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Abstract: Scattering of neutrons and x-rays from molecules in solution offers alternative approaches
to the studying of a wide range of macromolecular structures in their solution state without the need of
crystallization. In this paper, we study one part of the problem of elucidating three-dimensional structure
from solution scattering data, determining the distribution of interatomic distances, P(r). This problem is
known to be ill-conditioned; for a single observed diffraction pattern, there may be many consistent distance
distribution functions. Due to the ill conditioning, there is a risk of overfitting the observed scattering data.
We propose a new approach to avoiding this problem, accepting the validity of multiple alternative P(r)
curves rather than seeking a single “best”.

We show that there are linear constraints that ensure that a computed P(r) is consistent with the
experimental data. The constraints enforce smoothness in the P(r) curve, ensure that the P(r) curve is a
probability distribution, and allow for experimental error. We use these constraints to precisely describe the
space of all consistent P(r) curves as a polytope of histogram values or Fourier coefficients. This description
can then be used to sample the space of potential alternative P(r) curves. We use this description to
develop a linear programming approach to sampling the space of consistent, realistic P(r) curves. In tests
on both experimental and simulated scattering data, our approach efficiently generates ensembles of such
curves that display substantial diversity. In particular, we show that the ensemble of P(r) curves generated
for a given protein includes members that are more different from a reference curve for that protein than
are reference curves for proteins of other structural topologies. Thus subsequent reconstruction steps must
properly account for this P(r) diversity in optimizing structural models.

1. INTRODUCTION

There is currently no single best experimental tech-
nique for studying the structure of macromolecules.
Crystallizing proteins for x-ray crystallography is of-
ten difficult, while NMR is limited by the size of the
protein or complex. In this paper, we examine solu-
tion scattering, often called small angle x-ray scatter-

ing (SAXS) when x-rays are employed and only data
to small diffraction angle is collected. Solution scat-
tering is a relatively simple and inexpensive experi-
mental technique that can be applied to a large range
of molecular sizes, from 10-1000 Å, without the need
for crystallization 1. SAXS has found widespread ap-
plications for diverse problems such as low resolution
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structure prediction of proteins and complexes 2–5,
protein folding studies with time-resolved data 6, 7,
protein dynamics 8, and determining the association
model for protein complexes 9.

In a SAXS experiment, a narrow beam of x-
rays is directed towards a dilute solution of macro-
molecules. The electrons in the macromolecule scat-
ter the beam, and a detector measures the intensity
of the scattered beams in different directions. The
resultant intensity at any point depends on the rel-
ative position of the electrons with respect to each
other, yielding a curve I(q) that expresses the scat-
tered intensity (I) at different values of the momen-
tum transfer vector (q) .

The I(q) curve is a function of the protein shape,
and although spherical averaging and experimen-
tal noise cause a loss of information in going from
a three-dimensional structure to a one-dimensional
scattering pattern, it has proven practically possi-
ble to use SAXS to reconstruct the low-resolution
structure of a macromolecule 2, 10, 3. We study an
intermediate problem in the reconstruction process:
computing a function P(r) that describes the distri-
bution (P ) of interatomic distances (r) in a molecule.
The P(r) is a more intuitive function of the molecular
shape than the I(q) curve, and is a useful interme-
diate in the reconstruction. For example, the real-
space version of the program GASBOR 11, 12 pro-
duces models by matching a given P(r) curve.

The P(r) curve is related to the I(q) curve by the
following Fourier tranform 13:

P (r) =
2r

π

∫ ∞

0

q · I(q) sin(qr)dq, (1)

where q = 4π sin θ/λ, with 2θ the scattering angle
and λ the x-ray wavelength.

Figure 1 summarizes the relationship among
structure, P(r), and I(q). Although the P(r) curve
is related to the scattering curve with the well-
established integral relation of equation 1, obtaining
the P(r) curve for a protein given its scattering pro-
file is not trivial. This problem is ill-conditioned 14

because experimentally the data is available only for
a finite q range, whereas the integral in equation 1
extends between 0 and infinity. Applying the direct
transform to the limited data produces non-physical
P(r) curves.

The ill-conditioned nature of this problem cre-

ates significant potential for overfitting the data. All
previous approaches try to produce a single best P(r)
curve and avoid overfitting by various mechanisms.
Most previous approaches try to produce P(r) curves
that reduce the discrepancy, χ2, between the exper-
imental scattering curve and the one predicted us-
ing the Fourier inverse of equation 1. Additional
constraints are employed to reduce the potential for
overfitting.

Early approaches modeled P(r) curves as the
summation of continuous basis functions. For exam-
ple, Moore 15 used sine functions over a restricted in-
terval and employed a Shannon information content
criterion to avoid overfitting by limiting the number
of sine functions. Glatter 16 used B-splines to model
P(r) curves and avoided overfitting by added a damp-
ing term to the χ2 target function in order to obtain a
smooth solution. Steenstrup and Hansen 17, 18 mod-
eled P(r) as a discrete distribution function defined
at a fixed number of points. They avoided overfitting
by maximizing the entropy of the P(r) distribution
function subject to the constraint χ2 ≈ 1, expressed
as a Lagrange multiplier.

One of the most widely used programs for con-
structing P(r) curves is GNOM 14, 19, which uses
Tikhonov regularization 20, 21 in order to avoid over-
fitting. GNOM defines a set of perceptual criteria
that the user desires in the P(r) and sets the reg-
ularization and smoothing parameters so as to best
achieve those properties.

Our alternative approach to avoiding overfitting
is not to seek a single “best” P(r) solution, but rather
to accept the validity of multiple feasible solutions
consistent with a given I(q) curve. Key to deter-
mining such an ensemble is a representation for P(r)
curves that are not just consistent with a scattering
profile, but also have properties such as continuity
and smoothness that make them protein-like. The
main contributions of this paper are as follows:

(1) We provide a complete characterization, as a
convex polytope in an appropriate representa-
tion space, of those P(r) curves that are consis-
tent with a given scattering curve and display
realistic P(r) properties.

(2) We provide a linear-programming based method
to quickly generate consistent, realistic P(r)
curves for a given scattering curve.
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Fig. 1. A schematic diagram showing the correspondence between protein shapes, their P(r) curves, and scattering curves. The
labels on the arrows show the techniques used to get one representation from the other. In practice, different shapes might have
close P(r) curves, and different I(q) curves may map to similar P(r) curves.

(3) In tests with both experimental and simulated
data, we demonstrate that consistent and real-
istic P(r) curves are significantly diverse, such
that ensembles for proteins with different folds
can overlap, limiting the direct identification of
protein fold from scattering data.

2. METHODS

Equation 1 describes the relationship between the
scattering curve and the interatomic distance distri-
bution function. Our aims are to characterize the
space of all physical P(r) curves that are consistent
with a given I(q) curve, and to quickly generate an
ensemble of such curves. We first overview the ap-
proach, before providing details in the subsections.

One common representation of a P(r) curve is as
a histogram of bins centered at discrete values. A
P(r) curve is thus represented by a vector of length
n, where n is the number of bins. Conversely, we
can say that every point in an n-dimensional space
corresponds to a P(r) curve. We call this space the
P(r) space. We can characterize points in P(r) space
as consistent (they represent curves that satisfy the
given I(q) curve within a predefined error tolerance),
realistic (they represent curves that are smooth and

protein-like), both, or neither. In Section 2.1 we
mathematically define consistent and realistic P(r)
curves. Under that definition, we show that all such
curves lie inside a convex polytope in P(r) space.
Mathematically, we can describe the set of all solu-
tions with an equation

C · P (r) ≤ b , (2)

where C is a matrix that defines this polytope, P(r)
a vector representing the histogram, and b a vector
of constants representing the constraints.

Another common representation of a P(r) curve
is as a continuous curve, a linear combination of basis
functions. Practically, the number of basis functions
is finite, say k. Thus a P(r) curve is represented as a
set of k coefficients, defining the linear combination.
As before points in the coefficient space correspond
to P(r) curves. In Section 2.2, we extend the results
for the histogram approach to coefficient space; if α

represents a point in coefficient space, then all consis-
tent and realistic curves lie inside a convex polytope
in coefficient space given by

C ′α ≤ b′ . (3)

The geometric characterization of these spaces,
in which all consistent curves lie in a contiguous,



well-defined region, has advantages both for under-
standing the properties of the curves, as well as for
producing ensembles using linear combinations. This
leads to our algorithms in Section 2.3 for generating
consistent and realistic P(r) curves.

2.1. Consistent and realistic P(r) curves
in the histogram representation

Both P(r) and I(q) are continuous functions. Exper-
imentally, the scattering intensities are measured at
some discrete set of q values. Similarly, P(r) curves
are also represented as histograms with a known bin
width. Our method treats both P(r) and I(q) as con-
tinuous curves sampled at discrete points. Although
we use discrete approximations of continuous curves,
we do not place any condition on the number, width
or uniformity of bins.

Under discrete approximation we can write the
Fourier inverse of equation 1 as follows:

I(q) =
n∑

i=1

hi
sin(qri)

qri
P (ri) , (4)

where hi is the width of the bin. In the interest of
clarity we will ignore the bin-width parameter hi in
some of the equations; this omission does not affect
our framework.

We scale I(q) curves by dividing by I(0), the “0”
angle scattering intensity. Experimentally, I(0) val-
ues are not available, and are estimated using the
Guinier plot 22, 13.

For a set of discrete q values, we can write equa-
tion 4 in a matrix form:



I(q1)
...

I(qm)


 =




sin(q1r1)
q1r1

. . . sin(q1rn)
q1rn

...
. . .

...
sin(qmr1)

qmr1
. . . sin(qmrn)

qmrn







P (r1)
...

P (rn)


 ,(5)

I(q) = A · P (r) . (6)

where A is the transform matrix. We use P(r) to
represent both the interatomic-distance distribution
function and the vector defined in equation 5; the
correct interpretation should be clear from the con-
text. P (ri) refers to the P (r) value at the ith sam-
pled point, ri. We assume that there are n such
points and m sampled points in the q space.

We now mathematically define consistent and re-
alistic P(r) curves in terms of linear constraints on

the P(r) histograms.

P(r) distribution. P(r) is a probability distribution,
so it must sum to 1. (This is a normalizing con-
straint; P (r) scales are relative. This normalization
implies that we can treat P(r) curves as probability
distributions.) Mathematically,

∑

i

P (ri) = 1 .

Scattering intensity. The P(r) curve must give rise
to the observed scattering curve. Ideally the curve
should satisfy equation 5, but practically because of
experimental limitations and noise we can only con-
strain the predicted I(q) to a certain interval:

I(q)− σ(q) < A · P (r) < I(q) + σ(q) .

Here σ(q) is a column vector that specifies the al-
lowed error at each q value. In our implementation
we use σ values that depend on the standard devia-
tion of the measured intensities.

Non-negativity. Since P (ri) are probability values,
they must all be non-negative:

0 ≤ P (ri) ≤ 1, ∀i .

While these constraints are loose, for some (or all) r

values we can enforce stricter constraints that force
the probability values to lie in a particular interval.
For example, for r close to 0 or Dmax, the maximum
distance which can be obtained from the I(q) curve,
we can limit the probability values to the range [0, ε]
where ε is suitably close to 0.

Continuity. One way to ensure that P(r) curves are
smooth is to restrict the amount of variation in the
probability values between adjacent bins. Though
such a constraint does not eliminate local maxima
or minima, it ensures that these extremal points are
not sharp. Let β be the maximum permissible dif-
ference between adjacent probability values. We can
write the continuity constraint as follows:

|P (ri+1)− P (ri)| ≤ β, ∀i < n .

Criteria that influence the selection of β include
the number of bins, width of the bins, and level of
smoothness desired. In practice, a uniform β works
well, but β need not be constant over the entire



curve. In some regions, such as near r = 0, sharp
spikes reflecting atomic packing (with high resolu-
tion data) may be acceptable, while in others they
may not be desirable.

Smoothness. Continuity constraints restrict abrupt
changes in P(r) values, but portions of the curve can
still have a saw-tooth pattern without violating con-
tinuity. This pattern is characterized by alternat-
ing small local maxima and minima. We address
this problem by enforcing second-order constraints
on consecutive triples of the P(r) curve:

|P (ri−1)− 2P (ri) + P (ri+1)| ≤ γ , ∀i ∈ [2, n− 1] .

These conditions bound the derivative at each point
in the discrete approximation of the P(r) curve.
Here, γ is a user-defined parameter that need not
be constant over the entire curve; similar to the con-
tinuity constraints, we can have different curvature
bounds for different portions of the curve.

All constraints used to describe consistent P(r)
curves are linear, so we can combine them to pro-
duce equation 2, with C as a matrix containing the
constraints and b a vector containing the correspond-
ing constants. The normalization constraint is an
equality constraint, but may be written as an equiv-
alent pair of inequality constraints. Equation 2 rep-
resents a convex polytope in P(r) space that charac-
terizes the space of desired solutions; all consistent
P(r) curves lie inside this high-dimensional convex
polytope, and conversely any point inside this poly-
tope corresponds to a consistent and realistic P(r)
curve.

2.2. Consistent and realistic P(r) curves
in the basis function representation

Let us express P(r) curves in a functional basis such
as a Fourier basis 15. Then for any value rj we can
write

P (rj) =
k∑

i=1

αifi(rj) ,

where fi are the basis functions, αi the correspond-
ing coefficients, and k the number of basis functions
suitable to represent all P(r) curves to the required
resolution.

Let 1k be a row vector of all ones, with length k.
Similarly, define 0k as a row vector of length k with
all zeros. Using 1k and 0k we define two matrices,
M and D, as follows:

M =




1k 0k . . . 0k

0k 1k . . . 0k

...
...

. . .
...

0k 0k . . . 1k




and

D =




f1(r1) 0 . . . 0
0 f2(r1) . . . 0
...

...
. . .

...
0 0 . . . fk(r1)
...

...
...

...
f1(rn) 0 . . . 0

0 f2(rn) . . . 0
...

...
. . .

...
0 0 . . . fk(rn)




,

where M is an n × kn block-diagonal matrix, D is
a kn × k matrix with the basis functions. If α is a
vector of coefficients for the basis functions, then we
can express the vector P(r) in terms of M and D as,




P (r1)
P (r2)

...
P (rn)


 = MD




α1

α2

...
αk


 . (7)

Substituting equation 7 in equation 2 (the con-
straints from the previous section) gives

CMDα ≤ b

By defining C ′ = CMD, we get equation 3, the equa-
tion of a polytope in the coefficient space. We must
note that although the constraints are applied at dis-
crete points, the underlying curves are continuous.

2.3. Generating P(r) ensembles

Intuitively, the most diverse curves lie on vertices
of our polytope. While there exist vertex enumera-
tion algorithms (e.g., 23), they become impractical in
very high dimensions (of the order of the number of
points in a P(r) curve). Furthermore, the number of
vertices increases exponentially with dimensionality.
Thus we instead seek a diverse subset of the vertices.
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Fig. 2. Alternate P(r) curves (red) generated by our method for experimental data to qmax = 0.5 for hen egg white lysozyme,
along with the curve calculated from the x-ray structure (blue) and the reconstruction by GNOM (black).

We formulate the problem of generating the ver-
tices of the polytope as a linear program in coefficient
space. Let c be a point in the coefficient space; then
we solve the following linear program:

Maximize c · α ,

subject to C ′α ≤ b .

By maximizing the dot product of c with the co-
efficient vector α, subject to constraints defined in
section 2.1, we obtain a vertex of the polytope (or a
point on the facet, in case of interior point methods)
in the coefficient space.

To generate a number of vertices, we simply solve
the optimization problem for many random vectors c.
For a reasonable parameter choice and using Fourier
basis functions our program takes about one second
to generate a candidate P(r) curve on a 2.4GHz Pen-
tium machine using the Matlab solver. Therefore,
it is easy to rapidly generate a large ensemble (and
possibly select the most interesting curves from it).

To some extent, these vertices can be described
as “maximally diverse,” since the linear program
picks a direction in coefficient space and tries to
find the maximum possible variation in that direc-
tion without violating any of the constraints.

While the vertices capture the “envelope” of P(r)
curves, one might also want to obtain a more com-
plete ensemble of the satisfying P(r) curves. Since
simple generate-and-test algorithms are extremely
inefficient in high dimensions, we instead gener-
ate additional satisfying curves by repeatedly taking
convex combinations of previously identified satisfy-

ing curves. Such curves are guaranteed to lie inside
the polytope due to its convex nature.

3. RESULTS

We demonstrate the effectiveness and significance of
our approach in characterizing the diversity in real-
istic P(r) curves consistent with scattering data.

3.1. Ensemble Diversity

We first applied our approach to experimental scat-
tering data up to qmax = 0.5 for the protein hen
egg-white lysozyme, as distributed with the program
GNOM 14. Figure 2(a) shows an ensemble of 100
curves generated using our method, and Figure 2(b)
shows a few examples chosen from the ensemble. For
comparison the black curve shows the output from
the program GNOM 14, using default parameters,
while the blue curve is the distance-distribution cal-
culated from an x-ray crystal structure.

There is significant diversity in the consistent,
realistic P(r) curves (see Table 1 for quantification).
In addition to evaluating the “global” diversity, we
may also evaluate the uncertainty at a given point r

by the height of the red band.
We note that both our ensemble and the curve

generated using GNOM are shifted relative to the
curve from the PDB file. This is due to the contri-
bution to the solution scattering intensity from the
bulk solvent that the protein replaces and from a
hard water shell around the protein 24, 25. Since it
is difficult to model these solvent interactions, in or-
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Fig. 3. Ensemble of 100 alternate P(r) curves (red) generated by our method for simulated scattering data to qmax = 0.7 for
the three reference domains, along with the curve calculated from the x-ray structure (blue).
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Fig. 4. Some sample alternate P(r) curves generated for the three reference domains. These curves are taken from the set of
curves shown in figure 3(a)–3(c). This figure shows that the alternate curves are smooth and protein-like.

der to better evaluate our method with a “ground
truth”, we next turn to simulation results for which
these scattering contributions are not included.

For simulation studies we have selected three
very different domains, one each of alpha, beta and
alpha plus beta proteins under CATH classifica-
tion 26, 27. The CATH ids are 1i27A00 (Arc Repres-
sor Mutant, subunit A topology), 1hp8A02 (Seminal
Fluid Protein PDC-109 (DomainB) topology) and
1mj4A00 (ubiquitin-like (UB roll) topology). For
simulated data, we use the scattering intensity of the
protein in vacuum (an output from CRYSOL 24) to
qmax = 0.7. We compare against the corresponding
P(r) curve computed from the atomic coordinate file.

Figures 3(a), 3(b), and 3(c) show 100-member
P(r) ensembles calculated from simulated data, while
Figures 4(a), 4(b), and 4(c) show selected examples.
The alternate curves are smooth, validating our ap-

proach of modeling smoothness as a constraint on
the curves as opposed to a criterion to be optimized.

We have tested the robustness of our method
by adding random Gaussian noise to the simulated
scattering curves. At each q value, we added a ran-
dom noise c · k · σ(q), where c is a constant, k is
a random variable that follows a standard normal
distribution and σ(q) is the standard deviation in
the intensity value. With a small adjustment to the
error bounds for scattering-intensity constraint, our
method robustly handled noise as we increased c. We
tested for c in the range [0, 5] in increments of 1. We
found that adding a noise of c standard deviations
at each q value required a corresponding increase in
error tolerance.
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Fig. 5. Ensembles generated using our method (red) and by varying the regularization parameter in GNOM14 (black).

Table 1. Diversity in our ensemble vs. one generated by varying the regularization parameter in
GNOM14. d(GNOM, Polytope) is the minimum distance of a curve in GNOM to one in our ensemble,
and similarly for d(Polytope, GNOM).

Protein Average Average d(GNOM Default, d(GNOM Best,
d(GNOM, Polytope) d(Polytope, GNOM) Polytope) Polytope)

1i27A00 0.0298± 0.0011 0.0513± 0.0099 0.0292 0.0295
1hp8A02 0.0227± 0.0058 0.028± 0.0073 0.0225 0.0225
1mj4A00 0.0244± 0.0062 0.032± 0.0061 0.02732 0.02732

3.2. Comparison with GNOM

Our main approach is to describe completely the set
of realistic P(r) curves using linear constraints. Once
the set has been described, it can be sampled to find
an ensemble of consistent and realistic P(r) curves.
There are two advantages to this approach: all gen-
erated samples satisfy the constraints, and we can
develop algorithms to get a diverse sampling within
the polytope of consistent curves.

It is possible to generate an ensemble of P(r)
curves using the existing GNOM software, by vary-
ing the regularization parameter 14, although this
is not the typical use of the regularization parame-
ter and generating ensembles is not the intended use
of GNOM. To generate a GNOM derived ensemble
we sampled the regularization parameter uniformly
in log space. Of the curves so generated, we con-
sider only those that GNOM classified as GOOD. We
also generated two additional curves using GNOM:
GNOM Default, the output of GNOM when run
with default parameters and GNOM Best, the out-
put GNOM produces when it is provided the correct
OSCILL and VALCEN criteria 14 determined from
the calculated curve.

Table 1 compares the diversity of the ensembles

generated by our method and by GNOM. For every
curve in the ensemble from GNOM we calculated
the distance of the closest curve in our ensemble,
and vice versa. The second and third columns in Ta-
ble 1 show the average over these minimum distances,
while the final two columns show the distances to the
default and best curve from the curves in our ensem-
ble. The average minimum distance of a curve from
GNOM’s ensemble to that from our polytope ensem-
ble is shorter than vice versa. Thus, there are curves
in our ensemble that do not have a correspondingly
close curve in GNOM’s ensemble. We attribute this
greater diversity to the nature of our sampling. Our
sampling method samples points from the vertices of
the convex polytope in the coefficient space. These
points, by definition, correspond to curves that are
most diverse without violating the constraints in sec-
tion 2.1.

Figures 5(a)–5(c) show the ensembles generated
using our approach and those generated by GNOM.
The GNOM curves are closely banded when com-
pared to the curves generated from our ensemble.
This graphically validates the results of Table 1; most
curves in the GNOM band have a close counterpart
in our ensemble, but curves in our ensemble do not



always have a close counterpart to those in GNOM.
The oscillations and non-negative P(r) values in the
GNOM curves reflect our forcing the regularization
parameter to unusual values. Our method generates
a diverse set without these problems because it ex-
plicitly enforces the smoothness and non-negativity
constraints at each r value.

3.3. Structural implications of P(r)
diversity

In order to investigate the diversity of our P(r) en-
semble we compare it with a diverse set of represen-
tative protein structures. We define a set of 1084
diverse structures, which we call CATHRep, by se-
lecting the CATH representative structure for each
different topology. We generated both the particle
scattering curves (using CRYSOL) and interatomic-
distance distribution curves (from the pdb file) for
all CATHRep proteins. Then we calculated the I(q)
distance between each CATHRep protein and each of
our example proteins, using RFactor 28 with uniform
weights. Similarly, we calculated the distance be-
tween the P(r) curves for the three examples and all
CATHRep proteins, in this case measuring distance
as the area between the two curves. We repeated the
procedure for each member of our generated P(r) en-
semble, using equation 4 to determine corresponding
I(q) curves.

Figures 6(a)–6(c) plot the log of the I(q) dis-
tance vs. the log of the P(r) distance, where the blue
dots correspond to CATHRep proteins and the other
markers correspond to our P(r) ensemble at differ-
ent values for the intensity constraints. It is clear
that the scattering curves for the alternate curves
are much closer than those for proteins in CATHRep,
a direct consequence of the scattering-intensity con-
straint. However, there are structures in CATHRep
whose P(r) curves are closer to the P(r) curves of the
three examples than the alternate curves our method
generates (as illustrated by the points below horizon-
tal lines). This shows that the although the alternate
P(r) curves give rise to scattering curves that are al-
most identical to those from the actual structure,
they are significantly different from the P(r) curves
for the actual structures when compared to the vari-
ability seen in CATHRep. Although all three of the
examples show considerable variability in candidate

P(r) curves, table 2 shows that this variability in P(r)
curves is not uniform; 1hp8A02 has far fewer struc-
tures in CATHRep with closer P(r) curves than does
1i27A00. The third example 1mj4A00 falls some-
where between these two. An interesting extension
of our work might be to evaluate different I(q) curves
for their potential to generate P(r) curves with dif-
ferent diversity.

Table 2 summarizes the P(r) variability with re-
spect to CATHRep. For every ensemble we calcu-
lated the maximum and median distance of the P(r)
curves in the ensemble to that of the reference pro-
tein’s P(r) curve. Table 2 shows the number of struc-
tures in CATHRep that have a P(r) distance to the
reference structure below these thresholds. These
results show that the diversity of P(r) in our en-
semble is large enough to overlap with a substantial
number of representative structures. We note that
most structures in CATHRep have large differences
in both P(r) and I(q) space because of the nature of
CATHRep, which is supposed to represent a diverse
set of protein structures. Therefore, for the examples
we have considered the overlap is limited to 68 out
of the 1084 structures in CATHRep.

Our method explicitly bounds the error at each q

value for the scattering curve predicted using a P(r)
curve. It it natural to ask if such constraints en-
courage curves that differ by the maximal possible
deviation at each point. In practice, this does not
appear to be the case for the ensembles our method
generates. Typically the χ2 distance between the
scattering curves from the ensemble and those for
the reference proteins was small. When a deviation
of σ was allowed at every q value, the maximum χ2

distance over ensembles for all three structures was
0.3057. When a deviation of σ/2 was permitted this
value was 0.1035, and for ensembles with 2σ devia-
tions permitted it was 0.4978. These χ2 values fall
much below the permitted deviation at each point;
even if a deviation of one σ is permitted at every
point, not every point on the scattering curve varies
by that amount.

4. DISCUSSION AND CONCLUSIONS

We have described the first method for characterizing
an ensemble of P(r) curves that are consistent with a
given scattering profile. At the heart of our approach
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Fig. 6. Similarity between reference proteins and proteins in the CATH representative database, in terms of I(q) (x-axis) and
P(r) (y-axis). Ensemble members are plotted for the example proteins, permitting an error of σ/2 (green triangles), σ (red
circles), or 2σ (black plus signs). A single blue dot is plotted for each CATH representative. Green, red, and black horizontal
lines correspond to the median values for P(r) distances for the three sets of alternative curves.

Table 2. Number of members of CATHRep with
P(r) distance below the maximum or median distance
in the generated

Domain Max. Error #CATHRep structures

max median

σ/2 40 18
1i27A00 σ 38 20

2σ 68 39

σ/2 13 7
1hp8A02 σ 14 7

2σ 13 12

σ/2 19 16
1mj4A00 σ 20 19

2σ 32 19

is the idea of representing the desirable properties of
the P(r) curves as constraints on the set of solutions.
Such a formulation allows us to describe all realis-
tic and consistent P(r) curves as occupying a convex
polytope in a high-dimensional space. We use lin-
ear programming to sample this space and rapidly
generate a diverse ensemble of curves. In this sec-
tion we discuss practical issues in implementing this
approach, limitations, and possible future directions.

Any approach with a few user-defined param-
eters faces the problem of appropriately selecting
those parameters. If the smoothness and continu-
ity parameters are too small, the linear program be-
comes infeasible; too large, and the P(r) curves be-
come jagged. Practically, we found that a binary
search for these parameters worked reasonably well.
Another parameter is the number of basis functions
used to represent the P(r) curves. We obtained the
smoothest solutions when the number of basis func-

tions was the minimum required to satisfy the linear
program. The minimum number of basis functions
also represents the smallest ensemble that satisfies
the linear program.

One can imagine constraints describing other de-
sirable properties of P(r) curves beyond those we
considered. So long as those constraints are linear,
they may be easily added to the existing framework.
Higher-order constraints might be added while still
maintaining convexity and contiguity of the set of
feasible P(r) curves.

There are limitations in the sampling technique
we applied. Sampling uniformly in high dimensions
is inherently hard, and we cannot claim to have a
uniform coverage of the consistent P(r) space. This
formulation does not indicate how big (or small) the
polytope is, which depends on the user-defined pa-
rameters for various constraints as well as the par-
ticular properties of the transform matrix defined in



equation 5. Perhaps most importantly, we need to be
aware that changes in some directions in P(r) space
may affect the corresponding I(q) curves more than
changes in other directions.

We now discuss the results of our approach in
the wider context of ab initio structure prediction
using SAXS. The mapping from structure to P(r) to
I(q) is not one-to-one, and every node in CATHRep
represents a unique topology. Therefore, combining
these two facts, our results in section 3 show that
such alternate P(r) curves might correspond to pro-
teins with significant structural differences. This ob-
servation should be used both as a caution and as
an opportunity for structure elucidation from solu-
tion scattering data. As a caution, it reminds us
that diverse alternate structures can give rise to sim-
ilar scattering curves. As an opportunity, our results
can be viewed as a first step in producing a com-
plete ensemble of structures compatible with a given
scattering curve.
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