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Abstract— This paper presents first attempts at a method
for searching for time-optimal trajectories for a general model
of mobile robots that includes Dubins and Reeds-Shepp cars,
differential-drive robots, and omnidirectional robots as special
cases. The paper takes as a starting point recent results by the
authors that describe necessary conditions on the trajectories,
based on Pontryagin’s Maximum Principle. These necessary
conditions reduce the problem of finding an optimal trajec-
tory between start and goal to a few one-dimensional search
problems. This search is not formally guaranteed to find a near-
optimal trajectory if the sampling of the search space is not fine
enough, but comparison to existing analytical results for specific
systems, and a complete numerical search over trajectories with
only a few control switches, demonstrates effectiveness of the
method.

I. INTRODUCTION

There are different designs for simple mobile robots:
steered cars, differential drives, and three-wheeled omnidi-
rectional robots are common examples. This paper explores
the minimum-time motion of a very simple model of these
and other mobile robot designs. Figure 1 shows an example
of the type of trajectory our search procedure finds for an
omnidirectional robot, for the given start and goal. This tra-
jectory is faster than any simple spin-translate-spin trajectory
to the goal configuration, and we believe it to be the fastest
possible for the available controls.

Consider any rigid body in the plane, with controls that can
be described by rotation centers and translational directions
rigidly attached to the body. Most simple mobile robots have
attached controls, as do models of polygonal objects pushed
in the plane without slip [16] by a robot arm.

In symbols, if the configuration is q = (x, y, θ), the
controls u represent the generalized velocity in the frame of
the robot, and R is the matrix that transforms the velocity
into the world frame (formed by replacing the upper left
block of a 3x3 identity matrix with a 2x2 rotation matrix),
then the system equations are

q(T ) = q(0) +

∫ T

0

R(θ(t))u(t)dt. (1)

The problem is, given a desired starting configuration q(0)
and goal location qg , find a function u(t) such that q(T ) =
qg , and T is minimized. We assume that u(t) is piecewise
constant, with values chosen from some fixed finite set U .

We denote the elements of the set U by integer subscripts,
ui = (ẋi, ẏi, θ̇i). Trajectories with piecewise constant con-
trols are represented by a sequence of (control index, time)
pairs. The [(i1, t1), (i2, t2), . . . (in, tn)] trajectory indicates
the application of control ui1 for time t1, followed by control
ui2 for time t2, etc.

start goal

Fig. 1: A complicated but fast trajectory for an omnidirectional
omni-wheeled robot. The robot rotates about a rotation center, spins
in place, rotates again, translates, and finally rotates.

The kinematic model is a generalization of the steered
cars studied by Dubins [10], Reeds and Sheep [18], of the
differential-drive studied by Balkcom and Mason [4], and of
an omnidirectional vehicle [3]. Different robot designs may
be considered by choosing different control sets, as shown
in the following table.

Controls (ẋ, ẏ, θ̇), in robot frame
Dubins (1, 0, 0), (1, 0, ±1)
Reed-Sheep (±1, 0, 0), (±1, 0, ±1)
Diff-Drive (±1, 0, 0), (0, 0, ±1)

Omnidrive

(±
√

3/3,±1, 0), (±2
√

3/3, 0, 0)
(0, 0, ±1),(0, ±4/3,∓1/3)

(±2
√

3/3, 2/3, 1/3)
(±2
√

3/3,−2/3,−1/3)

The original systems all allow controls chosen from a
continuous set. However, we have shown in related work [11]
that a finite set of constant controls and piecewise constant
control laws are sufficient for optimality, as long as the
bounds on the generalized velocities are polyhedral – a
condition that all of these previous models satisfy. The same
work also addresses the issue of the existence of optimal
trajectories.

There are many reasonable objections to the model we
study. Real robots must contend with obstacles, and cannot
instantaneously switch velocities. However, just as kinematic
models are useful and necessary for understanding the mo-
tion of arms, this kinematic model is a good starting place
to understand the fundamental behavior of simple mobile
robots. The fastest curves, or robot geodesics, may be motion
primitives for planning systems, a way to compare competing
robot designs, or allow creation of a metric or measure that
can be used to sample trajectory and configuration spaces
more uniformly.



Our primary approach to finding the fastest trajectories
between a pair of points for a given set of discrete controls is
an indirect method. Rather than searching directly over the
possibly infinite-dimensional space of all trajectories con-
necting a particular start and goal, we apply results derived
from Pontryagin’s Maximum Principle [17] by our recent
journal paper [12], giving strong necessary conditions that
optimal trajectories must satisfy. Trajectories satisfying these
conditions are called extremal trajectories. These extremal
trajectories form a number (quadratic in the number of
available controls) of one-parameter families of curves. We
search over each family and sample the single parameter to
find the fastest trajectories that connect a given start and goal,
within some error tolerance.

There is a difficulty with this approach – although every
optimal trajectory must be extremal, we cannot guarantee
that sampling the single continuous parameter at some fixed
resolution finds the correct parameter. For this reason, as
a basis for comparison, we also derive a direct approach
for searching for optimal trajectories. Although the direct
approach is computationally infeasible for trajectories with
more than a few (five or six) control switches, it is reassuring
that the very-different direct and indirect approaches appear
to agree well in the cases where the indirect method pro-
vides a trajectory with few switches, and more-complicated
trajectories found by the indirect method are reliably faster.

A. Previous work

In 1957, Dubins characterized the shortest paths for
what is essentially a simple model of a car with bounded
steering angle and fixed velocity [10]. In 1990, Reeds
and Shepp characterized the trajectories for a car that can
also reverse [18]. Sussman and Tang described a general
methodology for solving problems of this type [24], and
Souères, Boissonnat, and Laumond [22], [23] discovered the
mapping from pairs of configurations to optimal trajectories
for the Reeds-Shepp car. The approaches developed enabled
our discovery of the time-optimal trajectories for two other
simple models of vehicles: the differential drive [4], and a
particular three-wheeled robot that can drive sideways as well
as forwards [3].

Our recent journal paper [12] presents theoretical results
that attempt to generalize these results across robot designs,
using the kinematic rigid-body model described. The current
paper represents our first attempt at using these results to
build algorithms that search for optimal trajectories effi-
ciently for the general system.

The problem of finding optimal trajectories has been
studied for many other specific models of vehicles, rang-
ing from work by Chitsaz [6] on differential drives, to
work by Coombs and Lewis [8] on a simplified model
of a hovercraft, to Chyba and Haberkorn’s [7] work on
underwater vehicles. Papers by Reister and Pin [19], and
Renaud and Fourquet [20] present numerical and partial
geometric results for dynamic steered cars, and Kalmár-Nagy
et al. [14] present algorithms for numerical approximations
of optimal trajectories for dynamic omnidirectional robots.

The interaction of optimal trajectories of particular robot
types with various classes of obstacles has also been an active
research area [9], [25], [1], [21], [13].

Dubins and Reeds-Shepp curves arise in many robotics
problems. For example, the optimality of Reeds-Shepp
curves is the motivation for Barraquand and Latombe’s
choice of discrete controls for their motion planner for a
non-holonomic cart [5]. Recent work by Alterovitz et al [2]
models the motion of a surgical needle through the body as
a Dubins curve. LaValle’s [15] work on rapidly-exploring
random trees relies on a metric (or pseudometric) between
configurations in the free space, and Reeds-Shepp curves can
be used to generate a metric for steered cars.

II. FORWARD KINEMATICS OF TRAJECTORIES

The transformation matrix that describes the frame of the
robot with respect to the world frame is

TWR =

 cos θ − sin θ x
sin θ cos θ y

0 0 1

 . (2)

Since this transformation matrix encodes the same informa-
tion as q = (x, y, θ), we may use it as an alternate means
of indicating the vehicle’s position. Omitting the first frame
subscript indicates the matrix given with respect to the world
frame, e.g. T0 is the robot’s initial state in the world frame.

Applying a constant control causes the body to either
rotate or translate. We therefore expect to be able to describe
the motion of the robot by multiplying homogeneous frame
transforms corresponding to each rotation and translation
in order. If Tn is the configuration of the robot after n
control actions, the configuration may be computed by matrix
composition:

Tn = T0T01T12T23T34 . . . Tn−1,n (3)

For example, T23 would express the frame of the robot
after applying the third control action in a trajectory, with
respect to the frame of the robot after applying the second
control action. This notation is exactly the same as that
commonly used for the kinematics of a robot arm.

The transform matrices correspond to either translations
or rotations, but it is inconvenient in algorithms, code, and
analysis to have to have different formats of the matrices
depending on whether θ̇ = 0 or not. There are also problems
of numerical instability. What if θ̇ is very close to zero? This
situation may arise if one wheel of a differential-drive is
slightly larger than the other, or if the motors are mismatched.
In this case, the rotation center is nearly at infinity, and the
angle rotated through is near zero.

In this section, we suggest a trick that unifies rotation and
translation matrices in the plane, by making use of well-
behaved smooth functions. Compositions of these matrices
describe the motion of the robot in a simple robust way.
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Fig. 2: Output of the universal planner for a robot with just two
rotation controls centers (black and white circles). Start and goal
configurations are given by arrows; the path of the white rotation
center is shown.

A. Unified translation-rotation matrices

The well-known cardinal sine function is defined as:

sinc (x) =

{
sin x
x , x 6= 0

1, x = 0
. (4)

By analogy with the cardinal sine, and a function known as
the versine, we define a similar function, the cardinal versine:

verc (x) =

{
1−cos x

x , x 6= 0

0, x = 0.
(5)

Using these functions, the unified translation-rotation ma-
trix describing motion using constant control with index i
for duration t is given by

T (i, t) =

 cos θ̇it − sin θ̇it ẋit sinc θ̇it− ẏit verc θ̇it

sin θ̇it cos θ̇it ẋit verc θ̇it+ ẏit sinc θ̇it
0 0 1

 .
(6)

Given a sequence of control indices in a trajectory
i1, . . . ij , . . . in, the transform matrix Tj−1,j from equation 3
is given by

Tj−1,j = T (ij , tj). (7)

The state at time t is:

T (t) = T0T (i1, t1)T (i2, t2) . . . T (ik, tk)T (ik+1, t
′), (8)

where k is the largest index such that t′ = t−
∑k

j=0 tj ≥ 0.

III. GLOBAL CONTROLLABILITY

In this section we sketch a simple and fast technique for
always finding some trajectory to the goal; this will provide
an upper bound on trajectory time that will be used in search
algorithms later in the paper. A system is controllable over
some space if a trajectory exists between any two states in
that space. The basic geometry of this technique is described
in the sketch of the proof of the following lemma.

Lemma 1: A rigid body, controlled by velocities chosen
from a set U that is constant in the body’s own frame of
reference, is controllable in SE(2) if and only if U contains
two or more distinct velocities, at least one of which is a
rotation.

If one of the velocities is a translation, then the trajectory
is easy to construct: choose the reference point of the robot

to be centered on the rotation center, spin in place until the
translation direction is lined up with the vector from the start
to the goal, drive to the goal, and rotate to the required angle.

If both velocities are rotations, we replace the translation
section of the trajectory with a sequence of rotations. Let
A and B represent rotation centers (see fig. 2); choose the
origin of the robot frame coincident with A. Let the distance
between the two rotation centers be l. Rotate B around A
until the line segment from A to B is perpendicular to the
line from the start to the goal. Then repeat a series of seg-
ments, where each segment is of the form B90◦A180◦B90◦ ,
achieving a pure translation of distance 2l in the direction of
the line segment from start to goal. If such a translation
would overshoot the goal, adjust the angles in the BAB
segment to exactly reach the goal (details left to reader);
finally rotate about A to the goal angle.

By considering all possible rotation-rotation and rotation-
translation pairs of controls and picking the fastest of the
trajectories thus generated, this method can be used to
quickly construct trajectories that are often not much slower
than the optimal.

IV. DIRECT OPTIMIZATION USING INVERSE KINEMATICS

We now turn to the direct search method. Assume we
know the sequence of controls that will be applied in a
trajectory. Choosing the times of each segment (t1, t2, . . . tn)
changes the configuration that will be reached. On the other
hand, if we are given the goal configuration qg , computing
the times is essentially an inverse kinematics problem.

If there are three segments in the trajectory, then we expect
there to be at most two solutions for the segment times. If
there are more switches, then the trajectory has extra degrees
of freedom, and there may be an infinity of trajectories
that reach the goal. This suggests a parametrization of
the space of trajectories that reach the goal, similar to a
parametrization often used for planar closed-chains. For an
n-segment trajectory, where n > 3, use the first n − 3
durations t1, t2, . . . , tn−3 as free parameters to reach some
configuration. Then use inverse kinematics to compute the
(up to two) possible trajectories that reach the goal from this
intermediate configuration.

We use this parametrization to build a direct search method
for optimal trajectories. We first decide on some number
of trajectory segments – using more than five is typically
computationally infeasible. Then iterate over all possible
trajectory structures with this number of segments. For each
trajectory structure, sample the (n − 3)-dimensional space
of trajectories that reach the goal, to find the minimum-
time trajectory. This direct approach, though computationally
expensive and limited in the complexity of trajectories that
can be computed, is quite different from the indirect method
described in the next sections, and forms a good basis for
comparison. This method is also the simplest method for
computing trajectories for systems with few switches in
the optimal trajectories – for example, as pointed out by
LaValle [15], the inverse kinematics method is probably the
simplest way to implement Dubins curves.
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Fig. 3: CCC trajectory shown from two points of reference.

As a first step, we must compute the three-segment optimal
trajectory for a given set of controls using inverse kinematics.
We denote a rotational action as ‘C’ and a translational action
as ‘L’. There are eight cases for a three-segment trajectory:
CCC, CLC, CLL, LLC, LCL, LCC, CCL and LLL. Define
the start configuration as qs and goal configuration as qg ,
and also define the start rotation matrix as Rs and the goal
rotation matrix Rg; s and g are the coordinates of the start
position and the goal position respectively. Without loss of
generality, re-index the controls so that the first three controls
in U are the controls for the trajectory structure currently
being considered; for example, u1 = (ẋ1, ẏ1, θ̇1) will be the
first control applied, as well as the first control in the set U .

If the ith control is a rotation, the rotation center in the
car’s local frame is:

ci =

[
−ẏi/θ̇i
ẋi/θ̇i

]
(9)

A. CCC

Choose the second rotation center as the reference point;
the trajectory structure is simplified to two circular arcs
(figure 3). ps is the start position of the chosen reference
point and pg is the goal position of the chosen reference
point. The centers of the circles cA and cB are the locations
of the first rotation center in the initial state, and the third
rotation center in the final state, respectively. The radii are
rA = ||c1− c2||, rB = ||c2− c3||. Compute the intersections
of the circles, p1 and p2. For each intersection, compute the
corresponding trajectory, and choose the faster. For p1,

cos(∆θ1) =
(p1 − cA)T (ps − cA)

||(p1 − cA)||||(ps − cA)||
(10)

t1 = ∆θ1/θ̇1 (11)

cos(∆θ3) =
(p1 − cB)T (pg − cB)

||(p1 − cB)||||(pg − cB)||
(12)

t3 = ∆θ3/θ̇3 (13)

T (2, t2) = (T0T (1, t1))−1(T (3, t3)−1Tg). (14)

∆θ2 and t2 may be computed using a two-argument arctan-
gent of the first two elements in the first column of T (2, t2).
Computation for the second intersection p2 is analogous.
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Fig. 4: LLC trajectory shown from two points of reference.

Fig. 5: Types of trajectories satisfying the Pontryagin Principle

B. LLC,CLL and LCL

Choose the rotation center as the reference point; the sim-
plified trajectory is composed of two line segments without
any circular arcs. Figure 4 shows an example of an LLC
trajectory, for which the solution is:[

ẋ1 ẋ2
ẏ1 ẏ2

] [
t1
t2

]
= pg − ps (15)

T (3, t3) = (T0T (1, t1)T (2, t2))−1Tg (16)

∆θ3 (and thus t3) may be computed using a two-argument
arctangent of the first two elements in the first column of
T (3, t3).

C. LCC, CCL and CLC

For LCC and CCL, choose the second rotation center as
the reference point and get a simplified trajectory which is
composed of a line segment (the velocity vector in world
frame) and a circular arc. The intersections of the line and
the circle are possible switches. The solution for the CLC
case has been discussed in section III.

D. LLL

LLL trajectories can only be applied when the start and
goal configurations have the same orientation. Furthermore,
although we omit the details, an optimal trajectory can
always be constructed that uses at most two translation
controls. This case therefore is a special case of an LLC
trajectory with a final rotation of zero.

V. THE INDIRECT METHOD: THE PONTRYAGIN
PRINCIPLE

In this section, we will describe the fundamentals of the
indirect method for finding the fastest trajectories. The expo-
sition is necessarily very brief, although it does address all



the main issues. For an easier and more detailed introduction,
see [11].

The indirect method is based on Pontryagin’s Maximum
Principle, which places strong necessary conditions upon
the structure of optimal trajectories. We call the class of
trajectories that satisfy these necessary conditions extremal
trajectories.

A. Types of extremal trajectories

As shown in [12], extremal trajectories can be divided into
the following categories (see figure 5):

1) Generics: entirely determined by the position of the
control line.

2) Singulars: may contain translations parallel to the con-
trol line. The duration of these translations is not
constrained by the Maximum Principle.

3) Tacking trajectories: may contain translation-translation
switches. The timing of translation-translation switches
is not constrained by the Maximum Principle.

4) Whirls: only contain rotations that have the same an-
gular velocity (either the maximum or the minimum
angular velocity that the moving body is capable of).
The switches on these trajectories are not constrained
by the Maximum Principle.

Whirls have been completely solved in [12]. Tacking trajecto-
ries cannot occur for any existing vehicles that we are aware
of, and will not be studied in this work. We concentrate upon
generics and singulars.

B. The Maximum Principle

We will give a geometric interpretation of the Maximum
Principle as applied to our problem. Let the control line be
an arbitrary line in the world frame with heading (k1, k2)
and signed distance k3 from the origin. Then the frame of
reference attached to the control line is

TLW =

 k1 k2 0
−k2 k1 k3

0 0 1

 . (17)

Given a state T , define the Hamiltonian of control ui as

Hi = (0, 1, 0)TLWTci (18)

where ci = (−ẏi, ẋi, θ̇i) is the rotation center representation
of control ui. Restating theorem 1 from [12] with this
notation, we obtain

Theorem 1: Consider a rigid body that is controlled by
choosing velocities from a finite set U that is constant in
the body’s frame. Let [(i1, t1), (i2, t2), . . . (in, tn)] be a time-
optimal trajectory in the plane for this rigid body from initial
state T0 to final state Tf , such that not all θ̇i are the same.
Then it is necessary that:

1) There exist, for this trajectory: a control line, fixed in
the world frame, and a real constant λ0.

2) At all times t along the trajectory, if uk is the active
control, then for any other control i

Hi(t) ≤ Hk(t) = λ0. (19)

Control index i is a sustainable control at state T if Hi is
maximal, and furthermore i does not cause any other control
to overshoot λ0. All extremals have at least one sustainable
control at each time. Generics have exactly one sustainable
control at each time. Singulars have at least one time when
there are two sustainable controls.

VI. GENERATING EXTREMAL TRAJECTORIES

Except in cases that can be well characterized, fixing
the position of the control line exactly determines the
trajectory structure and the time between switches. This
section is concerned with describing this influence, and with
showing how to build an extremal trajectory generator, i.e.
an algorithm that generates extremal trajectory segments
corresponding to a fixed position of the control line and some
start configuration.

A. Control switches on extremal trajectories
Consider controls i, j at state T . Assume i is the currently

maximizing control, and therefore active. How long will it
take until we may switch to control j?

The Hamiltonians for the two controls are:

Hi = (0, 1, 0)TLWTci (20)
Hj = (0, 1, 0)TLWTcj (21)

Subtracting:

Hi −Hj = (0, 1, 0)TLWT (cj − ci) (22)

We call the homogeneous point sij = cj − ci a switching
point: when control switches from i to j, sij is on the control
line. In order to determine switching time, we need to solve
the following equation for t:

0 = (0, 1, 0)TLWTT (i, t)sij (23)

If i is a translation, the solution is straightforward. For
rotation, the time is calculated computing the intersection of
a circle with a line.

B. Generic simulator
The generic simulator takes as inputs a control set U and

an initial state T0. It outputs an extremal trajectory. Depend-
ing on the termination condition, the generic simulator can
run in several modes, e.g.

1) n switches: terminate after n control switches have
occurred.

2) Generic period: terminate when a switch is encountered
the second time. (All generic trajectories become peri-
odic, if long enough [12].

3) Generic excursion: terminate when a switching state
with more than one sustainable control is encountered.
Generic excursions appear within singular trajectories.

The algorithm for the generic simulator is as follows:
1) Check termination condition.
2) Let i be the sustainable control at T .
3) Compute all switching times to all other controls in U .
4) Let tmin be the minimum switching time. Add (i, tmin)

to the output trajectory.
5) T = TT (i, tmin). Go to 1).
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Fig. 6: Comparison of ‘generic’ and ‘singular’ (fastest) trajectories
to the output of the simple universal planner, for Dubins cars with
the same starting configuration and goal.
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Fig. 7: Comparison of ‘generic’ and ‘simple’ trajectories for the
Reeds-Shepp car.

VII. FINDING ALL EXTREMAL TRAJECTORIES

The extremal trajectory generator constructs a trajectory
for a given position of the control line. In order to find the
position of the control line corresponding to a given start and
goal, we vary the position of the control line until the goal is
attained with a sufficiently small error. First, we show how
to reduce the problem of finding a suitable control line to
one-dimensional search.

A. One-parameter search for the control line

The position of the control line is determined by three
parameters: k1, k2 and k3. Without loss of generality, we
can restrict k1 and k2 such that k21 +k22 = 1. Further assume
the initial and final controls, i0 and ig , are given. Then

0 = Hig −Hi0 = (0, 1, 0)TLW (Tgcig − T0ci0) (24)

Since Tgcig−T0ci0 is a known quantity, this equation gives
us a restriction on k1, k2, k3. (This restriction is equivalent to
knowing one point, possibly at infinity, on the control line.)

We can safely ignore the case when Tgcig −T0ci0 = 0. In
this case, the initial and final control have the same center
of rotation in the world frame (or are parallel translations).
Since the controls need to have the same H , the angular
velocities (or planar velocities, for translations) are also the
same. Therefore, for any such trajectory, we can shift small
amounts of movement from the initial to the final control,
and generate an infinite number of trajectories that take the

1

1

2

2

3

3

4

4

5

spin-drive-spin

time: 4.49

generic 

time: 3.32

Fig. 8: Comparison between a spin-drive-spin trajectory and a
‘generic’ extremal for the omnidrive robot.

same time. At least one of these trajectories (zero time on
the initial control) will be found by other means.

B. Searching for generic trajectories

Searching for generic trajectories involves two main is-
sues: finding a convenient parameter for the one-dimensional
search, and cutting the trajectory corresponding to a control
line, in order to obtain a final state that we can compare with
the goal state in terms of an error measuring metric.

1) TGT trajectories: If θ̇0 = θ̇f = 0 (i.e., both the
initial and the final controls are translations) and furthermore
(x0, y0) is not a multiple of (xf , yf ) (which is ruled out by
our earlier assumption that the initial and final controls are
different motions in the world frame), then the corresponding
trajectory begins and ends with non-parallel translations. In
this case, the direction of the control line can be calculated,
and consequently the length and shape of the subtrajec-
tory between the initial and final translations are calculated
exactly by placing the control line arbitrarily. This length
further determines the exact position of the control line.

2) Parametrization of generic search: In cases where the
initial and final motions are not translations, we use λ0 as
a parameter. A λ0 parametrization is convenient for search,
since the trajectory structure only changes at certain critical
values of λ0 (see [12], Theorem 3). We describe a procedure
to obtain a function f(λ0) that returns a maximum of two
(k1, k2, k3) tuples characterizing the position of the control
line.

Let k1 = cosϕ and k2 = sinϕ and let cW0 = (x0, y0, θ̇0)
and cWg = (xg, yg, θ̇g) be the rotation centers, in the world
frame, corresponding to the first control in the initial state,
and the last control in the goal state, respectively. Since the
Hamiltonians of the initial and final controls must be equal,
we obtain the system

(− sinϕ, cosϕ, k3)(x0, y0, θ̇0)T = λ0 (25)

(− sinϕ, cosϕ, k3)(xg, yg, θ̇g)T = λ0 (26)

If θ̇0 and θ̇f are not both zero, this system quickly yields two



values of (ϕ, k3) as a function of λ0, which is the sought-
after parametrization.

3) Cutting a generic trajectory: The generic trajectory
yielded by a known control line is of unbounded length, as
the control law by itself does not specify a stopping point. In
this section, we show how to create a finite trajectory, ending
in a point that is closest to the goal by a certain metric. This
metric is also a measure of how good the control line is, and
is thus used to guide the search.

For any trajectory, the error in attaining the goal is a
three-dimensional quantity in SE(2). The previous section
has shown how to restrict the position of the control line
such that the yL coordinate of the last rotation center is
always attained exactly. We resolve the θ error by allowing
the class of acceptable trajectories that are returned by the
search to be slightly expanded. The last rotation movement
is always applied until the goal θ coordinate is attained,
even if this would make the trajectory non-extremal on that
rotation segment. All extremal trajectories that reach the goal
evidently belong to this slightly enlarged class.

These steps leave only one dimension in the error: the xL
coordinate. Measuring the xL error gives us a metric for how
close the control line is to attaining the goal. The xL error
is measured in the position of the last rotation center that is
used on the trajectory. With each generated period, we keep
track of the xL coordinate of this rotation center when it
is active. This quantity will keep increasing until the goal
xL is surpassed; at this point, the generator is stopped, and
the attained xL that is closest to the goal is used for both
computing the metric and cutting the trajectory.

In the case in which the last control is a translation, we
run the generator backwards for one generic segment. Since
the H value is not critical, the previous control must have
been a rotation. We use this rotation as the last control and
the switch state as the target state, and we apply the method
above for cutting the trajectory and generating the metric.

C. Searching for singulars

Singulars can only occur at critical values of the Hamilto-
nian ([12]). In conjunction with the known parameters of the
control line, each critical value yields at most two positions
for the control line. We assume for the rest of this section
that the position of the control line is given.

Usually, most points on singular trajectories are generic.
A continous segment of a singular trajectory is entirely
composed of singular points only if the segment is a
translation parallel to the control line. Sections of singular
trajectories that are entirely composed of generic points are
called generic excursions. Generic excursions fall into three
categories:

1) type A: ends with singular point.
2) type B: starts with singular point.
3) type C (complete): starts and ends with singular points.
Singulars are composed of generic excursions and transla-

tions parallel to the control line. To find generic excursions,
we use the generator with the appropriate termination con-
dition, as follows.
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singular

1

2

3 4

5

generic

Fig. 9: Configurations of the omnidrive robot between which a
‘generic’ trajectory is fastest (left), and configurations between
which a ‘singular’ trajectory is fastest (right).

Given T0, Tg , we run the generator from T0 to generate
a type A excursion to state Ta, and run the generator in
reverse from Tg to generate a type B excursion starting from
Tb. Ta and Tb are now to be connected with type C generics
and with translations parallel to the control line. There are
usually multiple ways to effect such a connection.

The overall algorithm for finding all singulars takes as
input a control set U , states Ta and Tb generated as above,
and a maximum cut-off time tmax (found by the universal
planner). The output is a list of all singulars connecting Ta
to Tb.

1) If Ta and Tb have same y and θ coordinates and there
exists a translation parallel to the control line at Ta, add
this translation to result.

2) For each sustainable control j at Ta:
a) Generate the type C generic excursion starting with
j; let T ′a be the final state of this generic excursion
and t′ be its time.

b) If t′ < tmax, call current algorithm recursively with
T ′a, Tb, tmax − t′

c) To each singular returned, prepend the type C generic
excursion found in a), and add it to the output list.

VIII. TESTS AND DISCUSSION

We implemented the indirect and direct search methods
described in C. The table below shows the total running time
for the indirect method to find trajectories from 1000 starting
conditions to the origin, for various vehicle models.

For the Dubins and Reeds-Shepp cars and the diff-drive,
we generated q0 from the range [−3, 3]× [−3, 3]× [−π, π];
for omni-directional vehicle we generated samples from the
range q0 ∈ [−7, 7]× [−7, 7]× [−π, π].

model controls cases total time
Dubins 3 1000 70s
Reed-Sheep 6 1000 287s
Diff-Drive 4 1000 90s
Omnidrive 8 1000 710s



With the exception of the Reeds-Shepp car (for which
whirl trajectories may be optimal), for each starting con-
figuration, either the generic or the singular was at least as
fast as any trajectory found by the direct method.

model generic singular
optimal optimal

Dubins 25.2% 74.8%
Reed-Sheep 21.7% 67.3%
Diff-Drive 64.5% 35.5%
Omnidrive 47.7% 52.3%

IX. CONCLUSION

Some aspects of our first attempts at searching for extremal
and optimal trajectories are certainly naive. For steered cars
and differential-drives, our approach computes trajectories
more slowly and with less precision than by the exact
procedures previously known, since we do not take advantage
of special knowledge about the control set. However, the
approach is general for all of the vehicle types, and we
are also able to compute trajectories between configurations
for the omnidirectional vehicle for the first time. Simply
changing the input to the planner allows rapid study of
any new robot design that fits the model. A particularly
interesting set of robot designs inspired by this work is
omnidirectional robots with different configurations of the
driving omniwheels, allowing tradeoffs between speeds and
torques the robot can achieve in different directions in
the configuration space. From a practical perspective, the
trajectories found by the planner are fast, reach the goal with
very good precision, and many are interestingly-complicated
enough that they have not previously been found by any other
means.
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