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Abstract
We present a class of fixtures that can be disassembled
into four pieces to extract the loosely-tied knot. We prove
that a fixture can be designed for any particular knot
such that the knot can be extracted using only simple
pure translations of the four fixture sections. We explore
some of the issues raised by our experimental work with
these fixtures, which show that simple knots can be tied
extremely quickly (less than half a second) and reliably
(99% repeatability) using four-piece fixtures.

1 Introduction
Autonomous knot tying machines have often used com-
plex manipulators and extensive sensing. For example, in
work dating back almost three decades, Inoue and Inaba
developed a system using a 6+1 DOF arm with stereo ma-
chine vision [13].

In contrast, this paper demonstrates that knot tying is
possible using fixtures with very minimal actuation, and
with no sensing. Fixtures are static devices that manipu-
late an object into a desired configuration when the object
is pushed against or through the fixture, allowing a com-
plex manipulation task to be achieved with a simple (typ-
ically one DOF) control. This paper extends work first
presented in [2] and [1].

Knot-tying is a hard problem; we have only begun to
understand the behavior of knots in fixtures. The main
theoretical contribution of this work is a provably com-
plete algorithm that can (in theory) be used to design a
four-piece fixture that can arrange any number of strings
into any desired knot described by a mathematical knot
diagram; this fixture can be disassembled to fully expose
the tied string using only four simple translations of the
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Figure 1: A four-piece fixture for the overhand knot.

pieces.
In practice, physical string manipulation challenges in-

trude when attempting to tie complex knots. However, we
show empirically that knots as complicated as the “Har-
ness Bend” can be tied reliably and extremely quickly
(in all cases, within less than half of a second) using this
novel approach to the design of knot-tying devices.

In previous work [2], we presented one-piece fixtures,
which allow wire, fishing line or other similar materials
with high stiffness to be pushed through the fixture and
either pulled out the entrance hole or through an exit hole.
When extracted, a knot has been tied. However, one-piece
fixtures are limited because they rely on the ability to push
the string through a winding tube; we have only success-
fully designed one-piece fixtures to tie simple knots such
as overhand knots and square knots.

For more complex knots, or for materials that cannot
easily be pushed, both insertion and extraction become
more challenging. In current work, we show how four-
piece fixtures , such as the one shown in Figure 1, can be
designed. The assembled fixture contains a single tube for
the knot shape, simplifying insertion. The fixture can be
disassembled by simple straight-line translation of each of
the four components of the fixture, allowing easy extrac-
tion of the loosely-tied knot. A single-degree-of-freedom
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mechanism can achieve this disassembly, simplifying ex-
traction further.

Formally, a mathematical knot is an embedding of
a topological circle in R3. We might observe that the
“knots” tied by our fixtures are not mathematical knots in
the truest sense, since the ends of mathematical knots are
“glued” together to enforce a particular topology. How-
ever, simply connecting the correct ends of the string(s)
together after extraction from the fixture would create a
structure with the desired topology. Our fixtures are able
to tie several strings together, technically, a mathematical
link. Four-piece fixtures focus on the problem of achiev-
ing the correct topology of a knot or link in string; geo-
metric considerations (such as tightening a complex knot
or fake knot) are left for future work.

1.1 Related work
Fixtures present a way to manipulate or grasp flexible
materials with little or no sensing, and with simplified
motions. Lu and Akella developed a method of folding
cardboard cartons using fixtures as manipulators [16, 17].
They view the unfolded carton blank as a robot with a
series of revolute joints connecting the segments, and de-
velop a motion planning algorithm that generates folding
sequences for such robots, provided that there are no kine-
matic loops. From these sequences, it is possible to gen-
erate fixtures that fold the carton blank into a box.

Caging is a similar problem that involves adding con-
straints to a system in an uncertain configuration in order
to bring it into a known configuration. In early work in
this area, Rimon and Blake developed an algorithm to to
determine caging grasps for complex 2D objects [21].

Linear deformable objects (LDOs) and string have been
analyzed extensively, and many different models have
been developed. Pai used Cosserat rods to simulate thin
strands, such as sutures, and developed a fast simulator
capable of supporting real-time interaction with a vir-
tual suture [18]. Wakamatsu and Hirai developed a de-
tailed model of linear object deformation based on differ-
ential geometry, and applied it to path planning with an
LDO [31]. Wakamatsu et al. also developed a 2D model
of LDOs in contact with obstacles, with extensions to sup-
port dynamic deformation as a result of external forces
and moments, as well as geometrical constraints. [32].
Recently, in the robotics community, work by Bretl and

McCarthy has shown that a Pontryagin-type formulation
can be used to allow motion planning for elastic rods (e.g.
stiff string or wire) over equilibrium configurations [3].

Work on general deformable objects is also relevant.
Rodrı́guez, Lien, and Amato worked on motion planning
in an environment where every object is deformable [22].
They focus on maintaining constant volume for all de-
formable objects, and use a tree-based planner to explore
the system. This type of planning can also be applied to
grasping problems in deformable environments.

Work on snake robots considers the problem of “active”
control of flexible linear objects, whereas we consider
passive control. See Henning, Hickman, and Choset’s
work on motion planning for serpentine robots for an ex-
ample and a discussion of related work in this area [11], as
well as Degani et al. ’s work on manipulators that traverse
tubes [8].

While our system is not the first to tie knots au-
tonomously, our system is considerably less complex than
others. Knot tying was first explored by Inoue and Inaba
using a 6+1 DOF robot arm with stereo machine vision
[13]. The arm is able to successfully insert a rope into
a ring, and then tie the rope into a knot around the ring.
Hopcroft et al. developed a graph-based language meant
for programming knot tying motions at a fairly high level,
and tested it by tying knots with a robot arm [12].

Phillips, Ladd and Kavraki created a simulator which
models realistic rope using a spline formed from linear
springs (with support for collisions), with suturing ex-
plored as a possible application [19]. Taylor gives a sur-
vey of medical robots in general, with some mention of
suturing systems [29]. One such suturing system is the
EndoBot, developed by Kang and Wen [14]. Their system
includes algorithms for autonomously tying knots while
suturing, and they have modified a shuttle needle device
for use by the robot. Other examples of suturing work
include [33, 23, 10].

Saha, Isto, and Latombe developed a string model and
motion planning algorithms for tying both real and sim-
ulated knots [25, 26, 24]. They analyze a knot, and con-
struct a sequence of motions for tying it using two robot
arms. Wakamatsu, Arai and Hirai developed a very de-
tailed description of the theory involved in tying and un-
tying knots with robots [30]. They defined a set of four
basic operations for transitioning between states, and used
tree search to build a planner for finding a sequence of
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motions to tie a knot. They also showed that a SCARA
robot (three translational DOF and one rotational DOF) is
sufficient to tie an LDO into a knot.

There are also patents for devices to assist in knot ty-
ing, from tying fishing line [5] and shoelaces [4], to sutur-
ing [27]. Each of these devices is carefully designed to tie
a particular, and fairly simple, type of knot; the goal of our
work is to develop an approach to designing fixtures that
is in some sense general (although the final instantiation
of each fixture is suited only to a single knot type). The
stitches tied by the ubiquitous sewing machine are also a
type of knot: typically, a loop of string is pushed through
cloth, and a device underneath the cloth loops a second
piece of string through and around the first, which is then
pulled tight. This motion is carefully designed for each
type of stitch.

Separating multi-piece knot fixtures is very similar to
the problem of extracting cast or injection-molded parts
from their molds. Typically, only 2-moldability is con-
sidered, in which there are two mold pieces that are
separated with one translation. Early approaches only
considered the three principal axes as parting directions;
however, they allowed complex (non-planar) parting sur-
faces [20, 6]. Later approaches allowed for multiple mold
pieces. Chen gave criteria for identifying parting faces,
which are used with a reverse glue operation to produce
a set of mold pieces [7]. Khardekar et al. developed an
algorithm running on graphics hardware for computing a
feasible parting direction for two mold pieces, with real-
time highlighting of undercuts [15].

2 Four-piece fixture design
The fixtures presented contain simple tubes for the string,
and can be disassembled to extract the “tied” knot. How
many pieces should a fixture be disassembled into? We
will show in this section that for any given knot type (with
any number of strings to be tied together), a four-piece fix-
ture can always be designed that allows extraction through
simple translations of each of the four fixture pieces.

In order to formally study algorithmic design of four-
piece fixtures, we will need some definitions and a model
of the string. Let us initially model a knot using an in-
finitely thin smooth closed curve in R3. (We will relax
the restriction that the string be infinitely thin in the para-

graphs below, and we will cut the closed curve as well.)
In mathematical knot theory, two knots are equivalent

if there is a smooth deformation between the curves that
does not cause self-intersection; this allows classification
of knots into types based on the equivalence classes. We
use the standard definition of the knot diagram: a planar
projection of a knot curve in general position, such that
there are a finite number of crossings on the projected
curve, and tangent vectors at these crossings are in dif-
ferent directions.

Given a knot diagram, we can construct a planar di-
rected graph from the diagram by placing a graph node at
each crossing, a graph node on each strand between cross-
ings (Figure 2(b)). We may also choose an arbitrary loca-
tion away from crossings to cut the loop, and add graph
nodes at the endpoints. Each graph node is denoted as
either an endpoint node or a segment node.

We can now describe the knot using a Gauss code,
which consists of an ordered list of junctions, each of
which is denoted as an over-crossing (o) or an under-
crossing (u), generated by following the original curve
in space continuously and the corresponding points on
the planar projection. As an example, the overhand knot
shown in Figure 2(a) has the Gauss code 1o, 2u, 3o,
1u, 2o, 3u.

We are now ready to state the main result.

Theorem 1. Given any (mathematical) knot or link con-
sisting of one or more strands of string, and described by
a Gauss code, a fixture can be constructed that loosely
arranges string into a knot with the same Gauss code,
provided that the endpoints of the string are connected
together outside of the fixture. Furthermore, this fixture
can be cut into four pieces in such a way that all four
pieces can be removed by pure translation without inter-
fering with the string, in the sense that if the initial string
configuration were treated as a rigid body, no interpene-
tration between the string and fixture occurs during fixture
separation.

The proof is constructive – we will show that starting
with a desired Gauss code, there are well-defined steps
(some of which are themselves known complete algo-
rithms) that create a fixture with the desired properties.

We begin by creating a knot diagram based on the
Gauss code, and adding graph nodes as described before.
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(a) Knot diagram
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(b) Knot diagram interpreted as graph (black
nodes are crossing nodes, gray nodes are seg-
ment nodes)
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(c) Knot graph with edges assigned to layers,
and labels on segment nodes
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(d) Orthogonal version of knot graph (occlu-
sions indicated with dashed boxes)
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(e) Graph after expansion to remove occlu-
sion
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(f) Location of vertical cut through middle
layer

Figure 2: Development of orthogonal structure for overhand knot
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Next, we separate the graph into “upper” and “lower” lay-
ers by walking through the graph using the Gauss code.
Each edge is adjacent to exactly one crossing or endpoint
and belongs to either the “upper” layer or the “lower”
layer. If an edge is adjacent to an over-crossing, that edge
is in the upper layer; if it is adjacent to an under-crossing,
it is in the lower layer. Each graph edge is labeled with
‘+’ or ‘-’ to indicate its layer (Figure 2(c)). For conve-
nience, the start and end segments (adjacent to S and E in
the figure) receive the same label as the next segments in
from the start and end.

The segment nodes are further labeled based on
whether the adjacent edges are ascending from the lower
layer to the upper layer (‘- +’), descending (‘+ -’), or re-
maining in the same layer (‘=’). We can uniquely identify
segment nodes by using the adjacent crossing node labels;
for example, the node that is moved in Figure 2(e) is 1(+
-)2.

This graph is then converted into an orthogonal graph
(Figure 2(d)). Tamassia showed that this can be done
while preserving faces (the regions between graph edges)
for four-planar graphs [28]; the knot graph indeed has ver-
tices of no more than degree four by construction (each
crossing is caused by intersection of at most two curves
on the knot diagram, or can be separated into multiple
crossings, so that crossing nodes are of no more than de-
gree four). Tamassia presented a complete O(n2 logn)
algorithm for constructing an orthogonalization with the
minimum number of bends; this bound was subsequently
refined by Garg and Tamassia to O(n

7
4
√

logn) [9].
To construct the fixture design, we now add a third di-

mension to the previously identified orthogonal grid, with
two possible coordinates: top or bottom. Edges are placed
at the appropriate coordinate based on their label. At
ascending or descending segment nodes, we add a shaft
edge from the top layer to the bottom layer. Now, all
planar edges are located in either the top or bottom lay-
ers, and the middle layer contains only out-of-plane shaft
edges. This is similar to a two-layer circuit board, with
the shaft edges equivalent to vias.

Two pieces of the four-piece knot fixture act as caps
for the top and bottom layers of the 3D orthogonal graph.
These pieces can be removed by translating them up or
down, respectively. The remaining two pieces slide to-
gether horizontally to form the middle layer. In order

for these pieces to be separable, the middle layer must
be arranged such that there is some projection direction
in which no shaft edges occlude each other (in the exam-
ple of Figure 2(d), the dashed boxes indicate the occluded
nodes in both the x and y directions ).

A simple complete algorithm for expanding the graph
on the plane to remove occlusion, while retaining the
same Gauss code, is as follows:

1. Pick a projection direction (x or y) with the fewest
occlusions. With n shaft edges, this will always re-
sult in no more than n/2 occlusions. Without loss of
generality, let the projection direction be along the
y-axis.

2. For each pair of occluding edges (ei,e j) with |x j −
xi|< 2:

(a) Take all vertices with xv > x j, and set x′v = xv+
(2− |x j − xi|). This expands the graph at x j,
shifting everything to the right of x j one or two
grid units (as needed) to the right. This shift
preserves the graph regions (and the knot).

(b) Shift e j to the right (x′j = x j +(2−|x j− xi|)).
(c) If e j was connected to an edge ey parallel to the

y-axis, keep ey in place while shifting e j, and
add a new edge parallel to the x-axis between
ey and e j (this new edge should be in the same
layer as ey).

In the example shown in Figure 2(e), only one node
(1(+ -)2) needs to be moved to remove the occlusion in the
y direction. The apparent occlusion between 2(+ -)3 and
3(=)E is not actually an issue, as the 3(=)E node remains
in the same layer, and thus no shaft edge is present. We
only need to consider removing occlusion between shafts.

At worst, the graph will expand by n/2 units in the x-
axis during this algorithm. At step 2a, we can insert a
check to see if it is possible to simply shift e j without
having to shift the entire graph right of x j, which may re-
duce the amount of expansion if the graph was not initially
compact.

This algorithm is correct and works for all graphs.
Since each time everything to the right of x j is moved,
the movement will not create any new occlusions. Since
every movement deletes one occlusion, the algorithm will
remove occlusion for all graphs.
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(a) Top (b) Bottom (c) Middle

Figure 3: Sequence of steps for taking apart a four-piece fixture

Once there is no occlusion along the projection di-
rection, it is trivial to slice the middle layer to al-
low the two pieces to slide free, fully exposing the
knot and allowing it to tighten. Given a list of shaft
edges Ev, sorted by x coordinate, the slice between shaft
edges ek and ek+1 is given by the set of coordinates
{(xk,yk),(

xk+xk+1
2 ,yk),(

xk+xk+1
2 ,yk+1),(xk+1,yk+1)}. Fig-

ure 2(f) shows the location of the cut for the overhand
knot.

Since this procedure of orthogonalizing the graph,
splitting it into top and bottom pieces, expanding the or-
thogonalization, and slicing the middle layer of the fixture
yields a four-piece fixture, we have proven Theorem 1.

Building the knot on an orthogonal grid with extra
space between shaft edges guarantees that there will be
enough room to round off the corners and also to allow
string of non-zero thickness when building the fixture.
Corners both in the plane and transitioning from the plane
to the shaft direction can be replaced with arcs with grid
unit radius. Thus, the maximum curvature is bounded ex-
actly based on the choice of grid size. For a grid with
spacing r, the maximum curvature is κ = 1/r.

Figure 3 shows an example fixture for simple overhand
knot. The orange tube represents the shape of the string
inside the fixture, and is not actually part of the fixture.

3 Experiments with four-piece fix-
tures

We can separate the task of tying knots using four-piece
fixtures into insertion and extraction steps. Before inser-
tion, we attach a rigid plastic cap attached to the leading
end of the string (called a slider); pressurized air forces
this cap through the fixture tube, pulling the string through
the fixture. We designed the slider with a dome head,
cylindrical body, and a flat back. This slider has a large
surface area so as to be strongly impelled by the pres-
surized air; the cylindrical shape prevents flipping in the
tube.

We designed fixtures for 7 knots ranging in complexity
from the simple overhand knot to a Carrick Bend knot,
and printed the fixtures on an OBJET Eden 250 Rapid
Prototyper. Although the shape of the tube and the lo-
cations of the cuts are computed using the algorithm de-
scribed above, the 3D model of the fixture was created by
hand using SolidWorks.

Most of these knots tie two pieces of string together.
Human-tied versions of the knots (because our fixtures
arrange string in the desired topology, but do not tighten
them), as well as the fixture tube shapes (different colors
represent different strings), and the success rate over 100
insertion trials per fixture are shown in Table 1.

Figure 4(a) shows an example of a loose square knot
arranged by a fixture. Insertion of string into each fixture
is very fast (in all cases less than .5 seconds), since the
string is driven by high-speed air pressurized at 80 psi.
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Knot type Knot example Tube shape Success Rate

Overhand Knot 99%

Square Knot 99%

Bowline Knot 100%

Sheet Bend 100%

Strop Bend 100%

Harness Bend 95%

Carrick Bend 81%

Table 1: Knot example, designed tube shape, and corresponding success rate of 100 trials for each knot fixture.
Different string colors represent different strands of string.
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(a) Square knot loosely tied by fixture. (b) Square knot tightened by (human) pulling on string ends.

Figure 4: Square knot tied by fixture.

As seen in the table, most knot fixtures demonstrate
a very high success rate, with the exception of the Car-
rick Bend, the most complicated knot considered. Fix-
tures other than the Carrick Bend have tube cross-section
lengths between 7 and 8 mm, and overall fixture dimen-
sions of less than 15 cm by 8 cm by 5 cm. Due to the oth-
erwise large dimensions of the Carrick-bend fixture (> 20
cm along one side, the maximum envelope size of the 3D
printer), we chose a cross-section length of 4 mm for the
Carrick Bend.

We believe that limited success with the Carrick Bend
is due to the smaller cross-section of the tube (causing
increased turbulence and pressure drop along the tube),
to a smaller slider, and to increased air loss along fixture
seams in longer tubes. In fact, the success rate with the
Carrick Bend was initially close to zero due to these prob-
lems; the 81% shown in the figure is for a modified fixture
with eight additional air inputs along the top and bottom
sections of the tube.

The Carrick Bend certainly seems to be at the limit of
complexity of knots that can be tied with our current ap-
proach using pressurized air for insertion. The simpler
Harness Bend exhibits some similar difficulties along the
more complex of its two tubes.

Extraction of the knot is simple using a four-piece fix-
ture. We designed a mechanism composed of four-bar
linkages with a single degree of actuation, shown in (Fig-
ures 5 and 6). The design is inspired by the mechanism
used to open tackle boxes that fishermen store fishing
equipment in. (Figures 5 and 6). Using a simple Dy-
namixel servo motor, opening the fixture takes about 1.5

seconds. Sealing the fixture with the current mechanism
design, so that pressurized air can be used to insert string
remains a challenge.

Figure 5: The opening mechanism for the four-piece fix-
ture.

3.1 Limitations of four-piece fixtures

For even more complex knots, such as the River Knot
shown in Figure 7, the approach described above is in-
feasible using a practically sized fixture.

There are at least two major difficulties: insertion, and
tightening of the knot after extraction. We believe that
the challenge of insertion may be solved in a straightfor-
ward manner, by changing the mechanism for actuating
the string in the fixture. We will discuss the issue of tight-
ening in the following section of the paper.

Pressurized air applied to body of the slider tends to
pull the string along the tube. There is a nice additional
effect of the pressurized air, which is to “float” the string
along the tube, providing an air cushion that separates the
string from the walls of the tube. However, as the tubes
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Figure 7: Human-tied river knot, and (unimplemented) four-piece fixture design.

Figure 6: Machined complete fixture opener with fixture
components attached.

get longer with greater numbers of turns, this beneficial
effect diminishes.

We have therefore experimentally begun to explore the
capabilities needed to pull string through a fixture tube.
We have built a test structure, one module of which is
shown in Figure 8; additional modules can be attached to
lengthen the snake-like tube. This structure is not spe-
cific to any particular knot, but is rather used to test how
many sharp bends a string can be impelled through us-
ing pressurized air. We consider three cases: forcing the
string through the tube with pressurized air (and a slider),
pulling the string through the tube, and pulling the string
along a tube with ball-bearing rollers attached at turns.

Each modular section of the test structure contains a

tube of length of about 47 cm. The tube has square cross-
sections with edge length 7.5 millimeters. Each modular
fixture contains twelve 90 degree turns.

With pressurized air, the string attached to a slider trav-
elled through 150 cm on average over ten trials, with a
maximum travel distance of 165 cm.

Pulling string without pressurized air was much less
successful, demonstrating the strong positive benefit of
the air cushion generated by air flow. Friction prevented
motion of the string completely after about 25 cm; further
force breaks the string.

Most of the friction force occurs at turns. We therefore
installed rollers at each turn to reduce the friction and fur-
ther test the pulling mechanism. The force required to
pull the string through a tube of 190 cm is roughly equal
to that required to lift a weight of 40 grams.

In spite of the promising results of using rollers to re-
duce friction of pulled string, the increased complexity of
the fixture design is a disadvantage, and would presum-
ably lead to larger fixture sizes. It is for this reason that
our initial explorations make use of pressurized air.

4 Conclusions and Future Work
This paper presented a few approaches to designing fix-
tures for tying knots. Central among the contributions is
a proof that any knot can be laid out in such a way that
a four-piece fixture can be designed allowing easy extrac-
tion.

We have only begun to understand the behavior of flex-
ible materials. While we know how to tie knots, we do not
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Figure 8: The modular test structure with rollers (silver
ball bearings) installed at every turn.

have a good way to simulate the process, or to analyze fix-
ture types to understand why some techniques work better
than others. We also do not have a good way to design
fixtures for knots, such as hitch knots that are attached to
objects. A related challenge is how to design the form-
factor of the fixture so as to have a small profile for par-
ticular applications (e.g., suturing) in which string is tied
to objects.

This paper addressed only the problem of laying out
a knot, without regards to the geometry of the tightened
knot. An exciting future direction is understanding how
knots should either laid-out for best tightening, or how
knots may be tightened consistently from arbitrary loose
geometries. This study would also allow extension of
current ideas to unknots, such as the shoelace knot and
bow ties, which are held together only by friction or other
forces, and not by their topology. (Mathematically, un-
knots are topologically circles.)

Since the diameter of tubes in in a fixture is essentially
fixed by the diameter of the string, the size of the fixture
increases with the complexity of the knot. Large fixtures
can be an engineering challenge. Better techniques for re-
ducing friction and impelling the string through the fixture
would perhaps allow somewhat smaller tube diameter.

Another future direction is the development of modular
or more generic fixtures that easily allow tying of multiple
types of knots.
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