
PuzzleFlex: kinematic motion of chains with loose joints

Samuel Lensgraf, Karim Itani, Yinan Zhang, Zezhou Sun, Yijia Wu,
Alberto Quattrini Li, Bo Zhu, Emily Whiting, Weifu Wang, Devin Balkcom

Abstract— This paper presents a method of computing
free motions of a planar assembly of rigid bodies connected
by loose joints. Joints are modeled using local distance
constraints, which are then linearized with respect to con-
figuration space velocities, yielding a linear programming
formulation that allows analysis of systems with thousands
of rigid bodies. Potential applications include analysis of
collections of modular robots, structural stability pertur-
bation analysis, tolerance analysis for mechanical systems,
and formation control of mobile robots.

I. INTRODUCTION

Like a human skeleton, structures assembled by or
out of robots may be composed of rigid bodies loosely
connected at the joints. A many-jointed robot arm flexes
like the backbone of a snake; a wooden jigsaw puzzle
may flex slightly as one edge is pulled, particularly
before assembly is complete. Joints may be real or
virtual: enforced by the physics of collision, or by robot
control laws that prevent the breaking of formation.

This paper studies a model of the kinematics of col-
lections of rigid bodies that are flexible in the aggregate.
It presents a simple, fast, linearized method to quickly
estimate potential motions of the system that maximize
deviation from the initial configuration in a considered
direction. Figure 1 shows an example of a planar puzzle
flexing in such a way that the upper right block moves
maximally in the positive x direction. Because of the
linearization, there is some violation of the constraints;
the paper presents time-stepping and other methods to
verify the estimate while respecting constraints.

Flexibility analysis may enable wise design decisions
about robot systems or about structures that robots
build. Flexibility may be good, allowing compliance
with external forces, or bad, reducing the sturdiness and
predictability of the system. What joint tolerances enable
assembly, while providing either enough flexibility for
Lego-like bricks or modular robots to comply to an ex-
ternal structure, or enough rigidity for the robots to resist
external loads? What arrangements of bodies provide the
desired level of flexibility? How much motion, and in

This project was partially supported by NSF Grant 1813043, as well
as by the Dubai Future Foundation.

Fig. 1: A system of eight rigid blocks (left), with the
upper-right block flexing to the right.

which direction, can a system of flocking robots achieve
while maintaining constraints such as mutual visibility?

Figure 2 shows a system of particular interest to
the authors: a chair created from Lego-like blocks held
together by a puzzle-like arrangement, rather than by
friction or glue. We imagine constructing such structures
automatically with robots, or from systems of modular
robots. The chair flexes slightly, but remains as a single
component as long as the final block assembled is
held in place. Fast analysis of flexibility will allow
specific design decisions: reinforcing the chair by adding
other blocks, or increasing tolerance at joints to allow
easier manufacturing and assembly, while maintaining
acceptable rigidity. For simplicity, this paper focuses on
planar systems, but this limitation is not fundamental.

We developed a Julia library to build the linear
constraint matrix based on geometric descriptions of part
geometry1, and used Gurobi [1] to solve linear programs.
Though we compute and present distance function gra-
dients in the paper for reference, we used automatic
differentiation in the implementation for simplicity [2].
Figure 9 shows a structure with 1703 blocks, with y
displacement of the upper right block maximized using
this implementation.

II. RELATED WORK

Linearizing motion around an initial configuration al-
lows for the study of systems of blocks with many thou-
sand degrees of freedom; our approach draws inspiration
from early work on manipulability ellipsoids [4]–[7],
in which directions of motion of the end effector of a

1Software available from rlab.cs.dartmouth.edu



Fig. 2: Interlocking puzzle blocks, from [3].

robot arm are analyzed at a particular configuration by
examining eigenvectors of the Jacobian matrix. Work by
Berenson also provides analysis and approximations of
Jacobians for truly flexible cloth or string [8]. Linear
grasp analysis techniques also serve as inspiration. In
the 19th century, Reuleaux [9] derived a geometric
method to find the free motion of an object in contact
with frictionless fingers. Mishra, Schwartz, and Sharir’s
seminal work on the minimum number and sufficient
placement of fingers to immobilize an object [10] ana-
lyzes polyhedral constraints in twist and wrench spaces.

In contrast to manipulability and grasping problems,
the blocks which we consider are only loosely con-
nected. Caging grasps [11]–[17] study how robot hands
may loosely capture an object; the present paper studies
motion of structures in which either pairs of blocks
or combinations of many blocks may cage each other.
Direct construction of configuration spaces of pairs of
blocks has a long history; Sacks et al. [18] provides a
recent approach, and gives a much higher-fidelity repre-
sentation of the free motions of small numbers of blocks
than our edge/point distance function model. Eckstein
et al. [19] analyze how forgiving a connector design
is using an explicit approximation of the configuration
space of the joint.

The Carpenter’s Rule Theorem states that any open
polygonal chain (a planar revolute robot arm) can be
reconfigured arbitrarily without self-intersection [20];
the proof uses expansive motions that cause points and
edges to separate from one another. The motions in
the present paper allow points and edges to approach
one another, while balancing the rates so as to optimize
net motion in some direction. The distance constraints
are similar to those used in Linear Complementarity
Problem (LCP) formulations of dynamics [21], [22],
which have been used both for rigid body simulation
and design for manipulation [23].

Tolerance analysis of mechanical assemblies is uti-
lized in mechanical engineering to determine how fre-
quently small manufacturing errors in the component
parts of an assembly will result in unacceptable devia-

tions in the final assembly [24]. The Direct Linearization
Method [25] linearizes the homogeneous transformation
matrices describing the kinematics of an assembly, and
applies statistical techniques to determine what percent-
age of assemblies are able to be assembled.

Methods for building modular interlocking structures
have been studied by Zhang et al. [3], [26] and by
Werfel et al. [27]; however, the structures are assumed
to be static after construction with idealized perfect
connectors between blocks. Techniques for robot swarm
control typically must handle thousands of simple robots
collectively performing some tasks, e.g., object trans-
ports [28], shape generation [29], self-assembly [30],
[31], and network connectivity [32]; perhaps the closest
work in spirit to the present is [33], which controls
swarms of robots by allowing robots to bounce off of
frictionless walls.

III. LINEARIZED DISTANCE FUNCTIONS

Let the configuration of the chain be given by q ∈ Q.
Define two types of points of interest: vertices of the
polygons describing each body in the chain o(q) and
collision points p(q). Define a vector of signed distance
functions that represents the distance of each collision
point from its neighboring edges: d(o,p). Components
of the vector d will be notated by di,j , where i is the
index of the edge and j is the index of the point. To
enforce that there are no collisions, d(q) ≥ 0.

To analyze legal motion and legal nearby configura-
tions of the chain, we may consider the configuration
to be a function of time: q(t). Let q̇ ∈ TQ be a
configuration-space direction indicating possible motion
of the system. The instantaneous rate of change of the
distance function is

ḋ(q, q̇) = Jd(q)q̇, (1)

where Jd is the Jacobian of the distance function. For a
small enough time step ∆t, an Euler step approximates
the change in distances:

∆d(t) ≈ ∆tḋ(q, q̇). (2)

Let d0 = d(o0,p0) be the distances computed at
the initial configuration of the chain. We would like
to choose motions such that the change in distances
from each collision point to each edge does not cause
a collision: ∆d(t) ≤ d0. Combining with Equations 1
and 2,

Jd(q)q̇ + d0 ≥ 0. (3)

The scalar ∆t has been dropped, since we may equiv-
alently linearly scale q̇ and scale time units such that
∆t = 1. With this time scaling, the change of q over a

2



0.0 0.5 1.0 1.5 2.0

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

1

2

3
4

Fig. 3: 1R planar arm, and estimates of end-effector
collisions.

time step is approximated by ∆q = q̇. Thus, Equation 3
bounds the change in configuration to a polyhedron.

IV. A SIMPLE EXAMPLE

Consider a 1R robot arm with base at the origin, and a
single link of length 2, shown in Figure 3. The configu-
ration q is the angle θ; let the initial configuration be θ =
π/4. Constrain the endpoint of the arm to lie in a square
region with vertices o = ((1, 1), (2, 1), (2, 2), (1, 2)).
The end effector coordinates are

p(q) = (2 cos θ, 2 sin θ). (4)

There are four distance functions:

d1 = py − o1y = 2 sin θ − 1 (5)
d2 = −(px − o2x) = −2 cos θ + 2 (6)
d3 = −(py − o3y = −2 sin θ + 2 (7)
d4 = px − o4x = 2 cos θ − 1, (8)

corresponding to distances from the bottom, right, top,
and left walls. Computing the partial derivatives with
respect to θ,

Jd(q)q̇ + d0 =


2 cos θ
2 sin θ
−2 cos θ
−2 sin θ

 q̇ + d0 ≥ 0 (9)


√

2√
2

−
√

2

−
√

2

 q̇ +


√

2− 1

2−
√

2

2−
√

2√
2− 1

 ≥ 0. (10)

p1

p2

o1

o2

e1

e2 e3 e4

(a) The edge-vertex distance
constraints limit the valid
motions in a small convex
region.

(b) The distance constraints
generated for a pair of rigid
bodies. Blue line segments
are vectors from green ver-
tices to red edges.

Fig. 4: Local distance functions model the free space.

Candidate values for q̇, or equivalently, ∆q, are then
−(
√

2− 1)/
√

2

−(2−
√

2)/
√

2

−(
√

2− 2)/
√

2

−(1−
√

2)/
√

2

 ≈

−.29
−.41
.41
.29

 . (11)

The value ∆θ = −.29 corresponds to collision with
the bottom wall, and the value ∆θ = .29 corresponds
to collision with the left wall; these would be the
first collisions to occur. These values are of course
approximate, due to the linearization of J around the
initial configuration.

V. FLEXIBILITY ANALYSIS USING LINEAR
PROGRAMMING

We apply the concepts developed above to approxi-
mating extreme configurations of very large 2D systems
of loosely connected rigid bodies by solving the linear
program

max
q̇

cT q̇

subject to J(q)q̇ + d0 ≥ 0,
(12)

where c is a vector of weights. The choice of c allows
us to tune the direction we wish to displace elements of
the chain.

We use signed distance functions between vertices on
one body and edges on another to simply model the
permissible local motions of the bodies. For each pair
of bodies in the structure, we choose one body to provide
the edges, and one body to provide vertices, as shown in
Figure 4a. Since the linearized analysis is only valid for
local motions of the bodies, only edges and points that
are initially near one another are potential sources of
collision; we choose a small positive value ε and select
edge/vertex pairs that are initially closer than this value.

Let the configurations of the current pair of bodies
under consideration be q1 = (x1, y1, θ1) and q2 =
(x2, y2, θ2). For each object pair, we expect there to be

3



many distance functions, representing the distances of
vertices from edges over some region of near-contact
between the bodies. For simplicity, consider a distance
function dij such that object 1 provides the edge, and
object 2 provides the vertex. Let n be the outwards-
pointing normal from the edge and o be the origin. Then

dij(q1,q2) = n(q1) · (p(q2)− o(q1)). (13)

Let the length of the edge be `, the first and second
endpoints of the edge be e0 and e1, the distance from the
origin of object 1 to the endpoints of the edges be re0
and re1 and the angle from the x axis in the local frame
of object 1 to the edge endpoints be αe0 and αe1 . Let the
distance from p to the origin in the local frame of object
2 be rp and the angle from the x axis to p be αp. To
make the equations more readable, we define the helper
variables se1 = sin (θ1 + αe1), ce1 = cos (θ1 + αe1),
se0 = sin (θ0 + αe0), ce0 = cos θ1 + αe0 , a = 1

` . Then

p(q2) =

(
x2 + rpcp
y2 + rpsp

)
(14)

n(q1) = a

(
re1se1 − re0se0
−re1ce1 + re0ce0

)
(15)

o(q1) =

(
x1 + re0ce0
y1 + re0se0

)
. (16)

The gradient of the signed distance function:

∂x1
dij = a (−re0se0 + re1se1)

∂y1dij = a (ce0re0 − ce1re1)

∂θ1dij = a(ce0re0 (ce0re0 − ce1re1)

− re0se0 (−re0se0 + re1se1)

+ (−ce0re0 + ce1re1) (−cprp + ce0re0 + x1 − x2)

+ (−re0se0 + re1se1) (−rpsp + re0se0 + y1 − y2))

∂x2
dij = −a (−re0se0 + re1se1)

∂y2dij = −a (ce0re0 − ce1re1)

∂θ2dij = a(−cprp (ce0re0 − ce1re1)

+ rpsp (−re0se0 + re1se1))

(17)
The non-zero entries of each row of the Jacobian are
computed using the gradient elements, substituting the
appropriate blocks for blocks 1 and 2.

A. Modeling convex corners

The distance-function approximation of the local con-
figuration space is particularly bad for some object
geometries. In Figure 4a, point p1 is closest to point
o1, a convex corner. Two distance functions are created,
one for each of the extension into lines of the edges
e1 and e2. Maintaining these constraints unnecessarily
restricts p1; p1 will remain in the polygonal region

defined by the extensions of e1 and e2. This problem
seems fundamental. Rows of the Jacobian express an
and relationship; all constraints must be satisfied. But
in the example, it is enough that p1 be on the “correct”
side of only one of the extended edges.

If only one of the nearby vertices is convex, the
problem is easily solvable. For example, in Figure 4a,
points o2 and p2 may be swapped, so that we compute
the distance of a point relative to a concave corner. To
mitigate the problem in the case where both corners
are convex, we may take a simple, though not entirely
satisfactory, approach. Take the normals of each edge,
and average them, yielding a half-plane constraint that at
least allows p1 to cross over the extended edges. Once
an edge has been crossed, it is no longer treated as a
valid constraint and dropped from the Jacobian, allowing
a second time-step to more accurately model the motion
of p1. Deeper exploration of this issue is a primary goal
of future work; one promising avenue is formulation as
a Linear Complementarity Problem (LCP), allowing or
relationships between constraints.

B. Time-stepping and re-enforcement of constraints

Solutions to the linear program in Equation 12 are
extreme vertices of the constraint polyhedron. Because
of the linearization around the initial configuration, the
constraints may be violated when the resulting solution
is used to compute a new configuration. The linearized
distance functions are Taylor series approximations,
truncated after the first term. A common approach for
dealing with truncation error in finite difference methods
is to find the net change over several time steps.

Although there are sophisticated ways to compute
an optimal time step for finite difference methods, for
this problem, the cost of computing the linear program
solution far outweighs the cost of Euler-step integration
and forward kinematics distance computation. We take
a simple approach, and do a linear or binary search for
a time step, multiplying the displacement vector ∆q by
an increasingly large scalar until the maximum distance
constraint violation exceeds a user-defined threshold.
After a time step is found and applied, a new linear
program may be formulated and solved around the new
configuration q.

Usefully, the new linear program re-enforces the con-
straints, potentially taking a backward step with ∆q.
This means that error does not accumulate across time
steps, and also suggests an even more computationally
efficient, though numerically riskier, approach: compute
a single-step solution that violates the constraints, and
then solve just one more linear program. In future work,

4



Fig. 5: Example of adding a cross beam into a structure
at a point of maximum flex.

Fig. 6: Crushing a soda can with tight and loose joints.
Red polygons denote the initial configuration.

we expect to analytically and empirically explore cir-
cumstances under which this faster method is sufficient.

VI. EXAMPLE PROBLEMS

In this section, we present some informal examples –
preliminary work that suggests a breadth of interesting
applications.

A. Structure and block design problems

The linear optimization approach may be fast enough
for rapid consideration of different potential designs
for a structure, including the number and locations of
blocks, and on the the geometry of individual blocks,
including the tightness of the joints.

As an example, we consider how to add blocks to
brace a structure and limit maximum flex. Figure 5
shows an example of adding such a beam to a structure;
c was chosen to maximize radial flex of each block
outwards from the center. We find the pair of mutually
visible vertices which has changed the most in the
predicted configuration of maximum flex, an O(n2)
operation for n vertices. In this example, this approach
suggested adding a vertical cross-beam of blocks, which
we did by hand. In a completely automated algorithm,
structural limitations of the blocks would need to be
taken into account when selecting a cross beam.

The linear programming approach can also be used to
explore joint geometry. Looser joints simplify assembly;
if the joints in Figure 2 are too tight, the chair cannot be

Fig. 7: A linear programming solution for a flock of
1024 robots which must maintain sensor contact squeez-
ing together to fit through a doorway or hallway.

assembled due to limits on the precision of assembly and
fabrication. However, if joints are too loose, the structure
will flex unacceptably, particularly if there is wear on the
connectors over time. Figure 6 (right) shows a planar
example of the soda can with loosened joints, with flex
computed using linear programming.

One simple strategy to explore joint tolerance is to
parameterize the tightness of a joint with a single value
and binary search for maximum tolerance. To simulate
such a process, we utilize the Clipper library [34] to
simulate loosening joints by insetting the boundary of
the rigid bodies. A more general approach might choose
several parameters to describe joint geometry, and search
over this parameter space. A key question is how to
choose c to test flex; Subsection VI-C shows how to
discover such a direction in the extreme case that joints
separate and break the structure.

B. Flock formations

Figure 7 shows a flock of 1024 robots; the magnified
inset shows the geometry. Gray square robots are forbid-
den from physical collision, and the yellow cone shows
a requirement that each robot’s camera must maintain
view of a marker (red dot) on the robot in front of it.
We can drive the flock into interesting configurations by
selecting an objective function. Figure 7 shows an exam-
ple: driving the diffuse flock into a tighter configuration
(perhaps so that the robots can pass through a doorway)
by finding a displacement that moves all of the robots
toward the x value of the leader robot.

We add field-of-view constraints for each robot except
the leader, and collision constraints that require that
vertices of each robot do not cross the half planes
described by the edges of its five nearest robots. We
added a constraining square around the leader at the tip
of the tree so that the constraint polyhedron is bounded.
Large rotations are poorly approximated by the linear

5



Fig. 8: A small time step in a direction of separation.

method, so we place an arbitrary limit on the rotation
displacement of each robot in a time step, using auxiliary
linear constraints. After each configuration update, we
re-select distance constraints between swarm neighbors.

C. Unbounded separation and (dis-)assembly planning

The classic assembly problem [35], [36] is to discover
motions that separate or assemble a collection of rigid
bodies. For simple versions of this problem, we might
like to discover a velocity direction q̇ for which the
linear constraints we formulated are unbounded. With
some minor modifications, our approach is able to dis-
cover such a direction, thus testing whether a structure is
interlocked under constant-velocity motion, which may
include rotation.

Linear program solvers are capable of detecting
whether the feasible polyhedron is unbounded in the
direction of a given cost vector; in contrast, we would
like to discover such a cost vector automatically. Our
approach is based on the observation that for almost
every non-zero vector, the linear sum of the elements
is either positive or negative, but not zero. We may
compute the sum of the x and y elements of q̇ by
adding a row of the form (1, 1, 0, 1, 1, 0, . . . ) to J . We
may constrain that sum to be very large, by adding an
additional large element k to d0. Choose the objective
function c arbitrarily. We must also upper bound the
motion so that the solution is not unbounded; we add a
row (−1,−1, 0, . . .) and an element −2k to d0.

If a solution is found to this linear program, then
the resulting q̇ removes at least one block far enough
from the assembly that it is unconstrained, allowing
unbounded motion. If not, then we may look for negative
motions by changing the signs on the last two elements
of d0. If both of these linear programs are infeasible,
then the only separating motions must be such that the
sum of the x and y velocity elements is exactly 0. We
neglect this case in our implementation, but perhaps
it might be handled if desired by rotating the entire
structure slightly, changing the relationship between x
and y velocities along the separation direction.

Rigid Bodies Jacobian Size Iterations Runtime (seconds)
36 666 x 105 5 0.358
50 907 x 147 8 0.363
90 2220 x 267 7 1.621
153 3147 x 456 8 1.866
223 5273 x 666 5 2.987
332 6309 x 993 5 2.761
392 10932 x 1173 8 10.649
396 7326 x 1185 4 2.002
688 14615 x 2061 4 5.951

1703 52655 x 5106 14 233.341
2497 66363 x 7488 7 166.582

TABLE I: Performance results for several structures,
using Gurobi with sparse matrices.

Our study of this approach is preliminary; issues of
numerical stability may arise that we have not dis-
covered. We have explored a few examples; Figure 8
shows an example of a direction of separation found
by this method. As will be discussed in the limitations
section below, this approach gives little control over
which direction of separation is selected; non-linear
objective functions or direct analysis of the constraint
polyhedron, perhaps by computing extreme edges, the
double description problem [37].

VII. EVALUATION AND COMPARISONS

The size of the linear program depends on the number
of blocks, the complexity of their shape, and the ways
in which they are connected; the number of time-step
iterations depends on the flexibility of the structure with
respect to angular motions in configuration space. In this
section, we explore the time costs, evaluated in terms of
the size of the linear programs, number of steps, and the
practical run-time on a current desktop system.

For n blocks with one block held fixed, the Jacobian
has 3(n − 1) columns and c(n − 1) rows, if c is
the average number of distance constraints generated
for each block. However, the matrix is quite sparse,
which may reduce memory and computational costs of
solution; there are only six non-zero entries per row,
yielding O(n) non-zero entries in the matrix. We omit
formal O() asymptotic run-time analysis of the solution,
since the solution techniques are standard for linear
programming.

In Table I we show the result of tests on several
systems of rigid bodies of varying size. For each struc-
ture, we report the amount of time and number of
iterations required for our time stepping procedure to
converge. The run time of our approach is dominated by
the solution of the constraint Jacobian linear program.
In our experiments, we found that certain instances
were especially hard for the linear program solver. For
instance, the 392 rigid body structure takes five times as
long the 396 body structure to solve and two times as

6



Fig. 9: Structure composed of 1703 rigid bodies flexing
upwards. Red polygons denote the initial configuration.

1

2

3
4

5

Fig. 10: Motions of a rectangle constrained to a box.

long as the 688 body structure. The 392 body structure
is a very dense structure, making the placement of each
rigid body dependent on a larger of other rigid bodies
than in less dense structures.

VIII. LIMITATIONS AND FUTURE WORK

We presented a simple linear-constraint method for
computing the motion of a loosely-connected chain of
rigid bodies. Like robot kinematics formulations, the
approach is geometric, and does not model dynamics
and contact. This is both a strength and a weakness;
dynamics simulators may provide realistic motions, but
the linear constraints describe a space of possible motion
of the system, allowing fast and interesting optimiza-
tions. The linear constraint method may also be more
useful for a worst-case analysis; just because a simulator
provides a trajectory does not mean that trajectory will
occur in the real world.

We have begun to conduct a comparison to state-of-
the-art dynamics simulation approaches, using external
forces applied to the rigid bodies as a loose parallel to
the objective function c used for the linear program.
We have simulated a simple beam of 50 blocks, and
solutions are similar. However, it is not immediately
clear how to choose these external forces for dynamic
simulation of more complex structures, since we ex-
pect that for some systems, counter-intuitive motions of
some blocks will lead to maximized flex. Computational

costs are difficult to compare; for a dynamic simulator,
reaching a flexed configuration requires many time steps
through impact events, but for the linear program, many
possible alternative motions are analyzed to maximize
the objective. Future work will attempt to make more
direct comparisons.

The linear-constraint method assumes that the con-
figuration space is tight enough that linearization
of the change in distance functions with respect to
configuration-space motion is not too inaccurate. For
structures that are nearly rigid, as we might like to build
in assembly problems, this assumption is reasonable,
and the one-step solution to the linear program gives
good results. However, for more flexible systems, the
computed motions violate the distance constraints. Re-
peated enforcement of the constraints by time-stepping
and re-solving the linear program gives results that seem
empirically reasonable, but there is much to be done
to put this approach on firmer mathematical footing,
perhaps by analyzing Taylor series approximations of
the change in distance functions [38].

The use of a linear objective function is also limiting.
Figure 10 shows an example of a rectangular robot in
a square room. Attempting to maximize θ rotates the
robot from 1, to 2, to 3, to 4, and to 5 in successive time
steps, but because θ is unbounded, time-stepping will not
converge. Other interesting problems are also an imper-
fect match for linear objective functions. While we can
analyze separability of objects using the approach out-
lined in Section VI-C, there is little control over which
separating motion is selected by the linear program. We
might like to separate objects in an assembly one at
time (if we have only one robot arm), or simultaneously,
for speed; it is unclear how these preferences might be
encoded with linear objective functions.

The use of the union of edge-vertex distance con-
straints to approximate the local configuration space also
needs further study; as pointed out in Section V-A, con-
vex corners of objects pose a particular problem when
used as edges for the distance function. Extension to 3D
dimensions, an obvious next step for the work, seems
mostly straight-forward, but we expect expressing the
geometry of convex vertices, saddles, and ridges using
a union of linear constraints to be more problematic than
in the 2D case.

REFERENCES

[1] L. Gurobi Optimization, Gurobi optimizer reference
manual, 2018. [Online]. Available: http://www.
gurobi.com.

[2] J. Revels, M. Lubin, and T. Papamarkou,
“Forward-mode automatic differentiation in julia,”
arXiv:1607.07892 [cs.MS], 2016.

7



[3] Y. Zhang and D. Balkcom, “Interlocking block assem-
bly,” 2018.

[4] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Si-
ciliano, “Global task space manipulability ellipsoids
for multiple-arm systems,” IEEE Trans. Robot. Autom.,
vol. 7, no. 5, pp. 678–685, 1991.

[5] F. C. Park and J. W. Kim, “Manipulability and singu-
larity analysis of multiple robot systems: A geometric
approach,” in Proc. ICRA, 1998, pp. 1032–1037.

[6] S. Kim, “Adjustable manipulability of closed-chain
mechanisms through joint freezing and joint unactu-
ation,” in Proc. ICRA, 1998, pp. 2627–2632.

[7] A. Bicchi and D. Prattichizzo, “Manipulability of coop-
erating robots with unactuated joints and closed-chain
mechanisms,” IEEE Trans. Robot. Autom., vol. 16,
no. 4, pp. 336–345, 2006.

[8] D. Berenson, “Manipulation of deformable objects
without modeling and simulating deformation,” in Proc.
IROS, 2013, pp. 4525–4532.

[9] F. Reuleaux, The kinematics of machinery. 1876.
[10] B. Mishra, J. T. Schwartz, and M. Sharir, “On the

existence and synthesis of multifinger positive grips,”
Algorithmica, vol. 2, pp. 541–558, 1987.

[11] A. Rodriguez, M. T. Mason, and S. Ferry, “From caging
to grasping,” Int. J. Robot. Res., vol. 31, no. 7, pp. 886–
900, 2012.

[12] S. Makita and Y. Maeda, “3d multifingered caging:
Basic formulation and planning,” in Proc. IROS, 2008,
pp. 2697–2702.

[13] M. Vahedi and A. F. van der Stappen, “Caging polygons
with two and three fingers,” Int. J. Robot. Res., vol. 27,
no. 11-12, pp. 1308–1324, 2008.

[14] J. Erickson, S. Thite, F. Rothganger, and J. Ponce,
“Capturing a convex object with three discs,” in Proc.
ICRA, vol. 2, 2003, pp. 2242–2247.

[15] E. Rimon and A. Blake, “Caging 2d bodies by 1-
parameter two-fingered gripping systems,” in Proc.
ICRA, 1996, pp. 1458–1464.

[16] T. F. Allen, J. W. Burdick, and E. Rimon, “Two-
finger caging of polygonal objects using contact space
search,” IEEE Trans. Robot., vol. 31, no. 5, pp. 1164–
1179, 2015.

[17] S. Makita and W. Wan, “A survey of robotic caging and
its applications,” Advanced Robotics, vol. 31, no. 19-
20, pp. 1071–1085, 2017.

[18] E. Sacks, N. Butt, and V. Milenkovic, “Robust free
space construction for a polyhedron with planar mo-
tion,” Computer-Aided Design, vol. 90, pp. 18–26,
2017.

[19] N. Eckenstein and M. Yim, “Modular robot connector
area of acceptance from configuration space obstacles,”
in Proc. IROS, 2017, pp. 3550–3555.

[20] R. Connelly, E. D. Demaine, and G. Rote, “Straighten-
ing polygonal arcs and convexifying polygonal cycles,”
Discrete and Computational Geometry, vol. 30, no. 2,
pp. 205–239, 2003.

[21] D. Stewart and J. Trinkle, “Dynamics, friction, and
complementarity problems,” in Complementarity and
Variational Problems, M. Ferris and J. Pang, Eds.,
SIAM, 1997, pp. 425–439.

[22] J. Trinkle, J. Tzitzouris, and J. Pang, “Dynamic multi-
rigid-body systems with concurrent distributed con-
tacts: Theory and examples,” Philosophical Transac-
tions: Mathematical, Physical, and Engineering Sci-
ences, A, vol. 359, no. 1789, pp. 2575–2593, Dec.
2001.

[23] D. Balkcom and J. C. Trinkle, “Computing wrench
cones for planar rigid body contact tasks,” vol. 21,
no. 12, pp. 1053–1066, 2002.

[24] K. W. Chase and A. R. Parki nson, “A survey of
research in the application of tolerance analysis to
the design of mechanical assemblies,” Research in
Engineering Design, vol. 3, no. 1, pp. 23–37, 1991.

[25] K. W. Chase, J. Gao, S. P. Magleby, and C. D.
Sorensen, “Including geometric feature variations in
tolerance analysis of mechanical assemblies,” IIE
Transactions, vol. 28, no. 10, pp. 795–807, 1996.

[26] Y. Zhang and D. Balkcom, “Interlocking structure
assembly with voxels,” 2016.

[27] J. Werfel, Y. Bar-Yam, D. Rus, and R. Nagpal, “Dis-
tributed construction by mobile robots with enhanced
building blocks,” in Proc. ICRA, 2006, pp. 2787–2794.

[28] J. Alonso-Mora, S. Baker, and D. Rus, “Multi-robot
formation control and object transport in dynamic envi-
ronments via constrained optimization,” vol. 36, no. 9,
pp. 1000–1021, 2017.

[29] M. A. Hsieh, V. Kumar, and L. Chaimowicz, “Decen-
tralized controllers for shape generation with robotic
swarms,” Robotica, vol. 26, no. 5, pp. 691–701, 2008.

[30] I. O’Hara, J. Paulos, J. Davey, N. Eckenstein, N. Doshi,
T. Tosun, J. Greco, J. Seo, M. Turpin, V. Kumar, et al.,
“Self-assembly of a swarm of autonomous boats into
floating structures,” 2014, pp. 1234–1240.

[31] M. Rubenstein, A. Cornejo, and R. Nagpal, “Pro-
grammable self-assembly in a thousand-robot swarm,”
Science, vol. 345, no. 6198, pp. 795–799, 2014.

[32] J. M. Esposito and T. W. Dunbar, “Maintaining wireless
connectivity constraints for swarms in the presence of
obstacles,” 2006, pp. 946–951.

[33] S. Shahrokhi, A. Mahadev, and A. T. Becker, “Algo-
rithms for shaping a particle swarm with a shared input
by exploiting non-slip wall contacts,” in Proc. IROS,
2017, pp. 4304–4311.

[34] A. Johnson, Clipper - an open source freeware library
for clipping and offsetting lines and polygons. [Online].
Available: http : / / angusj . com / delphi /
clipper.php.

[35] D. Halperin, J. Latombe, and R. H. Wilson, “A general
framework for assembly planning: The motion space
approach,” Algorithmica, vol. 26, no. 3-4, pp. 577–601,
2000.

[36] J. Snoeyink and J. Stolfi, “Objects that cannot be taken
apart with two hands,” Discrete and Computational
Geometry, vol. 12, pp. 367–384, 1994.

[37] K. Fukuda and A. Prodon, Double description method
revisited, 1996.

[38] J. J. Duistermaat and J. A. C. Kolk, “Taylor expansion
in several variables,” in Distributions: Theory and
Applications. Birkhäuser, 2010, pp. 59–63.

8


