Nguyen, 1986]. Mishra, Schwartz, and
Sharir found bounds on the number of fingers
needed to grasp a rigid object [Mishra et al., 1987].
Rimon and Burdick showed that 3 convex fingers
suffice to immobilize any smooth or polygonal
planar object [Rimon and Burdick, 1995]. Er-
ickson et al. examined the use of disc-shaped
robots for capturing an arbitrary convex object
in the plane [Erickson et al., 2007]. Cheong
et al. gave bounds for the number of fin-
gers that immobilize a flexible chain of hinged
polygons [Cheong et al., 2007]. Rodŕıguez,
Lien, and Amato worked on motion planning
in an environment where every object is de-
formable [Rodŕıguez et al., 2006]. This type of
planning can also be applied to grasping problems.

There are two major types of polygon skeletons
that are similar to the support tree that we will
construct in Section 6.2. The first is the medial
axis [Preparata, 1977], which has the same num-
ber of vertices and edges as a support tree. How-
ever, medial axes allow for curved edges. The
second similar type of skeleton is the straight
skeleton [Aichholzer et al., 1995], which has straight
edges, but contains more vertices and edges than are
needed for a support tree.

This paper also depends on general con-
cepts in visibility, such as those surveyed by
Ghosh [Ghosh, 2007], and on triangulation and its
applications to the art gallery problem, as explored
by O’Rourke [O’Rourke, 1987].

Our problem is similar to that of trying to de-
termine if a structure consisting only of cables is
infinitesimally rigid when it is pinned at a set of
points. This type of problem is briefly mentioned
in Connelly’s work on tensegrities and rigidity the-
ory [Connelly, 1999].
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There has been significant exploration of cloth
behavior in the field of computer graphics. Some
examples include Breen’s work on building cloth
simulations using real world measurements as in-
puts [Breen et al., 1994] and Choi and Ko’s work on
cloth buckling [Choi and Ko, 2002].

Cloth manipulation has been used in various
laundry folding projects; however, only a few
fingers are used for grasping in these projects.
Ono et al. have worked on a manipulator for
cloth handling [Ono et al., 1991], as well as co-
operative systems combining touch and vision
to unfold cloth [Ono et al., 1995]. Salleh et
al. have developed a system in which they
trace cloth boundaries with grippers to flatten
clothes [Salleh et al., 2004]. Hamajima and Kakikura
have worked on developing planning strategies for un-
folding clothes [Hamajima and Kakikura, 2000].

3 Cloth Models and Definitions

Cloth can be modeled in several different ways. In the
graphics and simulation worlds, ball and spring mod-
els are quite common. However, for our approach, we
want the cloth to not stretch, which suggests a devel-
opable surface model.

We will use a model that is ‘almost’ a developable
surface model. We assume the cloth cannot stretch,
but that the cloth may compress slightly. Our upper
bound on the maximum number of fingers needed
to grasp cloth (nconvex +

⌊
1
3nconcave

⌋
) holds for de-

velopable surfaces, but we only discuss the existence
of polygons requiring this many fingers for the com-
pressible model.

3.1 Support Graphs

To discuss polygon immobilization, we use a specific
type of polygon skeleton called a support graph; an
example is shown with dotted lines in Figure 4.

Definition 1. A support graph for a polygon is an
embedded planar graph contained within the poly-
gon, such that every point of the polygon falls on a
line segment (possibly of length zero) that

Figure 4: Example of a support graph in a cloth poly-
gon.

• is completely contained within the polygon, and

• has endpoints that are points of the embedded
graph (on an edge or at a node).

A support tree is a support graph with no cycles.

It is clear that if a support graph for a polygon
is immobilized by some set of fingers, every line seg-
ment specified in the definition is immobilized, and
therefore the polygon is immobilized. We can exam-
ine the immobilization of support graphs by placing
fingers at vertices.

Definition 2. A pinned vertex is a graph or poly-
gon vertex that is held in place by a finger. This is
indicated in diagrams by a closed circle. (Unpinned
vertices have open circles).

Definition 3. A positively-spanned vertex is a
vertex in a graph whose adjacent edges positively
span R2. (For a definition of positive linear spans,
see [Davis, 1954].)

There are many ways to construct a support graph
for a polygon. Figure 4 shows a support graph con-
structed by hand, but we can always easily construct
a (possibly more complex) support graph by triangu-
lating a polygon. Therefore, if a triangulation of the
polygon is immobilized, the polygon is immobilized.

We assume a model of cloth that allows the cloth
to compress. In this case, if a triangulation of the
cloth is not immobilized by a set of fingers, the cloth
is not immobilized.
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Figure 5: Allowed motion of a non-positively-spanned
vertex.

4 Immobilizing Trees, Graphs,
and Polygons

As an approach to specifying the fingers required to
grasp a piece of cloth, we can first describe the fingers
needed to immobilize a connected, linear network of
non-stretchable string embedded in the plane. If this
network is a support graph for a polygon, then that
polygon is immobilized in 2D and 3D.

At a minimum, all not positively-spanned ver-
tices must be pinned in order to immobilize a non-
stretchable planar graph. The shaded region in Fig-
ure 5 illustrates the free motions of an unpinned and
non-positively-spanned vertex.

4.1 Immobilizing Non-stretchable
Graphs

Initially, we consider a non-stretchable tree, and as-
sume that all vertices have degree 1 or 3. Addition-
ally, we will assume that all interior vertices (non-
leaves) are positively-spanned vertices. These as-
sumptions will be relaxed later, but they are useful
in the first stage of the proof.

In the theorems that follow, we consider only first
order constraints on the free motions of vertices, since
linear constraints are sufficient for the proofs and sim-
pler to analyze. Using quadratic distance constraints
yields the same results. We will use the notation −→uv
to indicate a normalized vector pointing from ver-
tex u to vertex v. Figure 6 illustrates the following
lemma.

v u

vu

Figure 6: Restriction on allowed motions of u.

v u

vu

Figure 7: Base case (vertex v is pinned, as indicated
by the closed circle).

Lemma 1. Consider a planar non-stretchable tree,
with all vertices of degree one or three, and with only
positively-spanned interior vertices. Let all the leaves
(non-positively-spanned vertices) be pinned, except
for one leaf, labeled u. Let v be the vertex adjacent
to u. Vertex u cannot move into the half plane de-
fined by normal −→vu. (This can also be written as a
constraint of the form u̇ · −→vu ≤ 0.)

Proof. Induction Hypothesis: Consider a tree
subject to the assumptions with all leaves pinned ex-
cept for u, and let v be the vertex adjacent to u.
u cannot move into the half plane indicated by the
constraint u̇ · −→vu ≤ 0.

Base Case: The base case is a tree consisting of
only vertices v and u (Figure 7), with vertex v pinned.

Inductive step: Given a tree T , break it at vertex
v into two trees, T1 and T2. Let a be the vertex
adjacent to v in T1, and b be the vertex adjacent
to v in T2 (Figure 8). By the induction hypothesis,
T1 imposes the constraint v̇ · −→av ≤ 0 (equivalent to
v̇ · −→va ≥ 0), and T2 imposes the constraint v̇ · −→bv ≤ 0
(equivalent to v̇ · −→vb ≥ 0).
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Figure 8: Inductive step.

From our assumptions, we know that −→va,
−→
vb, and−→vu positively span R2. As a result, if both v̇ · −→va ≥ 0

and v̇ · −→vb ≥ 0 are satisfied, then v̇ · −→vu ≤ 0, proving
the induction hypothesis.

This lemma can be extended from restricted mo-
tion to immobilization.

Lemma 2. Consider a planar non-stretchable tree,
with all vertices of degree 1 or 3 that contains only
positively-spanned vertices in its interior. If all the
leaves of this tree are pinned, the tree will be immo-
bilized.

Proof. Consider a tree that satisfies Lemma 1, and
label its unpinned leaf u. Leaf u cannot move away
from its adjacent vertex v (u̇ · −→vu ≤ 0, which also
implies v̇ ·−→vu ≤ 0). If we now pin u, we impose a con-
straint on v of v̇ ·−→uv ≤ 0. Combined with the previous
constraints at v from the other adjacent edges (which
we know positively span R2 if edge vu is included),
this completely immobilizes v. The immobilization of
v can now be used to show that the vertices adjacent
to v are also immobilized. This immobilization can
be continued throughout the tree, showing that the
entire tree is immobilized.

This result can be strengthened to any non-
stretchable planar tree. The next theorems de-
pend on the concept of splitting vertices of a non-
stretchable tree or graph by pinning them. If a ver-
tex v has k adjacent edges, and we pin v, then this is
equivalent to having k pinned vertices all located at

the same point as v, with each vertex adjacent to ex-
actly one of the edges adjacent to v. Physically, the
resulting tree or graph is exactly equivalent to the
original tree or graph, as constraints do not propa-
gate past pinned vertices.

Theorem 3. Any planar non-stretchable tree em-
bedded in R2 (with vertices of any degree) that has
its non-positively-spanned vertices pinned is immobi-
lized.

Proof. First, we will remove the assumption that all
interior vertices must be spanned vertices, and we al-
low degree 2 vertices. If any vertex is non-positively-
spanned, then it is pinned, as is specified by the theo-
rem statement. Additionally, note that any degree 2
vertices can never have edges positively spanning R2,
and therefore must be pinned. If we break the tree
into a forest by splitting it at each non-positively-
spanned (and pinned) interior vertex, each compo-
nent of the forest will be immobilized by Lemma 2.
When joined, the resulting complete tree is still im-
mobilized.

Finally, we allow vertices of degree greater than
3. If such a vertex is non-positively-spanned, we can
simply use the argument above. If it is positively-
spanned, then we need to slightly rework the induc-
tive step of Lemma 1. If vertex v is of degree d > 3, it
will be split into d−1 subtrees (along all edges except
vu). By the inductive hypothesis, we know there are
constraints of the form v̇ · −→vai ≥ 0 for each subtree
Ti. We can pick a pair of subtrees Ti and Tj , such
that −→vai, −→vaj , and −→vu positively span R2. Now, as in
the original inductive step, this gives us the desired
constraint on u.

If we split a graph into a tree by adding one finger
per cycle (and pinning non-positively-spanned ver-
tices), the graph is immobilized.

Theorem 4. Any planar non-stretchable graph with
all non-positively-spanned vertices pinned and at least
one vertex pinned within each cycle is immobilized.

Proof. Pin one vertex per cycle of the graph. This
splits the graph at all of these pinned vertices. Split-
ting each cycle with one finger converts the graph into
a tree, with properties satisfying Theorem 3.
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Figure 9: Two types of cells (A and B) in a polygon
containing a support graph.

If no vertices in a cycle are pinned, there is no guar-
antee that the cycle is immobilized. In fact, in general
it is very likely that the cycle can move. There are
specific cases in which the cycle is immobilized (in
particular, if the edges supporting the cycle bisect
the exterior angles of the cycle), but these cases are
rare.

4.2 Grasping Polygons

A tree or graph embedded in a cloth polygon can be
used to show that the polygon is immobilized.

Theorem 5. If a cloth polygon contains a pla-
nar non-stretchable graph G such that non-positively-
spanned vertices of the graph correspond exactly to
the convex vertices of the polygon, then the graph is a
support graph for the polygon, and immobilizing the
graph immobilizes the polygon.

Proof. In order to fit the definition of a support graph
(Definition 1), every point in the polygon must lie on
a line with endpoints on the support graph.

Consider the polygon and graph shown in Figure 9.
Since non-positively-spanned vertices of the graph
(thin line) exactly map to all convex vertices, the
polygon (thick line) is divided up into two types of
cells. Cells that are contained within cycles of the
graph are trivial to handle (indicated by A in the fig-
ure). For any point within a cycle, any line through
the point has endpoints on the graph, and thus is
immobilized if the graph is immobilized.

The other type of cell is enclosed by graph edges
and a chain of (possibly zero) concave vertices on the
polygon boundary (B in the figure). The polygon
boundary must consist purely of concave vertices, as
a convex vertex would have a non-positively-spanned
graph vertex located at it, splitting the cell. Now,
consider any point x in the cell. Find the closest
polygon edge e. Extend a line through x parallel to
e until both ends of the line hit the boundary of the
cell. The endpoints must both lie on graph edges; if
this were not the case, the polygon boundary would
contain a convex vertex, and it does not. Therefore,
for any point in this type of cell, there exists a line
with both endpoints on the graph.

Since both types of cells satisfy the definition of a
support graph, G is a support graph. By definition
of a support graph, if G is immobilized, the polygon
is immobilized.

We can now show that nconvex+
⌊

1
3nconcave

⌋
fingers

are always sufficient to immobilize a polygon. In the
following proof, we view a triangulation of a polygon
as a graph embedded in the polygon.

Theorem 6. A simple cloth polygon can always be
immobilized by pinning nconvex+

⌊
1
3nconcave

⌋
vertices.

Proof. Portions of this proof are similar to
Fisk’s proof that an art gallery requires

⌊
n
3

⌋
guards [Fisk, 1978]. In both proofs, the main prob-
lem is placing one item (a guard or a pinned vertex)
per triangle.

As in Fisk’s proof, we begin by considering a trian-
gulation T = (V, E) of the polygon P . We consider
the most strict form of a triangulation, in which tri-
angle vertices must also be polygon vertices. In this
type of triangulation, concave polygon vertices will
be positively-spanned by incident graph edges, and
convex vertices will not be. Concave vertices must
be positively-spanned because each exterior angle at
a concave vertex is less than π

2 , and the interior angle
is split into angles of less than π

2 by the triangulation.
Let all convex vertices of the polygon (and thus

all non-positively-spanned vertices of T ) be pinned.
By Theorem 4, T is immobilized if we also pin one
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vertex per cycle (which, for a triangulation, means
one pinned vertex per triangle).

Convex vertices must always be pinned, so we can
ignore any edges that are adjacent to them, and we
can construct a T ∗ = (V ∗, E∗) that removes these
edges. Specifically, T ∗ contains only the concave ver-
tices of P , and only edges that are between pairs
of concave vertices. Since any triangulation can be
3-colored [O’Rourke, 1987], and since T ∗ is a sub-
set of a (3-colorable) triangulation T , T ∗ is also 3-
colorable. As in Fisk’s proof, one of the three colors
must be used no more than b 1

3 |V ∗|c = b 1
3nconcavec

times. Now, pin each vertex labeled with the least
frequently used color. Since each triangle must have
one vertex of each color, each triangle (and therefore
cycle) of T ∗ has one pinned vertex, and therefore each
cycle of T has one pinned vertex. As a result, T (and
thus P ) is immobilized.

The above proof does not hold for non-simple poly-
gons, as triangulations of such polygons are not nec-
essarily 3-colorable. However, we can use the same
general idea to give a bound for polygons with holes
as well.

Corollary 7. A cloth polygon with nholes holes
can always be immobilized by pinning nconvex +⌊

1
3nconcave

⌋
+2nholes vertices, where both nconcave and

nconvex include the concave and convex vertices in the
polygon’s holes.

Proof. If we place cuts in the polygon such that each
hole is open to the region outside the polygon (either
directly through a single cut, or by a chain of cuts
through other holes), then we have turned the poly-
gon with holes into a simple polygon with at most
4nholes new vertices (careful cutting can reduce this
to 2nholes new vertices if the cuts go between existing
vertices). These new vertices will be convex vertices;
however, since the two sides of the cut are in the same
place, we can use one finger to pin each pair of new
convex vertices. As in Theorem 6, we now triangu-
late the simple polygon, which requires us to pin up to⌊

1
3nconcave

⌋
concave vertices, plus the original convex

vertices, plus two fingers per cut (equivalent to two
fingers per hole). Therefore, a polygon with holes will

be immobilized with nconvex +
⌊

1
3nconcave

⌋
+ 2nholes

vertices.

5 When Convex Vertices Are
Not Enough

We have shown that nconvex +
⌊

1
3nconcave

⌋
fingers are

always sufficient to immobilize a simple polygon, but
in order to show that this bound is also necessary, we
must first show that there are polygons for which a
convex vertex grasp is insufficient for immobilization.
If we can compute possible free motions of a grasped
cloth polygon, then the grasp is clearly insufficient.

5.1 Determining Free Motions

We can verify a grasp by constructing an appropri-
ate linear program, and by testing to see if it has
any nonzero solutions. This LP is built from dis-
tance constraints, which require that the endpoints
of an edge cannot move apart beyond their initial
stretched distance. We use the standard notion of
polygon visibility in this section.

If xi and xj are mutually visible, then at every
time t, the distance between the points must not be
greater than the initial (fully stretched) distance:

||−−→xixj(t)||2 ≤ ||−−→xixj(0)||2. (1)

At time 0, the time derivative of every distance
between pairs of mutually visible points must be non-
positive.

ẋi · −−→xjxi + ẋj · −−→xixj ≤ 0 (2)

A simple example is a network of points attached
by strings as shown in Figure 10. Let x1 and x2 be
unpinned points, and let x3 through x6 be pinned.
There are five distance constraints, corresponding to
the edges. Using the constraints from equation 2, we
have




−−→x3x1 0−−→x5x1 0
0 −−→x4x2

0 −−→x6x2−−→x2x1
−−→x1x2




(
ẋ1

ẋ2

)
≤ 0. (3)
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Figure 10: A network of points connected by strings
(closed circles are pinned).

We can rewrite this as

Jẋ ≤ 0 (4)

This is in the form of constraints for a linear pro-
gram, and therefore we can use a solver to see if there
are any solutions other than ẋ = 0. If such solutions
exist, then the line network can move as described by
one of these solutions.

We can extend this easily to an algorithm to ver-
ify a grasp for a cloth polygon. To do this, we take
any triangulation of the polygon, and consider this
as our line network. We then build J , which has
one row for every edge of the triangulation (with the
exception of any edges between pinned points, since
the coefficients would all be zero in this case). If
Jẋ ≤ 0 only has the solution ẋ = 0, then the trian-
gulation network is immobilized by the given grasp.
We have implemented this algorithm in Matlab, us-
ing CGAL [CGAL, 2008] to construct triangulations
and lp solve to check for nonzero solutions given the
constraints. An example run of this algorithm for a
non-immobilized polygon is shown in Figure 11, with
X’s indicating one possible set of additional fingers
that immobilize the polygon.

If nonzero solutions exist for the lines of a triangu-
lation, we believe that this means that the cloth can
move within the given grasp. However, this state-
ment may depend on the cloth model that we use. If
we assume that the cloth can simply compress into it-
self, then it is clear that a nonzero solution will allow
movement of the cloth. It is less clear as to what hap-
pens if a more realistic model that involves buckling
is used, or if the cloth is a developable surface.

Figure 11: A dual pinwheel, with free motions as
shown. Adding fingers at the X’s immobilizes the
polygon.

5.2 Pinwheels

As shown with the example in Figure 11, there are
polygons for which a convex vertex grasp is insuffi-
cient. All such polygons that we have found fall into
a class that we refer to as pinwheels.

Definition 4. An n-pinwheel is a polygon with a
cyclic first order visibility structure, where a first or-
der visibility structure is defined as the set of vis-
ibility polygons from all of the convex vertices of
the polygon. The number n refers to the number
of points in the pinwheel.

In an n-pinwheel, the visibility polygon from a ver-
tex v2 first intersects its clockwise neighbor’s (v3)
visibility polygon, followed by its counter-clockwise
neighbor’s (v1) visibility polygon (see Figure 12 for
an example of a 4-pinwheel). The directions can be
reversed; if a vertex first sees its counter-clockwise
neighbor’s visibility polygon, followed by that of its
clockwise neighbor, then the polygon also has a pin-
wheel structure. In order to actually be a pinwheel,
this type of visibility intersection must be repeated
for all vertices, leading to a cycle of visibility inter-
sections.
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Figure 12: A 4-pinwheel, with its cyclic support
graph and first-order visibility polygons.

A B

C

Figure 13: Multiple pinwheels.

Theorem 8. A non-stretchable cloth n-pinwheel can
always be immobilized with nconvex + 1 fingers.

Proof. A support graph with one cycle and nconvex

non-positively-spanned vertices located at the con-
vex vertices of the pinwheel can be constructed from
the cyclic visibility intersections present in a pinwheel
(Figure 12). We already know that all nconvex con-
vex vertices must be pinned. By Theorem 4, pinning
any one vertex of the cycle immobilizes the graph,
and therefore, pinning the corresponding point in the
pinwheel immobilizes the pinwheel.

We will use pinwheels to show that our upper
bound on the number of fingers needed for immo-

bilization is a tight bound.

Theorem 9. There exist non-stretchable cloth poly-
gons that require a grasp of nconvex +

⌊
1
3nconcave

⌋
fin-

gers to be immobilized.

Proof. The class of polygons that we will use to sat-
isfy the statement is based on 3-pinwheels. Consider
the triple 3-pinwheel shown in Figure 13. The points
have been expanded to two vertices to simplify the
edge that is common to pairs of 3-pinwheels. As dis-
cussed in Section 5.1, we can build a linear program
that gives the possible motions of a 3-pinwheel. From
this, we can easily show that only pinning the six con-
vex vertices does not suffice to immobilize one of the
modified 3-pinwheels by itself. It is possible to im-
mobilize a single pinwheel by adding one additional
finger.

Now, consider attaching pinwheel B to pinwheel A,
with all convex vertices pinned. Let us assume that
the dual A-B pinwheel can be immobilized with just
one additional finger. If this finger is on the bound-
ary between A and B, then neither pinwheel will be
immobilized, as this single finger will provide no more
support than would have existed had we pinned the
convex vertices of each pinwheel. Next, assume that
we have placed the extra finger in such a way that
all of A is immobilized (note that this is not actually
possible). If this is the case, the boundary line be-
tween A and B will also be immobilized. However,
as we have already stated, this is not enough to im-
mobilize B. The same situation exists in reverse if we
put a finger in B that immobilizes B.

Finally, we can extend this chain by adding pin-
wheel C, followed by another pinwheel attached to
C’s right point, and so on (Figure 14). There must
be one finger per pinwheel to be able to immobilize
the entire shape, as fingers outside the boundaries
of a pinwheel do not suffice to immobilize it. Since
each pinwheel has 3 concave vertices, this means that
the overall shape requires nconvex +

⌊
1
3nconcave

⌋
fin-

gers.

We are able to make general statements about sev-
eral classes of polygons. It is possible to place a sup-
port tree with non-positively-spanned vertices only
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Figure 14: Repeating chain of pinwheels.

(a) Monotone polygon. (b) Orthogonal polygon.

Figure 15: Monotone and orthogonal polygons that
cannot be immobilized by a convex vertex grasp.

at convex vertices in all star-shaped and convex poly-
gons; such polygons are thus immobilized by a con-
vex vertex grasp. Pinwheels do not fall into either of
these classes. Interestingly, we can construct mono-
tone (Figure 15(a)) and orthogonal (Figure 15(b))
pinwheels.

We have now shown that for a simple non-
stretchable cloth polygon, the minimum number
of fingers needed to immobilize it is nmin ∈
[nconvex, nconvex + b 1

3nconcavec].

6 Grasping with Fewer Fingers

A simple algorithm for generating grasps begins by
testing a convex vertex grasp using our linear pro-
gram formulation. If this fails, the triangulation
method is used to get a grasp that pins one third
of the concave vertices.

Disregarding the LP step, this algorithm has
a running time of O(n). Chazelle showed that
triangulation of a simple polygon requires O(n)
time [Chazelle, 1991], and the 3-coloring of a triangu-
lation can be implemented with a simple linear time
algorithm.

This algorithm is guaranteed to generate a valid
grasp; however, the grasp may include unnecessary
fingers if there are lengthy chains of concave vertices,
as in Figure 16.

6.1 Grasp Reduction

We have developed an algorithm to reduce the size
of the grasp, which removes certain fingers by check-
ing to see if they are already immobilized by other
portions of the grasp. Consider the example shown
in Figure 17. Vertex v2 can be unpinned as long as
vertex v1 and edge e1 remain immobilized. Vertices
v2 and v3 can be unpinned as long as edges e2 and
e3 are immobilized. This grasp reduction algorithm
has a running time of O(n2), as all edges must be
scanned for each vertex.

Figure 16 shows example results from our algo-
rithms. Figure 16(a) gives a minimal grasp, which
consists of 6 convex vertices, plus one concave vertex.
Figure 16(b) shows the results of the grasp building
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(a) A valid (minimal) grasp (1 pinned con-
cave vertex).

(b) Grasp built by algorithm (9 pinned
concave vertices).

(c) The result of the reduction algorithm
(4 pinned concave vertices).

Figure 16: A polygon with nconcave = 28, nconvex = 6.

v
1

e
3

e
1

e
2

v
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Figure 17: Method for reducing the number of pinned
points.

algorithm, and Figure 16(c) shows the grasp after it
has been reduced. A few extra vertices still remain;
the algorithm could be improved by enabling it to rec-
ognize immobilized lines between immobilized edges,
such as the dotted line in Figure 16(a).

6.2 Graphical Method for Analyzing
Immobilization

We have developed a graphical method for deter-
mining if a cloth polygon is immobilized by a given
grasp. This method relies on embedding a support
tree within a polygon. A support tree is fundamen-
tally based on visibility; in particular, adjacent ver-
tices in the support tree must be mutually visible.
Visibility is fairly easy to assess visually, and there-
fore manually placing a support tree in a polygon is a
quick method for determining if a polygon is immobi-
lized with a given grasp. We have taken this manual
method and expanded it into an algorithm for con-
structing support trees. Our algorithm repeatedly
intersects visibility regions to form a skeleton, and
uses an optimizer to try to shift the vertices of the
skeleton until the skeleton becomes a support tree.

We have implemented this algorithm in Mat-
lab, using CGAL [CGAL, 2008] and VisiLi-
bity [Obermeyer, 2008] to handle polygon and
visibility operations, and OGDF for graph planarity
testing. Figure 18 shows the result of running the
algorithm on a comb shape.
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Figure 18: Output from the support tree construction
algorithm.

7 Conclusion

We have determined that for simple cloth polygons,

nmin ∈
[
nconvex, nconvex +

⌊nconcave

3

⌋]
(5)

and for non-simple polygons,

nmin ∈
[
nconvex, nconvex +

⌊nconcave

3

⌋
+ 2nholes

]
(6)

We have shown that both bounds are tight for sim-
ple polygons, and that the lower bound is tight for
polygons with holes. Additionally, we have developed
the geometric method of using support trees to deter-
mine if a polygon is immobilized with a given grasp.
This method is particularly valuable for visually de-
termining if a polygon is likely to be immobilized with
a given grasp.

Our theorems directly led to an algorithm for con-
structing a valid grasp for any simple cloth polygon.
This algorithm does not guarantee a minimal grasp,
but it is a significant first step in designing grasps for
cloth objects. The algorithm makes use of a simple
linear programming method for verifying the valid-
ity of a given grasp. We implemented both a linear
program based grasp verifier, and a support tree con-
struction algorithm.

Natural extensions of this work include polygons
with holes, and 3-dimensional cloth, such as cloth
polyhedra. Our results are also applicable to cloth
sensing. If the location of any grasp point is un-
known, there is no way to show that the cloth is in a

flat configuration. Thus, by sensing all of the grasp
points, we can determine if a piece of cloth is flat.
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