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Abstract The problem Dubins solved in 1957 was to find the
shortest curve in the plane connecting two points with
This paper presents the minimum-time sequences of rqgeescribed tangent vectors at those points, with the con-
tions and translations that connect two configurations otaint that the average curvature over any section of the
rigid body in the plane. The configuration of the body isurve be less than some maximum constant Dubins
its position and orientation, given gy, y, ) coordinates, showed that these shortest curves, caegeodesicsare
and the rotations and translations are velocities;, /) composed only of circles and straight lines, connected to-
that are constant in the frame of the robot. There are gether in certain ways; figure 1 illustrates a few examples.
obstacles in the plane. We completely describes the strucbubins curves are also the fastest trajectories for a sim-
ture of the fastest trajectories, and present a polynomialle model of a steered car that moves with unit velocity.
time algorithm that, given a set of rotation and translation the language of control theory, Dubins’ problem can
controls, enumerates a finite set of structures of optint®l restated as follows. Let the state of the ca8Er be
trajectories. These trajectories are a generalizatiohef{; = (x,y,6). Given initial configurationy, and desired
well-known Dubins and Reeds-Shepp curves, which dtral configurationg;, find a vector-valued control func-
scribe the shortest paths for steered cars in the plane. tion : [0,¢,] — Up such that; is minimized and

ty
i q1 = q —i—/ R(Q)u(t) dt Q)
1 Introduction 1=a+ | ROl
The problem of moving a rigid body between two coﬁ’yhere
figurations efficiently is of particular interest in robatic cos —sind 0
because the simplest model of a mobile robot or an object RO) = | sin® cos® 0 )
in a robotic manipulation task is often a rigid body. Path 0 0 1

planning, controller design, and robot design may all ben-
efit from precise knowledge of optimal trajectories for gng
set of permitted controls.

The minimum-time trajectories depend on the available Up = {1} x {0} x [-1,1]. (3)
controls, and on the goal configuration. For example,
the fastest way to move a kinematic model of a car witthe components of the control vectai, uo, andus cor-
bounded steering angle a short distance sideways migidpond to the forward velocity of the car, the sideways
be to execute a particular parallel-parking type motiovelocity, and the angular velocity respectively.
To move a wheelchair to a distant location, the fastest tra+or any rigid body in the plane,
jectory might be to turn to face the goal, and drive to the

goal. i = R(0)4, (4)



Wheeled differential-driveehicles have two powered
wheels. Assume that there are bounds on the speeds of
the wheels. The optimal trajectories are known for a sim-
ple kinematic rigid-body model [4], and only contain the
discrete controls spin in place to the left or right, forwagrd
and reverse. In the original paper, the controls where cho-
sen to be the speeds of the two driving wheels, which
each are constrained to the §et, 1]. Since the forwards
differential kinematics equations that map between wheel

CLC speeds and generalized velocities of the vehicle in its own
frame are linear in the wheel speeds, we find that the gen-
Figure 1: Example Dubins curves. eralized velocities of the vehicle fall in a polygon.
Omnidirectional vehicleslike Acroname’s three-

) ) wheeled Palm-pilot robot kit or Segway’s new four-omni-
wherej = (&, §, 0) is the generalized velocity of the bodywheeled RMP robotic platform directly drive wheels that
in its own frame of reference. The generalization we coRave rollers allowing sideways slippage. Although these
sider is to letu to beg. We consider the cases whergehicles are omnidirectional, some directions are faster
U is either a finite set, or a closed polyhedron. Althoughan others, and driving these vehicles efficiently may re-
some of the systems we consider are omni-directional, t\gire a more complex strategy than simply driving di-
velocity control constraints are non-holonomic, and cafectly to the goal. The optimal trajectories are already
not be expressed as constraints on the configuration of gaewn for a simple three-wheeled symmetric design [3],
system. but not for four-wheeled or asymmetric designs. Bound-
ing the wheel speeds again constrains the generalized ve-
locity of the rigid body to fall in a polyhedron, since the
forward kinematics are again linear in the wheel speeds.
Dubins-like curves arise in many contexts. The car stud-Stable pushing a manipulation strategy where a push-
ied by Reeds and Shepp can go forwards as well as baok- device pushes a polygonal rigid body in the plane

CLC CCcC

1.1 Applications and example systems

wards. In our model, this system is obtained with along one of the flat edges. For each edge, there is a poly-
gon of rotation centers around which the pusher can be
Urs ={-1,1} x {0} x [-1,1]. (5) rotated without slip occurring between the pusher and the

rigid body, as shown by Lynch and Mason [17].

Dubins and Reeds-Shepp curves arise in many roboticsticrorobotsmay potentially be modeled as rigid bod-
problems. For example, the optimality of Reeds-Sheps, with a discrete set of control inputs attached to the
curves is the motivation for Barraquand and Latombegbot. For example, McGragt al’s microrobot [11] is
choice of discrete controls for their motion planner fasssentially driven as a Dubins car that can only turn to the
a non-holonomic cart [5]. Recent work by Alteroviez right.
al [2] models the motion of a surgical needle through the The time-optimal trajectories for simple models of

body as a Dubins curve. LaValle’s [16] work on rapidlythese systems are all special cases of the curves we will
exploring random trees relies on a metric (or pseudomgiamine.

ric) between configurations in the free space, and Dubins
and Reeds-Shepp curves can be used to generate a mftri'c . |
for steered cars. : Main results

We hope that this paper provides a new look at Dubiggyr first main result is the following necessary condition

and Reeds-Shepp curves, but there are also many oHjgfime-optimal trajectories, which will be proven in sec-
systems that can be modeled as rigid bodies in the plajgg 2.

with bounds on the generalized velocities.



vary the constants, and study the possible structures of
the optimal trajectories.

We will see that in most cases, there is a geometric in-
terpretation of the Hamiltonian and the constants, shown
in figure 2. There is a line in the plane, tlentrol
line, such that the rotations and translations maximize the
speed of points where the control line intersects the ex-
tended rigid body, in the direction of the line. (By ex-
tended rigid body, we mean points that need not be actu-
ally part of the body, but are carried along with the body,
as though there were an invisible glass plate attached to
the body.) The location of the line depends on the start

Figure 2: A rigid body relative to some control line. Trajecto-and goal configurations, but typically is not the line di-

ries that satisfy the maximum principle maximize the spefed r&ectly connecting t_h& andy I_ocatlonS O_f the start and
the control point along the line. For the purpose of commutiff@@l- The control line essentially describes the trade-off
this speed, the control point is considered to be instaotzste D€tween rotation and translation: bodies that are far from

attached to the rigid body. The constahts k-, andks describe the control line will tend to ‘choose’ rotation to maximize
the position of the control line. the speed of the point, while bodies that are close to the
line will tend to choose translation.

We will show that there are four kinds of trajectory,
Theorem 1 Consider a rigid body in the unobstructecach with their own properties:

plane, with configuration = (z, y, ), controlsu in some
set of constant vectors, and system equations

Control Point

1. Generic trajectories are trajectories for which the
value of the constants and the initial configuration
i = R(0)u, (6) completely identify the trajectory.
For any time optimal trajectory of the system, there exist:
constants:, ko, andks, not all 0, such that at every time,

the controls maximize the Hamiltonian equation:

Tacking trajectories. If there are multiple translation
controls at the same heading of the body, trajecto
ries may freely switch between translation controls
at that heading, due to the commutativity of transla-
tion.

H = kyi + kot + 0(k1y — ko + ks3). 7

Furthermore, the Hamiltonian is constant and positives' Tangent trajectories. In these trajectories, all trans-

over the trajectory.

Given a start and goal configuration, if we knew the
constantscy, ko, andks, we would know almost every-
thing about the trajectory connecting the two configura-
tions. Using the initial configuration, = (xo,yo,00)
and the constants, we could write out the equation for
the Hamiltonian, and from the available controls, choose

4. Constant-angular-velocity trajectories.

lation segments are parallel to the control line, or
there exists a pair of sequential rotation centers that
describe a line perpendicular to the control line.

Ifkq
ks = 0, then theorem 1 immediately implies that
f must be either maximized or minimized over the
trajectory, and constant.

(2,9, 6) to maximize the Hamiltonian. The body would The Dubins CLC trajectories shown in figure 1 are ex-
follow this trajectory until some other controls becam@mples of tangent trajectories, and the CCC trajectory is

maximizing, or until the goal was reached.

a generic trajectory. Tacking trajectories do not occur

The difficulty is that given a start and goal configurder the Dubins problem, and the only constant-angular-
tion, it is often difficult to determine the values of theseelocity trajectory is an arc of a circle with no control
constants. Therefore, we attack an easier problem — svétches.



rotation center, and for a while it is less than the Hamilto-
nian over the trajectory, so the left rotation center remain
active. Eventually, the right rotation center reachesa lin
at distancé /w, from the control line (configuration 2 in
figure 3). At this time, both controls maximize the Hamil-
tonian, since both rotation centers are on their associated
lines, but whichever control is applied, at the next instant
only the right rotation center will be maximizing. We
therefore say that at this control switch that the control
associated with the right centersastainable For the re-
maining section of the trajectory shown, the right rotation
Figure 3: A Dubins CC trajectory and associated control Iinec.emer r?mams maXImlzmg.'
The control switches from the left rotation center when igbtr we W!” present an algorithm the_lt takes the set of con-
rotation center reaches the line at signed distafi¢es, from trol_s as input, and outputs all pOSS|bIe_path structures, de
the control line. scribed as sequences of controls. This reduces the prob-
lem of finding the optimal trajectory between a particular
start and goal to the problem of considering each possible
) ) ) path structure, finding the best path of each structure, and
Figure 3 gives an example of a trajectory that maxhen the best path among all structures. We show that the

mizes the Hamiltonian at each time, for some choice gfimper of generic trajectory structures is polynomial in
constants. It turns out that the value of the Hamlltonla{he number of control inputs.

which depends on the value of the constants, the maxim|z73\|0ng the way, there are many details to consider, but

ing control, and the stater, y, ) is the same no mattery, s pasic idea is that shown in figure 3: trajectories essen-
which reference point is picked. Any control that is not gy iy roll on rotation centers, each of which activates on

pure translation has a rotation center, a point that does golwn Jine a particular distance from the control line. If

move during the rigid-body transform. Therefore, ch00gsere are translations, there may also be switches to trans-
ing the rotation center as the reference point for compyions at particular angles. We can see that the value of
ing the Hamiltonian is often very convenient, sifdey) he Hamiltonian in some way characterizes the trajectory
of this reference pointis zero. In this case, it turns out thajt gives the distances from the line at which rotation cen-

the value of the Hamiltonian is simply the signed distangg switch, and the angle at which switches to translations
of the rotation center from the control line, multiplied by, ;.

the angular velocity of the body.

There are also some degenerate cases, for which
We can use this observation to describe the trajectamyitching configurations occur at more than a finite set
in figure 3 fairly simply. A Dubins car has two rotatiorof times during the trajectory. These cases turn out to
controls, and two rotation centers; one to the right, andcur at particular values of the Hamiltonian, and given
one to the left. The value of the Hamiltonian is some coa-start and goal configuration, the location of the control
stant, H. At a distance ofH /w; from the control line, line can be computed for each degenerate case. For non-
the left rotation center may be ‘active’, and at a distandegenerate (i.e., generic) cases, the location of theaontr
H/w, the right rotation center may be active. In configuine is harder to determine from the start and goal, but we
ration 1, the left rotation center is further from the cohtr@an enumerate a finite number of structures that the tra-
line, so the value off computed if we apply the left rota-jectory may take.
tion center is greater; this is the maximizing control, and Section 2 reviews details of the Maximum Principle,
the corresponding value of the Hamiltonian will remaiand proves theorem 1, which gives the Hamiltonian for
constant over the trajectory. As the body spins about tfime-optimal trajectories of a rigid body in the plane with
left rotation center, the right rotation center moves. Abtation and translation controls attached to the frame of
any instant, we can compute the Hamiltonian for the rigtite body. Sections 3 through section 6 treat the case where



at least one of the constants and k, in the Hamilto- by Sussman, Tang, Soueres, Boissonnat, Laumond, and
nian equation is nonzero, and section 7 treats the casieers.
where both are zero. Section 3 analyzes switches betweeppare are also results that extend or generalize Du-

controls on extremal trajectories, shows that controls g5 results in directions other than that taken in this pa-
piecewise constant for almost all values of the Hamiltag, chitsaz [6] explored the optimal trajectories for iff
nian, and shows how the values of the Hamiltonian for dgyes with a particular distance function that is not equiv
generate cases may be computed. The section then ShQws 1 time. The optimal paths have also been explored
how to compute the distance and orientation of the boglyt <, me examples of vehicles without wheels. Coombs
from the control line during switches, for a given value %{nd Lewis [8] consider a simplified model of a hovercratft,

the Hamiltonian. Section 4 shows that there is a certajpg Chyba and Haberkorn [7] consider underwater ve-
continuity in trajectory structures between critical V@8U picjes. The Maximum Principle is the starting point for
of Hamiltonian. Section 5 then gives techniques for gefyage papers, as it is for the current paper.

erating generic extremal trajectory structures with value o ) ] ]
of the Hamiltonian other than at critical values, and sec- 1€ Problem of finding optimal trajectories has also

tion 6 explores degenerate trajectory structures regultPfen studied for more complex models of vehicles, for
from critical values. which the state includes the configuration and general-

ized velocities, with bounded-acceleration controls. The
optimal-control problem for dynamic vehicles appears to
1.3 Related work be very difficult — the differential equations describing th

In 1957, Dubins characterized the shortest paths betwd&@ectories do not have recognizable analytical solstion
two points in an obstacle-free plane, with the constrafitd in Some cases, the optimal trajectories involve chat-
that the path be tangent to given vectors at the stEﬁ‘E'”g* an infinite numb_er of contr_ol switches in a finite
and goal, and with the average curvature over any #Me [25]. Papers by Reister and Pin [20], and Renaud and
terval along the path bounded by a positive real numfgurauet[21] present numerical and partial geometric re-
R~![12]. TheseR-geodesicare composed of sequence§U|ts for steered cars, and KaImar—_ijyaI. [15]_ present
of up to three segments, each of which is a line or an &gorithms for numerically computing approximately op-
of a circle of radiusR, and there are further constraintimal trajectories for a bounded-acceleration model of the
on how these segments may be connected together, SEMetric omnidirectional robot.
geodesics are of particular interest in robotics becausd his paper considers the problem of finding trajectories
they describe the shortest paths for a simple model oinathe obstacle-free plane without visibility constraints
car with bounded steering angle and velocity. Desaulniers [10] showed that in the presence of obstacles,
There have been several extensions to Dubins’ work.dhortest paths may not exist between certain configura-
1990, Reeds and Shepp characterized the trajectoriedtifors of steered cars. Optimal distance metrics may still
a car that was also allowed to reverse [19]. Sussman @ivk some useful information about how obstacles may in-
Tang described a general methodology for solving praierfere with desired motions. Vendittedit al.[27] devel-
lems of this type [26], and Souéres, Boissonnat, and Layped an algorithm to obtain the shortest non-holonomic
mond [23, 24] discovered the mapping from pairs of codistance from a robot to any point on an obstacle. Agar-
figurations to optimal trajectories. The approaches devedal et al. [1] derive an algorithm to find the shortest
oped enabled the discovery of the time-optimal trajectodrvature-constrained paths in a convex polygon. Optimal
ries for two other simple models of vehicles: the diffepaths between pairs of points in configuration space may
ential drive [4], and a particular three-wheeled robot thabt exist in the presence of visibility constraints. Salari
can drive sideways as well as forwards [3]. The presesital. [22] give the optimal control words for a unicycle
authors derived the structure of optimal trajectories faiith a limited FOV camera. Hayaetdt al. [14] give nec-
a general model of three-wheeled omni-directional velgissary and sufficient conditions for the existence of paths
cles [13]. This paper attempts to generalize the results kamtween pairs of configurations for holonomic and differ-
these various systems, drawing on techniques developatial drive systems.



2 The Maximum Principle and integrate:

Pontryagin’s Maximum Principle [18] places necessary Az = k1y — kax + k3. (14)

conditions on the structure of optimal trajectories. A'ﬁpplication of the Maximum Principle completes the

{or:ylng_the Mda_lx_lrr:um I:””;'?Le trequwes tV\t'O steps-.l F'rfgroof: the Hamiltonian to be maximized along time-
ere is amdjoint vector, ), that represents a privilege Ptimal trajectories is

direction in the space of body velocities at each poin
on the trajectory. The adjoint vector is computed using H = kyi + kot + 0(k1y — ko + ks3). (15)
Pontryagin’s adjoint equation, a differential equation in
volving the body controls, the system equations, and the _ _ . u
objective function (in this case, time) to be minimized, 1he generalized velocity of the body, y, ) is a func-
Along any trajectory of the body, the adjoint vector iion Of the statey and the current contral. Define
non-zero, and a continuqus function of_bpth time gnd con- Hy(z,y,0) = H(u;, z,y,0) (16)
figuration. The expression for the adjoint also includes
constants of integration that depend on the start and gwabe the Hamiltonian function associated with a control
configurations of the system. u;. We call any trajectory satisfying the Maximum Prin-
Second, the Maximum Principle states that along aniple anextremaltrajectory. Along an extremal trajec-
optimal trajectory, the controls must be selected to mawvy, the value of the Hamiltonian B, = H (u., x,y,0),
imize the Hamiltonian, which is the dot product of thevhereu, is some control that maximizes the Hamiltonian.
adjoint and the generalized velocity of the body — in this At most points along the trajectory, we expect a single
case(i, 7, 0). control to maximize the Hamiltonian, and at these points,
The controls for steered cars, differential drives, arble control is fully determined by the Maximum Princi-
omnidirectional vehicles are different. However, we care. At other points, multiple controls may maximize the
show that the adjoint is the same for all these vehicld$amiltonian; at such points the trajectory mawitchbe-
this is the key step in the proof of theorem 1. tween controls, and there is (at least) a pair of contipls
andu; such thatd; = H;.
Proof of Theorem 1. From the Maximum Principle, the

adjoint equation is 2.1 The control line

A= —g(A,d(q,u» (8) We will deal with the case wherke, = ks = 0 in sec-

q tion 7. For now, assume that at least onespfor &y is
0 nonzero. Without loss of generality, we may choose a
== . 0 : (9) positive scaling for the constants so that+ k2 = 1.
A (55 R)f(w) Define thecontrol line to be a line with heading
By direct integration); = k; and\, = k. Substitute (k1,%k2), and signed distande; from the origin. The first
these values back into the definition for: part of the Hamiltonian

As = ki(s@ + cf) — ka(c@ — sg), (10) k1d + Koy (17)

wherec and s are shorthand fotos# andsinf. From is the component of the translational velocity of the rigid
equation 4, body along the vectdik;, k2), and the term-kox+ k1 y+
. : . ks is the distance from the reference point of the rigid
reer sy (1) pody to the control line.
Y = st + cy. (12)  We now have a geometric interpretation of the Hamil-
tonian. Define the ‘control line frame’ to be a frame at-
tached to the control line with x axis aligned with the con-
As = k1y — kad, (13) trol line, fixed anywhere along the line (see fig. 2). Then

Substitute into equation 10,



in the control line framey is the distance of the rigidwe can compute the distance of the rotation center from
body from the control line, and is the angle the bodythe control line. A similar result can be obtained describ-
frame makes with the control line. is the component of ing the angle a translation makes with the control line in
the body’s velocity along the control line. In these cooterms of the value ofi.

dinates, the Hamiltonian becomes

H—g ) Corollary 1 If the control corresponding to rotation cen-
ter O and angular velocityw is active at timet on an
This expression holds for the signed distapcé a par- extremal trajectory of Hamiltonian valu#, then at this
ticular reference point from the control line. The nexime the signed distance fro? to the control line is
lemma will show that the value aoff actually turns out yo = %
to be independent of the choice of the reference point on
the body. Corollary 2 If a translation control of velocityy and
forming anglex with the horizontal axis is active at time

. . YS TS on an extremal trajectory of Hamiltonian valué, then
Maximum Principle, the same value of the Hamlltomant o % . . .
at this timecos(a + 0) = -, whered is the orientation of

will be obtained for any point of reference in the bod%e body frame with respect to the control line
frame. '

Proof: If the instantaneous motion is a translation, Figure 4 gives an example of how these two corollaries
the result is immediate. Let the instantaneous motion lay be applied. The vehicle has four controls: rotation
a rotation of cente© and angular velocitw. Letyo be at angular velocity; or w,. about the center of the body,
the distance betwee® and the control line. Le®)’ be forwards translation, and reverse. In the figure, the body
O'’s projection onto the control line and be an arbitrary starts slightly below the distandé/w; from the control
point in the frame of the vehicle. From the perspective tiie, and forward translation maximizes the quandity-

P, the Hamiltonian is yw over all controls. The body drives until the rotation
center hits the liné7 /w,., spins to the right until reaching
. a critical angle, reverses until the line Ht/w;, spins to
Hp = @p +ypw = [|OP|lw cos ZPOO" + ypw the left, and%hen repeats the process. B sp
(19) Polar coordinate$v, o, w) will be useful for the con-
Hp = (]|OP||cos ZPOO’" + yp)w = yow = Ho trols, since rotating the rigid body rotates the ‘forward’ d
(20) rection, and all of the controls. That is,= atan2(y, &),

Therefore calculating the Hamiltonian at any point iWe angle that the control makes with the horizontal axis

the frame of the bodly is the same as calculating it at tirethe frame of the body; = /22 + 42, the translational
center of rotation. m velocity of the body, and is the rotational velocity. In
The fact that the Hamiltonian is independent of thaolar coordinates, the Hamiltonian becomes:
choice of reference point suggests choosing a reference
point where the expression for the Hamiltonian is simpli- H(u,y,0) = vcos(d + a) + wy. (21)
fied. Particularly, we can interpret the control law from
the perspective of a point in the body frame that happendn these coordinates, the value of the Hamiltonian func-
to be on the control line (see fig. 2). For such a poinipn corresponding to a contral is
y = 0 and the control law only requires to pick the con-
trol that maximizes this point’s velocity along the con- H;(y,0) = H(u;,y,0), (22)
trol line.
Another interesting result is obtained by choosing ttedong an extremal trajectory. The value of the Hamilto-
reference point, during a rotation control, to be the rotaian isH, = H (u.,y, ), whereu, is some control that
tion center, where = 0. Therefore, given a value fdf, maximizes the Hamiltonian.
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control line
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Figure 5: Two optimal trajectories for a translational platform.

Figure 4: A differential-drive ‘forwards-right-reverse’ trajec-
tory and associated control line.
any of the four directions aligned with the axes, north,
. south, east, and west, with speed one, as shown in fig-
3 Control switches on extremal tra- ure 5. The fastest trajectory to move to a point to the east
jectories is unigue and simple to describe: drive east, with no con-
trol switches. How about a trajectory to drive to the point
We have a necessary condition on the trajectory —the c¢#-1)? The minimum time required i (the manhattan
trol must be chosen to maximize the speed of a point 8istance to the point from the origin), and one optimal
the control line, attached to the body, along the contig@jectory is to drive east for time two, then north for time
line. We don’t know where the line is for a given sta@ne. However, any other trajectory to the goal that uses
and goal, but if we consider all possible placements @hly the controls ‘east’ and ‘north’ is also optimal. There
the rigid body relative to the line, we may enumerate tig@uld be an arbitrary number of switches between the two
types of trajectories that occur: the extremal trajectoriecontrols. For this system, optimal trajectories clearly ex
At some configurations along an extremal trajectort; but it is easiest to describe the trajectories with aimin
multiple controls may maximize the Hamiltonian. Thes@um number of switches, with the understanding that per-
are the configurations where the control may switch. Fawtations of translation sections of the trajectory witicl
example, assume that over some extremal trajectgry, be optimal.
has been the maximizing control, but as the body follows There are worse situations that can arise. Consider a
that control, the configuration changes untilalso max- refrigerator whose projection onto the plane is a square,
imizes the Hamiltonian, and then at the next instant, onjth supporting legs at the corners of the square. Assume
control u, maximizes the Hamiltonian. As long as thave can rotate the refrigerator about any of the legs with
system is “well behaved”, it is possible to start from agngular velocityl or —1. What is the fastest way to move
bitrary configurations and generate the possible shapethef refrigerator along the positive axis? It turns out
extremal trajectories. We will delineate and treat sepidat the solution may be to ‘chatter’, or switch infinitely
rately the special cases. The main result of this sectiguickly, between two rotation controls, approximating a
is that “most” extremal trajectories have piecewise costraight-line motion. In some sense, this trajectory does
tinuous controls and deterministic switches. The excepst exist, because it approximates a control that was not
tions will be shown to only occur aritical valuesof the in the set we were originally given.

Hamiltonian, which we can calculate. Chattering occurs when an arbitrarily short application
of controlu; causes contrals to be maximizing, and an
3.1 Chattering arbitrarily short application of contral, causes:; to be

maximizing. Such trajectories are both hard to implement
Unfortunately, depending on the control inputs availablen a control system, and hard to analyze.
the class of problems we study do not always have solu\We will show first that cases where controlgttercan
tions, or may have solutions that involve an infinite nunie clearly identified and have a simple structure. Chatter-
ber of switches between controls. ing can occur on control-line trajectories in two cases: if
Consider a rigid body in the plane that can translatetimere are switches between translation controls, or ither



are translations parallel to the control line. We will anddamiltonian equations:
lyze these cases in greater detail later in the paper, but firs

we will show that these are the only cases in which trajec- H = vy cos(f + ar) + ywr (23)
tories do not have piecewise-continuous controls. We will H = vy cos(0 + az) + yws. (24)
also see that chattering trajectories occur at particusar d

crete values of the Hamiltonian. By multiplying the top equation by,, the bottom byw,

and subtracting, we may eliminage

Theorem 2 Letky, k2, and ks be constants correspond- o oo (0 "
ing to an extremal trajectory, with? + k2 # 0. LetH be w21 —will =wsvi cos(f + o) — wyvs cos(f + 0‘22)5

the value of the Hamiltonian over the trajectory, and let (25)

.U be a discrete set of con.tro.ls used to generate the tr@éing the cosine addition formula and rearranging, this
thctory. If the trajectory satisfies the following two Condlequation can be written in the form

ions

) ) ) ) acosf + bsinf = c, (26)
(i) There are no translation-translation switches;
) . o . . . where
(i) There is no time interval during which the trajectory
is a translation parallel to the control line G = Wyl COS (V] — W1V COS (2 27)
b= —wyvy sinay + wyvg sin ag (28)

then the controls are piecewise constant over the tra-
jectory, with a minimum positive time between control ¢=wH —wi H. (29)
switches that may be computed as a function of the Ha

il- . . .
tonian and the controls nEquatlon 26 is of standard form. Craig [9] gives the solu-

tion as
Proof: The basic idea of the proof is to consider all bt VaZ+02 — 2
possible pairs of control®(g. uius or uyus). For each ¢ = 2atan s (30)
pair of controls (a potential switch), and givéh we will

see that there is a discrete sef@ff) values at which this f

itch This is true f itches that invol If @ + ¢ = 0, thend = =.) Notice that there are at most
switch can occur. This 1S true for switches that INVOIVe &, soutions form. For each solution fof, we can plug
least one rotation (condition (i)).

i ] . . the values of9, H, and the rotation control into equa-
Then consider each possible pair of SW|_tche_s. (Fo_r i6n 21 to compute the unique valuesmf -
ample u, u; followed byusus.) For each switchinapair, \ye givide chattering into three cases: chattering be-
the (y, 0) values are distinct, or they are not. If they argeen transiation controls, chattering between pairs-of ro
distinct, then the time between switches may be compuigd,, controls, and chattering involving three or more ro-
based on the control that occurs between the switcheslions Lemmas 2.3, and 5 show that the exact value of
they are not, then thi_s_ sec_t_ion is a translation parallel §0. Hamiltonian can be computed given a pair or triplet
the control line (condition (). _ of controls in each of these cases, if chattering is possi-
We need to prove that for each pair of controls (¢jie petween these controls. Therefore, to enumerate all of

switch) and a given value off, that there is a discretehage cases, it is sufficient to consider each possibletripl
set of(y, #) values at which this switch can occur. Let thg,q pair of controls.

pair of controls be labelled asg, us.

If eitheru; orus, is a pure translation/ = 0), the angle Lemma 2 (Chattering between translations)If an ex-
6 is constant over that section of the trajectory, and cantpemal trajectory contains a switch between two distinct
computed from equation 21. pure translation controls:; andu;, then the value of the

If neither control is a pure translation, then the anglamiltonian is uniquely determined by those two con-
at which the control switches may be computed using thiels.



Proof: At the switch andd;» is the (constant) distance between rotation cen-
ters. Since the resulting motion must be a translation, the
H = v; cos(f + o) (31) rotation centers must have opposite signs and lie on oppo-
H = vjcos(6 + o) (32) site sides of the control line. ]

We have two equations in two unknowns. First, we m e will next consider the case where three or more con-
solve for the angl@ that the body must make relative td ols are involved in chattering. To do so, we will need the
the control line at the switch. following lemma.

v; cos(0 4 ;) = vj cos(0 + ) (33) Lemma4 Letuy,... ,u.k,'k 12 3, be distinct controls on a
line in control spac€, ¢, 6), not all translations. Then,
A i i

the frame of the body, all the corresponding rotation
centers are on aline. There can be at most one translation
Vj COS (vj — V; COS ; (34) and its direction is perpendicular to the line formed by the
v;sino; — v;sina; rotation centers.

Use of the cosine addition identity and some algebr
manipulation leads to:

tanf =

We choose the solution fdt satisfying the requirement  proof:  Since not all controls are translations, their
that H > 0, and compute the unique value faF from ;

H = v; cos(6 + o). line intersects thé = 0 plane in at most one point. This

is the only translation admissible in the set.

Lemma 3 (Chattering between a pair of rotations) A Consider the reference pointin the frame of the body to
chattering extremal trajectory parallel to the control én be placed at one of the centers of rotation in the given set.
that contains no more than two rotation controls has Broject its velocity under all given controls onto tfig )
unique value of the Hamiltonian that can be computgdane. All the projections must lie on a lidé that passes
from the pair of controls, and the rotation centers corrghrough the origin. Therefore, all the rotation centersimus
sponding to these controls fall on a line perpendiculdre located on a line that is perpendiculariiband the

to the control line. Furthermore, the angular velocitiegranslation, if it is given in the set, must be perpendicular

at the rotation centers must have opposite signs, and thghe line of rotation centers. [
rotation centers must fall on opposite sides of the control ] )
line. Lemma 5 (Chattering between three or more rotations)

A chattering extremal trajectory parallel to the control

Proof. Let the controls be:; andu,. The refer- line that contains three or more controls has a unique
ence point of the body is arbitrary, and each rotation hagalue of the Hamiltonian that can be computed from a
corresponding rotation center. Choose the reference paiiplet of these controls.
of the body to be the rotation center correspondingsto
Over any non-empty interval, bothandé are constant, Proof: For each contral that maximizes the Hamil-
so the measure of the each sets for whiglor u is active tonian over the chattering segment we can write an equa-
is greater than zero. Notice thats unaffected by control tion of the form
ug, SO they motion of the reference point depends only
on the control:;. If the rotation centers do not fall on

aline per_pendicular to the control Iing,i; non-constant \ ;e that this equation contains three unknowhs; and

over the_ interval. We may compufgé using the follow- H. By assembling a system of three such distinct equa-

ng r(_elatlons, wherg, andys are they coordinates of the tions, we should expect, in the general case, to obtain a set

rotation centers: of measure zero of solutions for this system of equations.
= H (35) This shouldyield the critical! values that are sought. We

(36) will next proceed to characterize the vehicles for which

v;cos(0 + ;) + yw; = H (38)

=H L . "
Yaer2 the system is singular and to derive the critical values of
ly2 — 91| = dra (37)  H for such vehicles.

10



Re-write the equation 38 as This indicates that the three vectors lie on a line in the
control space. Therefore, the points in control space that
vicosaic —visinags +wiy —H =0 (39) correspond to controlg j andk also lie on the reflec-
tion of this line over thej axis. Thus, vehicles that can
have three or more maximizing controls at arbitrary val-
ues of the Hamiltonian need to have all of these controls
on a single line in control space. From lemma 4, rotation
centers corresponding to these controls must also lie on a

Assume we knew that controls; andk are used during line. Let L be the line through these rotation centers.

a chattering segment. Then we can assemble the lineaf/e Will calculate the critical values off in this case
by requiring that the chattering control be sustainabde, i.

wherec and s are the cosine and sine 6frespectively.
Note that this is equivalently

fic — ﬁiS + éiy —H=0 (40)

system ) .
given a control function.(¢) that takes values;, u; and
. uy Within arbitrarily small neighborhoods of a given mo-
& =0 6, -1 ¢ 0 ment we will require the Lebesgue integral of this func-
B, —f 0. 1 s [_] 0 (41) tion on any such neighborhood to be zero ingitand
ST y 0 components.
T —gx O -1 H 0 Let P be the intersection of, with the control line.

Consider the rank of the matrix on the left-hand side éP showr.\ above n the prgof of theorem 2, the chattering
. R g control will result in a motion that translatésalong the
this system. There are two cases: either it is of rank three

or itis of rank less than three control line.
Case 1:The matrix is of rank three. Assume thatj, We want to show that the angle betweleand the con-

trol line must be equal tar/2 along the chattering ex-

andk have been chosen so that their corresponding r Wl

vectors, when taken as a matrix, have rank thrge. By e “Assume first that the angle betweérand the control
mentary row operations on the system, we eliminate vari-

ablesH andy and are left with an equation of the form < 'S less t_han or eq“‘?" to/2. Note that all the controls_
corresponding to rotation centers above the control line

ac + bs = 0, wherea andb are constants, not both zero " L
: . o 9 have positive angular velocities, and all those below neg-
In conjunction with¢? + s* = 1, we calculate two pos- _ . .
. . L .. ative, because of corollary 1. No matter which control we
sible values of théc, s) pair. Replacing into the original : . .
. L choose, the Lebesgue integral of the motion of the point
system, we obtain two critical values &f. Only these . . .
I : P will have a negativeg) component. The only possible
two values of the Hamiltonian allow contralsj andk to . .
. L way to obtain the required value of zero for theom-
be simultaneously maximizing. C o . :
i . onent of the motion is to have the lideperpendicular
Case 2:The matrix is of rank less than three. Then one . : .
i : o . 0 the control line. This determines tilecomponent of
row is a linear combination of the other two; i.e., ther, . . .
. the state, which allows us to uniquely determine the value
exist constants andb, not both zero, such that oo S : .
of the Hamiltonian at which it is possible to sustainably
apply a chattering control as described, in the manner de-

—é; _; i scribed above for the two controls case in lemma 3.
a N ] = ; (42)  The case for which the angle betweand the control
91'1 911 9’61 line is greater tham /2 is analogous. [ ]

Equivalently, denoting by the first three components of3-2 ~ Discretizing polyhedral control spaces

each vector, we obtain the system The lemmas in the last subsection allow possible chat-

(43) tering cases to be identified by considering all pairs and
triplets of controls. For each pair or triplet for which chat
at+b=1 (44) tering may occur, there is a corresponding direction and

ad +bq; = q
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speed of translation. If this translation is already in tbie dowed, at the next instant only one control will continue to
of permitted controls, then any extremal trajectory witbatisfy the Maximum Principle. Given g,(@) value at a
chattering between these controls is equivalent to an ewint where multiple controls maximize the Hamiltonian,
tremal trajectory without this chattering. If the tranglat under what circumstances is it possible to determine the
is not in the set of permitted controls, and these translaext’ control?
tions cannot be otherwise ruled out of the set of optimalWwe define ssustainable extremal contralt timet and
trajectories, then there may be optimal trajectories #at tonfigurationg to be a control such that there exists a
quire infinitely many control switches in a finite time — &trictly positive constant such that applying the control
situation not well-described by the kinematic model.  on[t, ¢+ 6) generates an extremal trajectory with the same
The lemmas also indicate how to reduce a continuagtsnstants. To analyze the circumstances under which ex-
polyhedral space of generalized velocities that the boglgmal controls are sustainable, we will need to look at
can follow to a discrete set of controls sufficient to modekrivatives of the Hamiltonian functions for each control
the time-optimal trajectories. The adjoint function is @ith respect to time. We will choose the convention that
privileged direction in velocity space, such that at almoslong a piecewise-constant-control trajectory, the vafue
every time, the control must be chosen to maximize dgdntrol exactly at the time of a switch is the same as the
product of the generalized velocity of the rigid body witlontrol in the interval after the switchi-e. controls are
the adjoint. If the space of generalized velocities is polgpplied over half-open intervals that are closed on the left
hedral, we expect for most possible direction of the agide.
joint vector that a single vertex is maximizing. Therefore If a Contr0|uj is extremal over some interval (Sustain_
the discretized set of controls should contain a control C@ble), it must be the case that this control continues to
responding to each vertex. maximize the Hamiltonian over the entire interval. For ev-
However, there are also directions of adjoint vectogsy other controt; , either the Hamiltonian must remain
that maximize generalized velocities on a face or edgegd|ow the maximum value, or if it does attain a maximum,
the polyhedron. In this case, we must consider chattgpt exceed that maximum — that is, the derivative of the

ing between the vertices of the face or edge. The lemmagmiltonians for other controls must be non-positive.
show that for each such chattering, there is a single transpgfine

lation control that may be added to the discretized set, d .
removing the need for chattering. EHf (9) (45)

As a concrete example, consider the optimal trajecto-
ries for a Dubins car. The trajectories may include the |é& be the right derivative of the Hamiltonian for contéol
and right turns, which are vertices of the control spaci, the configuratiory relative to the control line, assum-
but also may include straight lines, which are not verticd89 the controlu; is applied for some half-open interval
The fact that these straight lines appear in optimal trajé@ntaining the current time. We can compute this value as
tories may be deduced by chattering the controls that fpdows.

vertices. }
H}(q) = v;cos(0 + i) + yw; (46)
3.3 Sustainable extremal controls di Hi(q) = —fv; sin(0 + az) + g (a7)
t 3
We now turn to non-chattering trajectories. These trajec- 4 ; ) )
tories have piecewise-constant controls, and this sectiorig; i (¢) = —wjvisin(0 + ai) + vjwisin(0 + a;)
will show that at every point it is possible to write equa- (48)

tions to determine which control precedes the switch, and

which follows the switch. For example, in figure 3, iDefine agenericpoint of a non-chattering extremal tra-
configuration 2, rotations about either of poidisor R jectory to be a point such that there isiaglesustainable
gives the same value of the Hamiltonian; both controls agtremal control. Ageneric trajectonyis a trajectory such
maximizing. However, regardless of which control is fokhat every point along the trajectory is generic.

12



More formally, on a generic trajectory, for every time two parallel lines. There are only two solutions to this

there exists a unique contre) such that geometric problem, each corresponding to a direction of
the switch; this is in fact the main idea behind the proof
Hx = H; (49) of theorem 2. The main result in this section will show

how to identify the correct solution for the configuration,
given a value ford, and a directed switch between a pair
d ;i of controls.

EHi (a) <0. (50)  we will need the following small result.

and further for every such thatd; = H; with j # i,

Proposition 1 At any switch between two rotation con-
trols ¢ andj, the locations of the rotation centers are dis-

Along generic trajectories, the control is completely dénct.
termined by the configuration of the body relative to the

control line. Our goal in section 5 will be to genery
ate these types of trajectory. To do this, we want L

be abIe_to cc_)mpute the conflgur_at|0n .Of the body at t Therefore the displacement vector between the two ro-

next switch, if we know the configuration at the currené. :

switch. In fact, given the current switch (or any othag O CeNers at a switchy; — z;,y; —y:) has nonzero
' » 9 ( y qength. Letd;; be the this distance and lgt; be the angle

configuration), we can compute the valueféfand then th{s vector makes with the control ling;; may be easily

use this value to compute the configuration at the n%mputed from equations 51 and 52, angis given by

switch. There are two basic kinds of switches that can oc-

3.4 Rotation-rotation switches

Proof: Assume the two rotation centers were not dis-
nct. ThenfromH = y;w; we may computey;, and these

e0 controls are identical. [ |

cur on generic trajectories, rotation-rotation switclees Vi; = 0+ atan2(g; — §i, &5 — &) (54)
rotation-translation switches, and we will analyze them in ' '
this section and the next. Lemma 6 (Rotation-rotation switching configurations)

Analysis of rotation-rotation switches is simplified byror a given value of the Hamiltonian, witkf + k2 # 0,
considering the rotation center associated with each ctime anglef of the body with respect to the control line
trol. In the frame of the body, rotation centgr;, ;) cor- at which the control switches from rotation controto

responding to contral; is rotation controlj is unique, as is the distangefrom the
R control line.
N [}
R (51) Proof: By definition,
gi= 2 (52) Yj — i = dijsiny; (55)
Wi

Consider a switch from contral; to controlu;, with From equation 53,

1 # j. Let(z;,y;) be the coordinates of rotation center 1 1
¢ with respect to the control line. From corollary 1, the Y —yi=H <; - J) (56)
Hamiltonian corresponding to contrbht this configura- ! ’
tion is Combining,
H = y;w;. (53) . H /1 )
Geometrically, as we can see in figure 3 in configuration S Y = @ (M—J - w—) (57)

2, the switch corresponds to a situation where each rota-
tion center lies on its own line at a distanfgw from the This gives two solutions foy;;. However, one of the can-
control line. Since the distance between the rotation catidates can be eliminated. Notice that to the right of the
ters is fixed by their associated controls, the problem isswitch, the right derivativéd%wiyi exists and is negative;
fit a line segment in such a way that the endpoints contatiherwise there exists a point after the switch such that
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choosingu; maximizes the Hamiltonian. Since after th@his allows the choice of the correct (and unique) value
switch the body is rotating around rotation centexith for # from the two solutions previously computed.

angular velocityw;, Onced is known, the value fog may be computed from
the expression for the Hamiltonian. If the switch is from a
iyi = wjdyj cos ;. (58) translation to rotation control, the analysis is similaitiw
dt a sign change on inequality 63. [ ]
Premultiply byw;, giving
wl%yi — wiw;dy; cos ;. s9) 4 Critical values of the Hamiltonian
Therefore In the previous section, we showed how switches follow
wiw; cosYi; < 0 (60) each other on generic trajectories, and showed that non-

. _ ) . generic trajectories only occur at particular critical-val
This gives a constraint on the sign of the cosine9f 65 of the Hamiltonian. The main result of this section
which allows us to select the correct solution from equgy it petween these critical values of the Hamiltonian,
tion 57, yielding a single value fdf, the angle at which g4 variations in the(y, §) configuration of the body
the control switch occurs. The distangérom the control o|44ive to the control line do not change the structure
line may then be computed from equation 53. B of trajectories, in the sense that the sequence of control
switches does not change. This does not mean that ev-
3.5 Rotation-translation switches ery trajectory with the same value of the Hamiltonian has

the same structure, since various controls may lead to the

We_ will use a similar teghnlque to compute the Cor_'f'glééme value of the Hamiltonian at certain configurations.
ratl_ons_of the_ body re"’?‘“"e to the contrql line at which Bowever, we will see that every trajectory with the value
switch involving a rotation and a translation may 0CCUI. ot he Hamiltonian in some range between critical values,

Lemma 7 (Rotation-translation switching configurationgoing through a particular control switahu;, has the
For a given value of the Hamiltonian, witt? + k2 £ 0, Same structure. In the following section, we will use this
the angled of the body with respect to the control lindact to generate all trajectory structures, by first pamtiti

at which the control switches from controlto control ing the Hamiltonian, then considering a finite number of
j’ where exacﬂy one of the controls is a trans|ati0n’ QOSSible switches within each interval of the Hamiltonian,

unique, as is the distanggfrom the control line. and for each switch, constructing a trajectory structure.
Proof: The translation corresponds to contrqlemma 8 For a switch from controk; to uj, where at
(v, , 0). ' least one of the controls is a rotation, there is a set of
H =i+ 0y =vcos(f + a) (61) values offf that is the intersection of the strictly positive

Solving this equation yields two solutions f@-+«), and real numbers with some closed interval, such that for each
thus two solutions fof. We now want to show that onlyvalue offf in this set, there is a single value @f, 0) at

one of these solutions is valid. Assume the first controlMdhich the switch may occur, ignoring other controls, and
a rotation. Notice that the right derivative outside the interval, there are no valueg 9f9) for which

p the switch may occur.
—H!(q) = vwsin(0 + a 62

dt " @) ( ) (62) Proof: If the controls are both rotations, the result
exists and is non-positive; otherwise choosing contgol follows from equations 57 and 60, since the range of the

increases the value df beyond the maximum for thisSine function in equation 57 is-1, 1]. If one of the con--
trajectory. So trols is a translation, then equation 61 and 63 give similar

results. ]
vwsin(f + a) < 0. (63)
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Theorem 3 There is a partitioning of the values of th@onian, and this value has already been added to the parti-

Hamiltonian into a finite set of open intervals, such thaioning. [ ]

every trajectory with a Hamiltonian within a single inter-

val, containing the same cont_rol switch, WiI_I contain thﬂ.l Switching space

same sequence of control switches, following the switch

that the trajectories have in common. Given the set of controls, we enumerate the trajectory

classes by looking at all the possible configurations that

Proof: There are some discrete special values thfe rigid body can have with respect to the control line.

the Hamiltonian, and we will build a partitioning of theOnly the body’s distance and orientation relative to the

Hamiltonian by these values. First, if a trajectory comontrol line determine the maximizing controls. It makes

tains any translation-translation switch, we can compwgense, therefore, to project extremal trajectories orgio th

the unique value of the Hamiltonian. So for each pair gf and  dimensions, which we will call thewitching

translation controls in the input set, compute the Ham#ipace The topology of the switching space is cylindri-

tonian, and add these values to the partitioning. Also, foal, as the coordinate wraps around after 360 degrees.

each pair of controls in the input set, add the boundarie€Each body configuratiofy, 6) in switching space has

of the sets computed in lemma 8. Finally, for each triplassociated with it a valu#; for each control, and one or

of controls in the input set, compute the values of thBore of these controls is maximizing. An extremal tra-

Hamiltonian for which all three controls may maximizgectory attains a set dfy, #) values, and there is a corre-

the Hamiltonian, using the linear system 41 and the straponding curve iffy, 6) space. Generic trajectories have

egy employed in the proof of lemma 5. piecewise constant controls, so the curve corresponding

Now we want to show that outside of these special vdd a generic trajectory is a union of smooth curves that
ues, continuous perturbation of the valugb trajectory intersect at configurations where the controls switch.
starting with some control switch; u, does not change We have seen that there is a discrete set/ofalues
the structure of the trajectory. such that between thegevalues, all extremal trajectories

Consider an extremal with a value Hf not in the par- have the same structure, if they contain the same control

titioning. For each control switch; u;, consider the cor- switch. We will call trajectories that have a Hamiltonian
responding set off values computed in lemma 37 is from this discrete sedeparatingrajectories.
either on the interior of the closed interval for this cohtro Points in the switching space may be classified into dif-
or exterior to the closed interval, sinég cannot be zero. ferent types:
No continuous perturbation df that does not cross one
of values in the partitioning will allow the ‘exterior’ con-
trols to become active during the trajectory, so we may2. Points on separating trajectories
ignore these controls.

Starting from switchu,us, consider each possible
switch ugug, with k& # 2. Compute the unique value of
(y, 9) at which the control may switch as a functioniéf Figure 6a shows the switching space for a Dubins car.
Using controlus, we can compute the potential time t@he trajectory labelled ‘1’ corresponds to a generic tra-
each next switcht; » . Each such time is a continuougectory over which the car drives in a circle. The cor-
function of H, and the next switch to occur will be theespondingy, #) values are a sinusoid in the switching
one with the smallest time. If no two of these times agpace. The trajectory from configurations ‘2’ to ‘3’ traces
equal, then continuous perturbationffwill not change a circle until the car crosses tlye= 0 axis, switches to a
the chosen next control until two times become equal (adifferent circular arc, and switches back again to the first
minimum). If two such times are equal, then at the imetation at the axis. We say the= 0 axis is aswitch-
stant of the switch, three controls maximize the Hamiltirg curvefor the Dubins car. Finally, consider the two
nian. In this case, the linear system 41 from the proof whjectories ‘4’ to ‘5’ and ‘5’ to ‘6’. These special tra-
lemma 5 can be used to compute the value of the Hanjdetories contain translation parallel the control lineda

1. Switching configurations

3. Other points: points on generic trajectories that do
not correspond to a switch
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(b) The Reeds-Shepp car.

(c) The differential-drive.

Figure 6: Switching spaces and example trajectories for standamticobehicles
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their curves in switching space separate the C and C&Cdraw a particular trajectory in switching space, there
trajectories that we considered first. are two approaches. We have already seen the first, direct
Drawing all of the switching curves and separating traethod — arcs of circles in the workspace of the body map
jectories in switching space gives a visualization of &b sinusoidal curves i, y) switching space, and the si-
possible extremal trajectories for the rigid body. Figiusoidal curves are joined at points that cross the three
ures 6b and 6c¢ give the switching curves and separatavgtching curves.
curves for Reeds-Shepp and differential-drive vehicles. The second way to draw trajectories in switching space
Given a new system, how can we compute a switclelies on two observations: the Hamiltonian depends only
ing curve, which is the set ofy, #) at which a switch on the value of; andd, and the Hamiltonian is constant
may occur? Consider a pair of contrdls, u2). At any across any minimum-time trajectory. Therefore, dashed
switch, the Hamiltonians of these controls must be equahd solid curves in figuré can be thought of as being the
H; = H;. level sets of the Hamiltonian functiai (6, v).
Each level curve contains a potentially infinite number
v1 cos(f + a1) + ywi = vacos(0 + az) + yw2  (64) of optimal trajectories, since it is possible to start and en
) ) ) . anywhere on it, as long as travel proceeds continuously,
After some algebraic manipulation, this gives the conqs, the possibility of periodicity as well. We can distin-
tion guish theoptimal classesppearing on a level curve by
(1 ot — i = nsind = s o). (65 1L SeBarang i nconneced o, and ten iking
Consider the vector that is the difference of the vectors
(£1,71) and(Z2, 7). Let Avy, be the length of this vec-
tor, and letd;> be the angle this vector forms with the5
horizontal axis. Then the above equation becomes

Generic trajectories

The analysis of switching space provides a compact ge-
(66 ometric way of describing all extremal trajectories for a
given set of controls. In this section, we will describe an

If the controls are distinct, at least oneAf,, or (w; — algorithmic approach to enumerate trajectory types.

w9) is nonzero. In the general case, this curve is a sinusoid

iny, 9_space. In degene_rate cases, it is_either th_e ho_rizgr]l Generating generic trajectories

tal axis (as for the Dubins car) or a pair of vertical lines

(as appear for the Reeds-Shepp car in figure 6b). We have said that generic trajectories are trajectories for
Since the switching curves are sinusoids or straighhich the configuration of the rigid body relative to the

lines, the union of switching curves divides the space apntrol line completely determines the trajectory. Given

into regions within which a single control maximizes theuch an initial configuration, lemmas 6 and 7 can be used

Hamiltonian. Notice that trajectories in this space thix generate the trajectory.

are not tangent to any switching curve can be perturbedsiven initial y and@, compute the current maximizing

without changing the structure (the order and type of coeentrol. Given the current contra), andf, compute a list

trols) of the trajectory. Trajectories that are tangent tooftimes to potentially switch to each of the other controls.

switching curve therefore separate the space by typeFodm this list, choose the control for which the switching

trajectory. time is soonest. This is the next control. Computeghe
How do we calculate th¢y, ) separating curves? Itandf value at the switch by applying the original control

turns out that we have already seen them in a previous dec-this amount of time, or alternately, using the value of

tion; these curves are the pre-image of the discrete valdéand the control switch. Repeat to find each new control.

of the Hamiltonian that form the partition in theorem 3.  If the current control is a rotation, the potential time to
Separating curves separate trajectoriegyir¥) space, switch to another control is computed by computingithe

and switching curves separate control regions. If we warlue at the switch, subtracting the curréntalue from

Awvyg cos(f — §12) = y(w1 — w2).
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the switchingd, and dividing by the current angular velocmay fall into multiple classes. An eventual goal is to use
ity w. If the current control is a translation, the potentidhe classification to search first for optimal trajectoriés o
time to switch to another control is computed by congach class between a start and goal, and then to find the
puting they value at the switch, subtracting the currgnt fastest trajectories from among these. Short trajectories
value from the switching, and dividing by the current may show up several times in such a search, but do not
velocity 5. otherwise cause a problem.

The extremal trajectories generated are of infinite dura-The generative algorithm suggests a method of describ-
tion. Also, we expect these trajectories to be periodic,iimg all classes of generic trajectories. Choose many ini-
the sense that they will return to the same control, and tiied (y, 6) configurations, run the simulator for each, and
same values af andé. report all unique results. The primary difficulty is how

to sample theg(y, #) configurations so as to ensure that
Lemma 9 (Periodicity of generic extremals)Assume  exactly one representative of each trajectory structure is
the rigid-body hasn discrete controls. Any genericfound. Since every infinite-duration extremal trajectory
extremal trajectory becomes periodic after no more thgrasses through several switches, we can restrict the initia
n(n — 1) switches. configurations to those that occur at a switch.
If we know the controls involved in the first switch, then
Proof: The trajectory starts at some initial configuwe can find differenty, ) values by varying the value of
ration, and passes through a sequence of switches. StheeHamiltonian continuously. We have proven that vary-
there aren controls, there are(n — 1) unique pairwise ing the Hamiltonian will not change the structure of the
combinations of controls. By the pigeonhole principlgsajectory, except at certain critical values. Thereféoe,
the control pair from the first switch must repeat after ngach (possibly open) interval in the partition of the Hamil-
more tham(n — 1) switches. Since the value éf is con- tonian, choose one value of the Hamiltonian, building the
stant over any extremal trajectory, we can use lemmasiScrete sef. For each pair of controls in the input set,
and 7 to compute they(0) values at the first switch, andand value inH, compute y, ) value, and use this to
at the repetition of the first switch. B generate one period of a trajectory.

This algorithm is quite simple to implement, and we As described, the algorithm will find many duplicate
have done so in a few hundred lines of code of Javascripgjectory structures, since circular permutations gétra
the implementation is available from the authors’ websitgry structures are considered to be in the same class. To

avoid this, as each trajectory is generated, for each mem-
5.2 Classifying generic trajectories ber of H, mark the glrea(_jy-visited pairs of C(_)ntrols.

How many generic trajectory structures might there be?

Each trajectory is described by a sequence of contrdlst n; be the cardinality off. We can see from the
The generic extremal trajectories generated by the algngth of the visited list in the algorithm that the total
rithm in the previous section are of infinite duration, butound on the number of trajectoriesrig; x n(n — 1),
are all periodic. We can describe the trajectory by writvheren is the number of controls in the control set. Since
ing out the sequence of controls corresponding to a sthe critical values of the Hamiltonian are obtained by con-
gle period. For exampleysuiuzu; would describe the sidering all pairs and triplets of controls,; is upper
trajectory “..ujuguiuruiusuiurug ... We say that bounded byO(n?). ThereforeO(n®) is an upper bound
two infinite-duration extremals are of the same class if the the number of trajectory types. In practice, we ex-
control sequences that describe them are circular permpaet the number of trajectory types to be much smaller,
tations of each other. (Thus;uruius would also be in since most triplets of controls will not generate a criti-
the same class.) cal value of the Hamiltonian, and since long trajectory

We would also like to classify trajectories of finite durastructures will visit several locations in the visited list
tion. If such a trajectory contains at least one periaal,( For example, the Dubins car has three controls, and only
repeats a switch), then the trajectory can be classified thgee generic trajectory structures (left C, right C, and
ing the above system. Trajectories shorter than one per@@@dC). The Reeds-Sheep car has six controls, and only
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Theorem 4 Generic trajectories for which the image of
6(t) is notSt, and for whichd(0) # 0, contain no more
than one period.

Proof: Consider a candidate trajectory that contains
more than a full period. We will prove that this trajectory
is not optimal by constructing another trajectory from the
start to the goal that takes an equal amount of time, but
does not satisfy the Maximum Principle (and is therefore
not optimal). Figure 7 illustrates the idea.

Any trajectory achieves both a minimum and a maxi-
mum value ford. For now, assume tha#k0) is not ei-

Figure 7: Construction showing that optimal trajectories d,her of the extreme values. By lemma 10, trajectories for

which the image of(t) is not 5%, and for whichf(0) # 0, which the image 0b(t) is a point contain zero periods.
contain no more than one period. Let T be the duration of the first period. Sinéét)

is continuous, it must achieve all the values between the
minimum and maximum values éfin (0,T). Therefore
four generic trajectory structures. there existg; € (0,7) such that(t;) = 6(0). Also,
y(0) # y(t1), sincet; < T. Let A be the section of the
T . trajectory on the interval, ¢1], let B be the section of
5.3 Limitation on the number of periods the trajectory orft;, '], and letC' be the remainder of the

We have seen that generic trajectories are periodic. TH&J€Ctory. The controls at the start.dfand the start of’

jectories return to the same control switch repeatedly, MHE the same. h ) A hi .
becausel is constant over the trajectory, return in fact NOW construct the trajectong AC. This trajectory
to the same6, y) values. The Maximum Principle On|ytakes the same duration A88C, is feasible, and reaches

gives necessary conditions on trajectories — although {Rg goal. On this new trajectory, we have the same con-

extremal trajectories that satisfy the Maximum PrincipféOIS at the beginning ofl (time 7" — ¢1) and beginning

are periodic, we do not typically expect trajectories witff € (time T), but differenty values. If we compute the

many periods to be optimal. An example is the paralidiamiltonians at these times,

parking trajectory for the Reeds-Shepp car shown in fig- H(T — t1) = &(T) + 9(T)y(T —t) (67)
ure 6b. One period may be optimal to move the car . e
slightly sideways, but to move a long distance sideways, H(T) = (1) + 6(T)y(T), (68)

we expect the car to turn and drive rather than executin
sequence of parallel-parking moves.

In this section, we will show that under many circu
stances, optimal trajectories contain no more than one geeorem 5 Generic trajectories for which the image of
riod. We will need the following lemma. 6 is S* for rigid bodies with symmetric control bounds,

] ) _ ) so that the body can reverse along any trajectory at full
Lemma 10 Generic trajectories segments with constagbeed contain no more than one period.

6(t) have constant controls.

#2 find that the Hamiltonian is not constant of the trajec-
mt_ory, sincey(T') # y(T — t1) andé(t) # 0. [ |

Proof: Consider a candidate trajectory that contains
Proof: Over any optimal trajectoryl/ is constant at |east one period. We will prove that this trajectory is not
and non-zero. The Hamiltonian 18 = & + 0y. If 6(t) optimal by constructing another trajectory from the start
is constant,H = . Thereforez is a constant. Sincetg the goal that takes an equal amount of time, but does
y = @ tan(0), y is also constant. B ot satisfy the Maximum Principle (and is therefore not
optimal). Figure 8 illustrates the idea.
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Figure 8: Construction showing that rigid bodies with symmet-

ric control bounds have optimal trajectories containingmare
than one period.

Choosée; € (0,T) such thatd(t1) —0(0)| = 7. LetA
be the portion of the trajectory df, ¢;] and letB be the
portion of the trajectory oft;, T|. The trajectory is of the
form AB. Let B’ be B reversed in timei.e. the controls

at the start ofB’ are the reverse of the controls at the end

of B. Consider the trajectordB’. This trajectory takes
the vehicle from the start to the goal.

The constructed trajectory is not extremal. Consider

the timet;. Notice that sinc@ is strictly monotonic over
AB, the signs of botlt andd must change &f’ — ¢; on

AB’. We can therefore compute two different values for

the Hamiltonian at this time. [ |

5.4 Restricting the location of the control
line for given initial and final motions

We have seen that the problem of finding the optimal
generic trajectory between two configurations is practi-

cally synonymous with find the values of the constant

ko, andks. Arbitrary positive scalings of the constants
do not affect extremal trajectories, so without loss of geny

erality, we assumé? + k2 = 1 (still assuming for the
moment that at least one &f or k, is nonzero), reduc-

ing the problem to search over two dimensions. In this
section, we will show that knowing the structure of the
trajectory gives a constraint that Hamiltonian be equal on
the first and last segments, and essentially reduces this to
. The initial and final motions are translations of the

a search in one dimension.

Since the space of controls is discrete, we can consider
in turn all possible combinations of two controls, corre-
sponding to the initial and final motions. For each one of

the control line for the corresponding optimal trajectory:
either a point on the control line, or the control line’s di-
rection.

The method used to determine one parameter of the
control line varies, depending on the kind of end segments
we are considering. These are all possible cases:

1. The initial and final motions are rotations of the

same angular velocity. The conservation of the
Hamiltonian imposes that the two rotation centers be
equidistant from the control line. Therefore the con-
trol line is parallel to the line determined by the two
rotation centers.

. The initial and final motions are rotations of differ-

ent angular velocities.The Hamiltonian equations
on both end segments are of the form

H=—yw (69)

Since the angular velocities are not equaletbe

the smaller one. Led be the distance between the
two rotation centers and le®P be the intersection
point of the control line and théC; ICs line. Then
the distance betweeR and IC; is dw;”jwl. This
does not depend of, so the location of? can be
determined, which constrains the control line to pass

through a point.

. The initial and final motions are a rotation and a

translation. This is very similar to the case above.

The perpendicular from the rotation center to the
translation’s direction serves the role of the line unit-
ing the two centers.

The initial and final motions are translations of dif-
ferent speed vectortet ; andv; be the two trans-
lation speed vectors. Let be a unit vector par-
allel to the control line. TherH (¢;) = ;¢ and
H(ty) = v2c. Thereforec(v; — ¥2) = 0, so the
control line is perpendicular t@;, — vs.

same speed vectorFor such trajectories, it is al-
ways possible to construct an infinite number of
time-equivalent trajectories by increasing the initial

these combinations, we will determine one parameter of translation and decreasing the final translation by the
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same amounti is the same for each translation seg- 1. At a critical state, ignore all controls that perpetuate
ment. If the initial translation is of zero length, the  this state.
start is at a switch and the control line passes through

one of the initial locations of the switching points. 5 granch off a different computation for each one of

. . ) the other controls that can be chosen.
For any given start and goal, the above considerations

transform the search for the location of the control line

into a one-dimensional search. The search can be resolve§€eping a list of visited switches at generic points
through numerical methods. In each case, the second W#i- allow the above computation to stop aft€¥(n?)
rameter of the control line is a real numher For each Steps. Since all the translations parallel to the control
p, there is a corresponding trajectory, beginning at tHeeé can be consolidated into a single segment to gener-
start configuration. LeD(p) be the minimum distance,ate a time-equivalent trajectory, tangent trajectoriegha

in the plane, between the goal and a configuration on #@en shown to consist of a number of fully determined
p-trajectory of the samé as the goal. The problem carf€neric segments, appropriately connected, plus an arbi-

be re-stated as a requirement to minimize). trary length tra_nslation, parallel to _the control line, ato
of the connections between generic segments.

6 Tacking and tangent trajectories 6.2 Tacking trajectories

The method to generate generic trajectories can also

e . . . . . .
applied starting iry, ¢ configurations that do corresponJ%Ckmg trajectories contain switches for which two or

o . more sustainable controls are translations. Tacking tra-
to critical values offt/. However, in such cases the algo-

) . S hectories are similar to the tangent trajectories, insafar
rithm is no longer deterministic. Sooner or later, a con-

figuration will be reached such that there exist multipﬁe chattering of the sustainable translations can generate

. L a}translation parallel to the control line. The determina-
sustainable maximizing controls. Furthermore, there wijll : }
tion of the generic segments can proceed in the manner of

exist a maximizing control, or a chattering of maximizin : ; L .
9 . tering . the previous subsection. The main difference is that the
controls, such that the resulting motion is a translatian th

maintains this situation. exit from the critical segment can also occur ata diﬁerent
y than the entrance. This problem can be dealt with by
adding an extra branch to the computation: apply each of
the translation controls alone.

It is possible to consolidate any number of translations
Tangent trajectories contain switches at which there exastthe same heading along a tacking trajectory into a pair
two or more sustainable controls, at most one of whicha$translations.
a translation.
There are thus two ways in which tangent trajectoriq_?]e

are unconstrained by the Maximum Principle: first, in the . . . .
choice of control at some switches: second. in the du{equwalent optimal trajectory that does not contain more

tion of certain controls that perpetuate critigabh con- han two translations at the same heading of the body.

figurations. However, the generating algorithm from the

previous section can still determine some of the shape of Proof: Let p be the net translation along a trajectory
tangent trajectories. Particularly, theneric segmentse- due to pure translations at some heading, andjéte the
tween two critical points are fully determined, given anet duration of the pure translations at that heading. Let
initial choice of a non-translating control. The following:, be the translation control such tiBu, = p. If u, is
modifications to the generating algorithm make it outpot the convex hull of the translation controls, then choose
all generic segments for a given criticdl the two adjacent translation control vertices and uy,

6.1 Tangent trajectories

orem 6 For every optimal trajectory, there exists an
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and apply the controls for times:

[|up — us|

T, =T, —~2— 70

T (70)

7, = 7, = tall (71)
l[up — ual| 5

Notice that ifu,, is not on the convex hull of the translation
controls, then the original traje_ctory was not optimal =i o ‘Z 7 3 ;
scaleu,, to the convex hull, and find controlg, andu, as
above; the constructed trajectory is faster. B Figure 9: Example of a roll and catch trajectory. The polygonal

control surface rolls along the control axis with constamjua

. . lar velocity. When the last rotation center is put in plades t
7 Constant-anguIar—veIOC|ty trajec- last motion is an off-axis rotation around this point (thatah”
tOI’iGS stage). The trajectory of the last rotation center is shasmnyell
as the locations in the world frame of all the rotation centesed

. along the trajectory.
So far, we have ignored the class of extremals correspond-

ing to the case wherk; = k; = 0. This section now

deals with that case, and gives results that are essenti

independent of the rest of the paper except theorem 1.
The Hamiltonian is simple:

gﬂ}jular velocity, then forwards again around the left rota-
tion center. Along this trajectory, angular velocity is pos
itive and constant.
H = k3. (72) How long does the three-point turn take? It is simply
the angle to be traversed divided by the angular velocity.
Either k5 is greater than zero, or less than zerg; ¢ Of course, the driver could also follow a four-, five-, or
0, since the Maximum principle restric& from being Six-point turn, taking the same time, but following a very
identically zero.) Ifks is positive, then any control with different trajectory. Therefore, we expect that there may
maximumw satisfies the Maximum Principle. Otherwisehe many optimal trajectories between configurations for
any control with minimumv satisfies the principle. which the amount of angle to turn through is the limiting
In the simplest case, the controls for which the mintactor, rather than the distance to be travelled. Rather tha
mum and maximum values of are attained are unique constructing all such trajectories, we will show that there
Then these trajectories are simple: constant controls, d6i@ canonical trajectory structure, which we call ‘rolléan
responding to pure rotations around a fixed rotation cet@tch’ (see fig. 9 for an example) that we can use to always
ter. The more interesting case is when multiple contrdigd one optimal trajectory. We also show that that for
maximize or minimizes. The Maximum Principle doesthis canonical trajectory structure, we can find the precise
not directly give any information about when to switcRarameters of the optimal trajectory for every start and
between the controls, since the translation componen@@gl; this is something that appears to be much more dif-
in the kernel of the Hamiltonian. ficult for typical generic trajectories with one &f or ko
Under what circumstances might such a trajectory B@NZ€ero.
optimal? The classic example is a Reeds and Shepp caie will refer to constant-angular-velocity trajectories
that can reverse as well as go forwards. Consider the gowlthe short name ‘whirls’ in this section. A direct appli-
of spinning this car in place. A direct spin is not an avaitation of the Maximum Principle does not give much in-
able control, and a human driver would execute a thrdermation about whirls past the fact that angular velocity
point turn. The driver might move forwards around this constant and maximized or minimized over the trajec-
left rotation center, with positive angular velocity, thetory. However, we will show that we can apply the Max-
backwards around the right rotation center, with positivaum Principle to an alternate formulation restricting the
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trajectories to a fixed structure, the roll-and-catch.

The problem of finding the optimal whirl trajectories
can be restated equivalently in the following way. Con-
sider a closed surface of rotation cent&rén the plane,
containing at least two distinct points, and a vehicle that
this surface is attached to. The vehicle can rotate at anp B
gular velocity1 around any point inZ. (The clockwise
case is symmetric.) Do time-optimal trajectories exist f&}gure 10: Achieving an infinitesimal translation by three pos-

such a vehicle, and if so, is there a method to construct'g\f? rotations around pointgl and B. The first rotation is of
glee aroundA, the second rotation of angfer — 2¢ around

optimal trajectory for given start and end configuration%? and the third rotation is of anatearoundA aaain
qo andgy respectively? ' g gain.

21 - 2¢

7.1 Existence of optimal trajectories A, turn-drive-turn control will reach the targetin time less
than 27 (initial turn) + 2#(%’] (“straight” driving) + 27

. . _ ; (final turn), which is linear in the distance to be travelled.
then any trajectory connecting, to g will take time Therefore the vehicle is controllable and there exists an

2’“7 + oy, Wherek is a p05|t|ve _mteger. If tV\.'O traJeC'optimal trajectory between any pair of configurations.
tories fromgy to ¢+ take different times, these times must . :
Note that the vehicle is not small-time locally control-

differ by a multiple of2z. Regarding the existence of c)pTabIe, as even infinitesimal translations will need time at

timal trajectories, it is therefore sufficient to establisim- e
. . : . least2w. However, if different targets are close together,
trollability. We will then characterize a particular clasfs . . . .
the trajectories to them will also differ by very small

optimal trajectories that exist between any pair of config—
. . mounts.

urations, and apply the non-autonomous version of Pon-
tryagin’s Maximum Principle to derive the shape of these
kinds of trajectories. 7.2 Convexification of the control surface

We will show the vehicle is controllable as long &s
contains at least two distinct pointd, and B. Consider We will next show that we can, without loss of generality,
A as the origin of the vehicle’'s frame amtlB as thexr replaceZ by its convex hull. Given any poir® on the
axis and assume the length of the segmé&ntis 1. Ro- convex hull of control surfac&, we will show that the
tating aroundA is therefore a spin in place. Translationgehicle can simulate any rotation arou@dby an equal
in they direction can be achieved by the following contrdime three-point turn. For any trajectory of a vehicle that

Observe that ifj, andg; form an angle oty € [0, 27),

sequence (see fig. 10): is controlled by using the convex hull &f, we can there-
_ fore generate an equal time trajectory for the original ve-
1. Rotate aroundl for timee. hicle by replacing rotations around points outsidéy

three-point turns around points K. The trajectory cor-

2. Rotate arounds for time 2z — 2e. responding to the original non-convex surface will have

3. Rotate around! for timee. no more than three times as many switches than the tra-
jectory corresponding to the convex hull.
The resulting translation is of leng#sin € in they di- Given pointsA and B in Z, pointO on the AB seg-

rection, therefore arbitrarily small. Fer= 7, the above ment and a desired turning angiec [0, 2), we build a
control sequence results in a translation of leryjthtime  trajectory of timex that results in a rotation around point
2m. O (see figure 11). Letdy, By be the initial positions in
The vehicle can therefore be controlled in a mannire world frame of pointsl andB; let A¢, B¢ be desired-
similar to a unicycle, with turn-drive-turn trajectoridst final positions, after a rotation of anglearoundO. Let
can reach any pointin the plane. Furthermore, given a di%; be the initial position o, and leth be the bisector of
tance ofd between the initial and target positions of poirdngle ZB,OB;. Note thatb is also the bisector of seg-
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the first stage. Given a whirling vehicle with convex con-
trol surfaceZ, we will call anzy stage trajectory for point
A (A € Z) atrajectory between two configuratiofis ¢
that satisfies the following two conditions:

1. Thefirst stage of the trajectory placésn its correct
position ingy in as short a time as possible. We will
call this thexy stage, as only the andy coordinates

Figure 11: Achieving an arbitrary positive rotation around point ~ for A need to be attained.

O on the segmenti B by a sequence of three positive rotations. . ] .
The first rotation is arounel and bringsB on top of bisectob. 2. The second stage of the trajectory is a rotation

The second rotation is arourdsl and bringsA into its intended aroundA4, until g is attained.
final position. The third rotation is arountl again and achieves
the desired configuration. xy Stage trajectories always exist between a given pair

of configurations, as the vehicle is controllable. Given
) ~two such configurationsy, andgy, consider an optimal
mentsAo Ay and BoBy. Then the following three-pointrajectory and ancy stage trajectory between them, re-
turn achieves thely, By configuration: spectively. Let ; be the time taken by the optimal trajec-
tory, lett; andts be the respective times taken by the two
stages of they stage trajectory. Since the optimal trajec-
tory does placel inits correct location;; < ty; therefore
2. Sinceb is the bisector of segmertty Ar, Ag andA; ty <ty +t2 < ty + 2m. But the times of two trajecto-
are equidistant fron’. Rotate around3 until A is ries between the same pair of configurations must differ

1. Rotate around! until B crosses. Let the crossing
point be calledB’.

brought toAy. by a multiple of2r; thereforet; + to = ¢y and thexy
o stage trajectory is optimaky stage trajectories are there-
3. Rotate around until B is brought toB;. fore a class of optimal trajectories that always exist. In

It is easy to verify that this trajectory attains the desird@€ following, we will confine our efforts to characteriz-
configuration. Sincds only crosses once, the time taken "9 this class of optimal trajector!es and finding a method
by the three-point turn is less tham, and therefore the {0 @lways construct one such trajectory.
time of the three-point turn i&. So we can “simulate”
rot.ations aroun.d an arbitrary point on tAé3 segmgnt k_Jy 7.4 The Maximum Principle
using three-point turns aroundl and B. The vehicle is
therefore capable of arbitrary rotations around any poinite configuration space for they stage is two-
inside the convex hull of, and given a vehicle we candimensional, containing only the and y coordinates.
without loss of generality, replace by its convex hull (in- This makes it possible to remove thecoordinate from
fact, the corners of the convex hull are sufficient). Thule state, and re-apply the Maximum Principle. However,
we will assume in the following that is convex. removingd from the state makes the configuration space
velocity depend on timeg = f(q,u,t). So we need to
7.3 Asufficient family of trajectories for op- @pply the non-autonomous version of the Maximum Prin-
timality C|p_le. The Maximum Pr|nC|pIe_ for tl_me-opt|r_na_l trajec-
tories for non-autonomous vehicles is very similar to the
In a direct application, the Maximum Principle does netersion used previously in this paper, with the exception
place any constraints on whirl trajectories. We will iderthat the functior# is only required to be positive and not
tify a class of optimal trajectories that always exist antecessarily constant. Taking the final rotation center as
are composed of two stages, with the objective of apply+eference point in the frame of the body, we obtain the
ing the Maximum Principle to characterize the shape obndition that, along they stage, the functio (x, u, t)
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needs to be maximized by the chosen control at each pdimbugh the first rotation center and parallel to the control

along the trajectory, where direction.
Setting the world reference frame on this axis, we no-
H=M2+ Ay (73) tice by a similar argument that, i®; is placed higher,

in respect to the control line, thal, thenH; > Hj.
and the(\;, A) vector is non-null. Sincést = 2 =0, gjnce the first rotation center used is on the control line,
A1(?) is a constant function. Similarly» (¢) is a constant assuming the control direction points right to left, all the
as well, therefore other rotation centers must be above the control line in
the initial state; this condition is then propagated along
H = k& + kay (74) the trajectory. We have therefore proven the following:

with k2 + k3 > 0. Therefore, for eachy stage opti- Lemma 11 For eachzy stage optimal trajectory, there
mal trajectory, there exists a control direction in the planexists acontrol line such that thery stage is a rolling
given by the vecto(k;, k2) such that the optimal controlof control surfaceZ in the positive direction along the
is maximal when projected onto this direction. control line.

The above is a necessary but not a sufficient condition
7.5 Shape of thery stage for 2y stage optimality. Because the stage is shown

. _ . . to be aroll, we will alternatively calty stage trajectories
Consider, along any stage optimal trajectory, the time.. | and catch” trajectories.

when the control switches from; to u; 1, corresponding
to rotation center®; andR;., respectively. Consider the . .
functionsH; = H(x,u;,t) and Hyry = H(z,wis1,t). 7.6 The position of the control line for
Both these functions are continuous. Immediately before ~ known initial and final controls

the switch,H; > H;,; and immediately after the switch
H; < H;1. Therefore H; andH,;, are equal at the time
of the switch.

Number the corners of the convex hull consecutively
clockwise asR;, Ry, ..., R,,. Assume we knew that
L . the initial control is a rotation around; and the fi-
Furthermore, at the swnc_hmg time, Iét be th_e e nal two controls are rotations arouit}, and Ry respec-
erence point and; andwv;,; its velocity vectors imme- tively. The optimal control is thereforBy, Ry, - - - , Run

diately before and after the switch respectively. Sin?@peatedn times (wheren is an unknown integer) and
the angular velocity is constant, the lengths of the V&HenR,. Ry, - . Ri_1. Ri Ry

tors v; andv;, are proportional to the lengths of the |\ yn0 \world frame. lef?) be the initial location ofR;,
segmentsPft; and PR;;1 respectively. The angle beqq R, be the final location of2; and letR;, be the loca-
tween the pre-switch and post-switch velocity vectors '

furth o th PR h | {idn, at the final switch, o, We are given the position
urthermore equal to the angJERi__ i+1, asthe velocl- ¢ pr onq we know the position dt’; as the final motion
ties are perpendicular to the radii. So the triangle form

; ) . X % rotation around this point. Let . be the length of the
by the two velocity vectors is proportional to the triang|

AR PR dih anales f leof §egmemR’1R}. In order to determine the structure of the
il and these two triangles form an angle; trajectory (if it exists), it is sufficient to find the positor
SinceH; = H;y; at the time of the switch, and thesq%,

: - ..» Which determines the control ling| R;..
two functions are the projections of andv;,; onto the Letr;; be the distance, in the body frame, between two
control direction, the third side of the triangle formed by, v

; ) . - bitrary rotation center®; andR;. Letl; = r; 41, i.e.
vi _and_ vi+1 IS perpendicular onto the contro_l directiony, length of theth side of the control surface. Lpt=
This side corresponds l; R, in the proportional and >, 1 be the perimeter of the control surfage Since

DL tri . R ! . .
rotated by triangle; therefore; R, is parallel to the o 4 aiectory is a roll along the control line, the length of
control direction. This holds for all switches along the the segmenR), R, is:

stage. Therefore, in the world frame, all the rotation cen-
ters used during they phase are found on a line passing dip=np+lh+lo+- -+l (75)
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In the triangIeAR’lecR’f, the triangle inequality mustand the second to last controls were known; these two
hold: controls have to be rotations around corners of the control
surface, which we have shown can be assumed without
loss of generality to be a convex polygon. Therefore, the

d —rig <mp+li+la+- 4+l <d +ry (76) following simple algorithm is valid:

(The left-hand side is a strict inequality because, ag Enymerate all possible ordered pairs of corners of
shown above, if two rotation centers are on the controlline  he control surface.

at the same time, the one that is used on the immediately

preceding interval must have a smallecoordinate.) 2. For each such pair, construct the “roll and catch” tra-
Sincery is a section througlt, 2r;y < p. Note that jectory (there can exist at most one) that corresponds

relation 76 has a span @f,; between the leftmost and  to the chosen initial and second to last controls.

rightmost side, and the middle changes in increments of )

p. Therefore relation 76 has at most one solution for the>- Pick the fastest trajectory.

unknown integern, which we can obtain by subtracting

: . L o
and dividing appropriately and taking the floor function: The al_gonthm evidently runs in time that &8(m?),
wherem is the number of corners of the polygonal control

surface. For a given control surface, the running time is
d+rep— (i +la+- 4+l )] (77) constant. However, if the control surface has a very high
D number of corners (e.g. it is bounded by a smooth convex

i ) curve), this algorithm is impractical.
Furthermorep needs to satisfy the left-hand side of 76

above. By replacing this solution into equation 75 above,

we determine the length of ... This fully determinesthe 8  Conclusion

triangle AR} R} R, and, by extension, the position of the

control line and the structure of the trajectory. In ordgthough many of the details of the proofs are technical,

for the zy stage to be extremal, we only need to cheekf required significant algebraic manipulation, most of the

observance of the Maximum Principle at its final pointesults simply verify things that we might suspect almost

i.e. calculate the configuration at the switch frdtp to  immediately from theorem 1. There are some constants

R; and verify that no point of is above the control line of integration in the necessary condition for optimal tra-

in this configuration. jectories; varying those constants changes the structure o
Since there is at most one solution for the location @hjectories. Geometrically, the constants describee lin

the control line, if such a solution exists then the corrét the plane. Optimal trajectories can be described by the

spondingzy stage is the fastest way to g&t into its fact that they in some sense maximize ‘effort’ along this

final position by usingk; as the first rotation center andine, where effort is defined as the speed of some point

Ry, as the last. rigidly attached to and sliding along the line, pushed by

the rigid body.
7.7 Constructing anzy stage trajectory for If there are discrete controls for the rigid body, then

given initial and final configurations over most periods of time one of the controls is active,
and the body translates or rotates. This happens until the

Given a control surface and initial and final configuratiomsientation of the body or the distance of the body from
¢o andgy respectively, we have proven above that thetiee control line changes sufficiently that some new control
exists a “roll and catch” optimal trajectory between thessaximizes effort.

configurations, for any choice of reference point on the For most values of the constants and initial configura-
control surface (the reference point being the location tidéns of the rigid body (or equivalently, for most initial
the last rotation center that is used on the trajectory). \Wenfigurations of the body relative to the control line),
have also shown how to find this trajectory, if the initighe extremal trajectory that is generated is well-behaved

n=|
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— piecewise-constant in the controls, with switches baad omnidirectional systems studied in previous work),

tween controls that occur at well-defined points. Varyt is straightforward to derive the optimal trajectory of

ing the configuration of the body slightly relative to theach structure between a pair of configurations, and then

line usually does not change the structure of trajectorieboose the fastest of those trajectories. For more compli-

There are a finite number of trajectory structures, and wated systems, it may be necessary to rely on numerical

can enumerate them by considering certain specific initggtimization. Nonetheless, we expect that knowing the

configurations of the body relative to the control line. types of trajectories that may arise will be useful in the
However, there are also special cases, and these cdgsfgn of planners and efficient robots.

turn out to be an important class of solutions to many

minimum-time problems. For example, to move

differential-drive or a steered car to a distant configurEgeferences

tion, the fastest trajectory is to turn to face the goal,@riv

to the goal, and turn to the goal angle. This trajector

is a ‘tangent’ trajectory, and at any point while the body

translates along the line, all three of the controls ‘for-

wards', ‘left’, and ‘right maximize the Hamiltonian equa- ~ P0lYgon. InSIAM J. Computpages 392-401. ACM

tion. Thus, the time of the translation segment cannot be Fress: 1998.
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