
Rigid 2D space-filling folds of unbroken linear chains

Zhong Li, Devin J. Balkcom, Member, IEEE, and Aaron M. Dollar, Member, IEEE

Abstract— This paper presents an algorithm for folding a
serial revolute chain into a rigid structure of essentially any
desired planar shape. The algorithm is fast (linear in the
number of links), and the constructed folding plan only requires
an actuation method that sequentially folds triangles as the
pattern is laid out, maintaining incremental rigidity of the
structure during folding.

I. INTRODUCTION

Consider a planar “snake robot” that is a long serial chain
of equal-length links connected by revolute joints. Further,
the robot is designed to be foldable; connections can be made
between any two link endpoints that come into contact. What
rigid shapes can be folded out of this robot without causing
self-intersection, while limiting the complexity of the actions
required during folding?

This paper proves that essentially any planar smooth-
boundaried shape that does not have any parts that are “too
narrow” or “too curved” with respect to the link length can
be approximately covered by a rigid lattice that is easily
foldable from a single chain. We present a fast (linear time
in the number of links) algorithm that, given a target shape,
generates this rigid lattice together with a folding plan to
fold the lattice. Further, the algorithm suggests an on-line
folding strategy for which is not even necessary to know the
shape ahead of time, as long as each link has sensors that
can detect the boundary of the shape as folding occurs.

A partially-folded snake robot can be considered in two
parts: the part that makes up the structure that has already
been folded, and the remaining, unfolded part, which we will
call the “tail”. We do not explicitly consider the problem of
self-intersections in the tail – imagine, for example, that the
tail is stored in a spool, and laid out into the folded structure
during the folding process.

The main contribution of the work is an insight into
a particular flavor of modular robotics. The benefits of
reconfigurable modular robots have been discussed at some
length in the literature; simple subsystems can combine and
recombine to form structures that are most suitable for the
task at hand. Perhaps the simplest task is to form a rigid
structure of some desired shape. Connecting robots made
of separate modules can be challenging, however. Modules
must locate each other, may need to climb over each other
to assemble the desired structure, and must create power
and communication links during connections. In fact, some
of these challenges have motivated recent work in folding
robots out of origami-like sheets [1] and the study of folding
serial chains [2].

The serial design is quite convenient. Chains are them-
selves easy to construct and build. Power flows through the
linear chain already, so only physical connections need to

Zhong Li, and Devin Balkcom are with the Department of Com-
puter Science, Dartmouth College, Hanover, NH 03755 USA. (e-mail:
Zhong.Li.GR@dartmouth.edu, devin@cs.dartmouth.edu).

Aaron M. Dollar is with the School of Engineering and Ap-
plied Science, Yale University, New Haven, CT 06511 USA. (e-mail:
aaron.dollar@yale.edu).

Fig. 1. (a) A hexagon that is not Eulerian, and thus is not foldable from
a single chain; (b) A triangle that is Eulerian, with a folding plan that only
requires sequential actuation of the joints; (c) A bad folding plan, in which
many vertices are nonrigid during folding.

Fig. 2. Our algorithm can approximate a shape of “R” by a rigid triangle
lattice folded from a linear single chain and ensures incremental rigidity
during folding.

be made during assembly. Further, constraints allow easier
connections, requiring fewer degrees of control – different
modules do not have to find each other. Folding structures
from chains also motivates considering long, skinny links,
from which lightweight trusses can be folded.

We envision lightweight deployable structures for space
and underwater applications, which can be compactly stored
in chain form and spooled out as needed. We also envision
structures that can be automatically folded to support or
repair structures at the macro-scale for engineering and at
smaller scales for medical robotics or microbiology. The cur-
rent paper is still quite far from these eventual applications,
but we hope that it lays some groundwork, and identifies
some of the interesting geometric problems that must be
studied to make progress towards these applications.

Not every geometric configuration of links can be folded
from a serial chain. The triangle in Figure 1(b) can be folded
using the sequence shown (the first link in the serial chain is
labeled 1, and the last is labeled 9), with links intersecting
only at endpoints. On the other hand, the hexagon shown
in Figure 1(a) cannot be folded from a single chain without
placing multiple links at the same location.

Although one can show that 1(a) cannot be folded by
exhaustive enumeration of fold sequences, there is also a nice
necessary (and sufficient) condition for foldability. Consider
the graph with edges along links. There must be a path that
visits each link exactly once; the graph must be Eulerian

1



or sub-Eulerian[3]. It is easy to test if a graph is Eulerian:
every vertex must have even degree. In a sub-Eulerian graph,
exactly two vertices must have odd degree; these vertices
must be the endpoints of the folded serial chain.

Even though it is easy to check if a structure is Eulerian,
or to construct an Eulerian structure to approximate any
desired shape, there are typically many ways to fold Eulerian
structures, and some are better than others. The folding
sequence in Figure 1(c) leaves much of the structure non-
rigid during folding. Links 1, 2, 3, 4 and 5 must be carefully
arranged before finally creating a small triangle when link
6 is folded; we expect this folding strategy to require many
“hands” to ensure that the first 5 links stay in place during
manipulation.

On the other hand, the folding sequence in Figure 1(b) first
constructs the rigid triangle 1-2-3, and then adds the rigid
triangle 3-4-5, then 5-6-7, and finally 4-8-9 – a much simpler
folding strategy, requiring only a few hands (or otherwise-
controlled degrees of freedom).

One could imagine generating an Eulerian lattice of the
desired shape and searching the graph for Eulerian paths
with good folding characteristics. However, this approach
would seem to be too computationally intensive to apply
to structures with more than a few dozen links. Therefore,
we take an alternate approach, and build structures that
are foldable by design; elementary substructures that are
known to be rigidly foldable (essentially, fold primitives)
are logically combined to generate larger structures of a
desired shape. Because no search is required, the complexity
of finding a fold sequence is linear in the number of links
in the serial chain.

Figure 2 illustrates a more interesting example than those
in Figure 1. Our algorithm first approximates the target shape
“R” by a triangle lattice, which is a sub-Eulerian graph. Then
the algorithm folds the triangle lattice from a single chain.
Basically, this is a problem about how to produce a rigid
lattice to cover the target shape and then traverse the lattice
in order to fold it. As shown in Figure 2, our algorithm folds
the target shape while traversing along the boundary of the
shape from the vertex S to the vertex T . During the folding,
we maintain a minimum number of nonrigid vertices.

II. RELATED WORK

Modular Robots: The area of modular robotics has a
fairly long history; a good starting point for background
in this area includes [4], [5], [6], [7], [8], [9], [10], [11],
[12]. Closest to our own work is the thesis by Griffith [13],
in which it is demonstrated that a linear chain of vertex
connected squares can fold into any 2D pixelated shape, and
a linear chain of edge connected right-angled tetrahedron
can produce an arbitrary 3D voxelated structure. Griffith’s
approach is to first generate a spanning tree for any given
shape, and then convert the spanning tree to an Eulerian
path. Based on this result, White and Yim [2] devised a
3D chain modular robot, the Right Angle Tetrahedron Chain
Externally-actuated Testbed, with the flexibility to form
arbitrary space-filling 3D shapes. Our work differs from this
previous work in that we explore lightweight serial chains
composed of long rods.

Snake Robots: The snake robot is a kind of self-
reconfigurable modular robots. Due to the ability to navigate
in highly variable environments, snake robots have wide
applications. Wright et al. [14], [15] designed a modular
snake robot, which consists of many fully enclosed actuators.

The Coverage Problem: Perhaps surprisingly, the algo-
rithm we present shares strong similarities with algorithms
for mobile robot coverage problems; instead of exploring the
space with a robot trajectory, our goal is to cover the space
with the robot structure itself. Acar and Choset [16], [17]
present a coverage technique based on a hybrid topological
and geometrical structure, termed a Morse decomposition.
The Morse decomposition approach is complete, because it
divides the space into non-overlapping cells and visits each
cell by simple motion planning. There are several ways to
generate a complete coverage. Acar and Choset [18] devised
an algorithm that guarantees the completeness by using
critical points. Choset [19] exploits a geometric structure
termed exact cellular decomposition; Huang [20] devised
an optimal line-sweep-based decomposition achieving the
minimum sum of subregion’s altitudes. For more results
regarding the coverage problem, refer to the review written
by Choset [21].

Origami Structures: Rus [1] introduced a method to
fabricate a robot from a flat sheet. This idea is inspired by
origami, and is similar to our problem. Demaine [22], [23]
developed an algorithm for folding a piece of paper into any
orthogonal maze with a small scale factor.

Computational Geometry: The manipulation of serial
chains has drawn some attention from the computational
geometry community. Connelly et. al [24], for example,
showed that the free configuration space of a serial chain
is a single connected component – a carpenter’s rule can
be folded between any two configurations without self-
intersection.

III. GEOMETRIC COMPONENTS FOR BUILDING LATTICES

It is apparent that not all shapes can be equally well-
covered by a folded snake robot. Shapes with multiple
components, or features that are much smaller than the length
of the links of the snake, can clearly not be folded well. We
will consider a space of shapes that can guaranteeably be
covered with a rigid lattice. We will also define the building
blocks that are used to build structures that can be folded
incrementally, without too many degrees of control.

First, what shapes can be approximated well by a lattice?
In the well-studied computer vision problem of reconstruct-
ing a smooth shape from a set of discrete, sampled points,
the difficulty is that the problem is under-constrained; very
complicated curves could have generated the sampled points.
A typical solution is to assume that the shape is relatively
simple, without narrow sections or regions of very high
curvature. Conveniently, this is exactly the set of restrictions
on a shape needed to ensure that a lattice approximates
the shape well. We therefore borrow the concept of Local
Feature Size from Amenta et al. [25]. The following two
definitions are from [25]:

Definition 1: (from [25]) The medial axis of a curve F is
the closure of the set of points in the plane which have two
or more closest points in F.

Definition 2: (from [25]) The Local Feature Size, LFS(p)
of a point p ∈ F is the Euclidean distance from p to the
closest point m on the medial axis.

Figure 3 illustrates the medial axis of the target shape.
We define a function r(F ) that, given a curve F, gives the
infimum of the Local Feature Sizes over all points in F .
We will show that given a value for r for the boundary
of a particular shape, a lattice can be folded that closely
approximates the shape.



Fig. 3. A target shape with its medial axis.

Fig. 4. (a) The folding of one Parallelogram Component, the numbers 1
through 5 indicate the plan of the folding from a single chain; (b) Stack
a second parallelogram component to form a strip component of length
two by following the pattern shown by the numbers in ascending order; (c)
Stack more parallelogram components to form a longer strip component by
following the pattern indicated by the numbers in ascending order.

Definition 3 (Parallelogram Component): The parallel-
ogram component is a parallelogram formed from two equi-
lateral triangles, as shown by solid lines in Figure 4(a).

The parallelogram component is sub-Eulerian and rigid
in 2D space. Figure 4(a) illustrates the plan for folding the
parallelogram component from a single chain.

In Figure 4(a), we call the three black points the feature
points of a parallelogram component, because these three
points represent the location of a parallelogram component.
When claiming a parallelogram component is inside a shape,
we mean that at least one of its three feature points is inside
the shape.

Definition 4 (Strip Component): A strip component is a
stack of parallelogram components, as shown in Figure 4(c).

For brevity, we call a strip component a strip hereafter. A
strip is a sub-Eulerian graph, and is rigid in 2D space. As
shown by Figure 4, we can fold a strip from a single chain
incrementally by stacking many parallelogram components.

Now we have a rigid basic structure, a strip, which can
be folded incrementally from a single chain. Given a target
shape, how can we approximate it by our strips? Our key
idea is to first cover the shape by the strips, and then bind
them together to form a rigid structure. In order to make
sure that we can always bind the strips rigidly, we introduce
a rigid structure which we call a triangle lattice as follows:

Definition 5 (Triangle Lattice): The triangle lattice is a
row of strips bound rigidly by zig-zag structures (dotted lines
in Figure 5).

For brevity, we call each zig-zag structure between a pair
of adjacent strips a zig-zag. A zig-zag itself is not rigid, but
can bind two strips to form a rigid structure.

Based on the lattice, we can produce a rigid sub-lattice
to approximate the target shape. First we put the target
shape on the lattice, and then only keep those parallelogram
components inside the shape, as shown in Figure 5. The sub-
lattice in Figure 5 is not always foldable from a single chain.
In section IV, we will show how to add some additional
connecting triangles in such a way as to allow folding from

Fig. 5. Generate the k-lattice of the target shape.

a single chain, without worsening the approximate cover by
too much.

A. Approximating a shape with a lattice
It is useful to define an approximation measure of how

well a sub-lattice approximates a shape.
Definition 6 (k-cover): Given any finite planar shapes S

and T , we say that S k-covers T iff no point in T is further
than a Euclidean distance of k from S.

We consider a planar lattice to be a shape with points
along the edges of the lattice; thus it is meaningful to say
that a sub-lattice k-covers some shape and the sub-lattice is
termed as a k-lattice of the shape.

We will next show (Lemmas 1 and 2) that the folding
produced by our algorithm keeps two significant properties
of the target shape:

Geometry: The lattice structure that we fold should have
approximately the same geometry as the target shape. The
sub-lattice that we fold will cover the shape in such a way
that no point in the shape is far from the lattice, and no point
in the lattice is far from the shape.

Topology: We want to make sure that holes are not
introduced in the lattice that were not present in the shape,
and that holes or channels in the shape are not filled in by
the lattice. By ensuring that triangles of the lattice are well-
connected and fill the original shape sufficiently densely, the
folded shape will be sufficiently stiff.

Lemma 1: Given a smooth shape with minimum local
feature size r ∈ R+, and a lattice with link length l satisfying
l < r/

√
3, there exists a sub-lattice cut from the original

lattice, such that:
1) The sub-lattice

√
3l-covers the shape.

2) The shape
√
3l-covers the sub-lattice.

Proof: Proof of (1). For each point p on the boundary
of the shape, let its nearest point on the medial axis inside
the shape be q. Then we have that the distance between p
and q is at least r >

√
3l. Let C be the disk with diameter√

3l centered on the segment pq and tangent to the shape
at p. Then C is entirely inside the shape; otherwise, the
nearest point of p on the medial axis is not q, which is a
contradiction. Since C has a diameter of

√
3l, it must overlap

with some parallelogram component. Then this parallelogram
component will be kept in the sub-lattice, and its distance to
p is at most

√
3l. Thus each point on the boundary is away

from the sub-lattice at most
√
3l. It follows immediately that

each point inside the shape is away from the sub-lattice at
most

√
3l.

Proof of (2). The shape
√
3l-covers the sub-lattice, because

we only keep the parallelogram components with at least one
feature point inside the shape. In the worst case, the points



Fig. 6. The coordinate system of the lattice.

Fig. 7. A slice of the k-lattice.

Fig. 8. (a) If the two neighbor strips overlap with each other, they can be
bound rigidly by a zig-zag; (b) If the two neighbor strips do not overlap, it
implies a skinny part of the target shape.

on the parallelogram can be out of the shape at most the
length of the longer diagonal of the parallelogram, which is√
3l.

Lemma 2 will show that choosing the lattice link length as
described in Lemma 1 not only allows coverage of the shape,
but also ensures that the constructed sub-lattice is rigid.

Lemma 2: Given a target shape with minimum local fea-
ture size r, there exists a sub-lattice that l-covers the target
shape, where l is the length of the links. This sub-lattice is
termed as a l-lattice, which is a bunch of strips. We claim that
the l-lattice can be bound rigidly by the zig-zag structures.

Proof: The existence of the l-lattice is proved by
Lemma 1. Now we prove that it can be bound rigidly.

As shown in Figure 6, we index each parallelogram
component in the lattice by its location in the coordinate
system. Thus each parallelogram component is assigned a
unique index in the form of (x, y), where x is the row index
and y is the column index. In this configuration, a strip is
an array of adjacent parallelogram components in the same
column.

The sufficient condition for binding two strips rigidly by a
zig-zag is that the two strips overlap. The overlapping of two
strips should satisfy the following two conditions: (1) they
are adjacent with respect to column index; (2) they share
common row index. As shown in Figure 7, we highlight a
slice of the k-lattice, where two overlapping adjacent strips
are bound rigidly by a zig-zag.

It remains to be proven that each strip overlaps with at
least one of its neighboring strips. Suppose a strip does not
overlap with any of its neighboring strips. This implies that in
the target shape, there is a narrow part connecting the isolated
strip to other strips, which is illustrated by Figure 8(b).
There must be points on the boundary of the narrow part
with local feature size smaller than l. But the minimum
local feature size over all points on the boundary of the
target shape is r and we set the link length l ≤ r/4. This
implies a contradiction. Therefore, every strip in the k-lattice
must overlap with at least one of its neighboring strips. It is
feasible to bind all strips together rigidly with the zig-zags
to form a single piece of the lattice.

IV. FOLDING THE SHAPES WITHOUT HOLES

In this section, we will present a fast algorithm for
incrementally folding shapes without holes. Both strips and
zig-zags are sub-Eulerian graphs; thus they can be folded
incrementally. We need to find a plan of folding the strips
and zig-zags in order and incrementally. Since the target
shape is a closed space in 2D space, if we walk along the
boundary counter clock-wise, the target shape is always on
our left-hand side. By this fact, we conclude the following
key observation for our algorithm.

Observation: For the shape without holes, each strip
has both endpoints on the boundary of the shape. Thus by
walking along the boundary of the shape once, we can reach
every strip twice.

Our key idea of the algorithm follows from the Observa-
tion. The algorithm walks along the boundary of the target
shape counter clock-wise. Each time it reaches a strip, it folds
the strip completely. During the folding, there is at most one
nonrigid vertex.

Basically, this walking strategy can be partitioned into
three cases: (1) Walk from left to right; (2) Walk from right
to left; (3) Climb along the already folded structures.

A. Walk from left to right
Suppose we are folding the strips along the boundary from

left to right. We just finished folding one strip, say S1, and
have detected that the next strip to be folded is S2, which is
right-downmost neighbor of S1. Thus we continue walking
from left to right to construct S2. The way of folding S2 is
shown in Figure 9, by following which we can make sure
that there is at most one nonrigid vertex at any time.

There are two cases, shown in Figure 9. If S2 is not longer
than S1 in the down direction, we follow the folding plan
shown in Figure 9(a), in which we start from the bottom of
S2 and go up until completely fold S2; then we go down
through the zig-zag path indicated by the dotted line and
back to the boundary. The zig-zag structure is significant. It
not only binds S1 and S2 together rigidly, but also ensures
that we are always on the boundary. In the other case, if S2

is longer than S1 in down direction, then we need to follow
the folding plan shown in Figure 9(b). In this case, we do
not start from the bottom of S2, but from the parallelogram
parallel to the bottom of S1. Then we folding the upper part
of S2 first. After that, we go down through the zig-zag to
fold the lower part of S2. In this way, we still can fold S2

completely and back to the boundary.
After folding S2, we will continue walking along the

boundary counter clock-wise. Thus we need to identify
which strip is supposed to be folded next. Since we are



Algorithm 1: Main algorithm flow
Input: A shape S with r(S) > 0
Set the side length l to r/4
Generate the k-lattice C of the shape (Figure 5)
Start from the left-downmost strip
Initialize the direction indicator d = 0
while there exist unfolded parallelograms do

if d==0 then
Walk along the boundary Left→ Right
Let S be the current strip
if S has not been folded then

Fold S (Figure 9)
else

Climb over S
Search the neighbors of S to be folded
if S has a left-upmost neighbor SL then

Go to the entrance of SL

Set d = 1 (Figure 10(a))
else if S has a right-downmost neighbor SR

then
Go to the entrance of SR (Figure 9)

else
Turn around to the left-upmost of S and
set d=1 (Figure 10(b))

else if d==1 then
Walk along the boundary Right→ Left
if S has not been folded then

Fold S (Figure 11)
else

Climb over S
Search the neighbors of S to be folded
if S has a right-downmost neighbor SR then

Go to the entrance of SR

Set d = 0 (Figure 12(a))
else if S has a left-upmost neighbor SL then

Go to the entrance of SL (Figure 11)
else

Turn around to the down-right most of S and
set d=0 (Figure 12(b))

walking from left to right, we follow the order of operations
below:

If S2 has a left neighbor below S1, then the next strip
along the boundary is the left-upmost neighbor of S2. This
claim directly follows the Observation and is illustrated in
Figure 10(a).

Else if S2 has a right neighbor, then the next strip along
the boundary is the right-downmost neighbor of S2. This
case follows the Observation and is illustrated in Figure 9.

Else The boundary goes around the right side of S2

and turn to the left-upmost neighbor of S2, as shown by
Figure 10(b). Then we will walk along the boundary from
right to left, which will be immediately introduced in next
sub-section.

By following the three steps above in order, we can make
sure that we are walking along the boundary and identify the
next strip to be folded accurately.

Fig. 9. Walk from left to right along the boundary while folding the strips:
(a) If S2 is not longer than S1 in the down direction, fold S2 from the
bottom to the top completely; (b) If S2 is longer than S1 in the down
direction, fold the upper portion of S2 first, and then the lower portion.

Fig. 10. Detect the boundary while walking from left to right. After folding
the strips S1 and S2: (a) If there is a upmost unfolded neighbor strip of
S2 below S1, it is the next strip supposed to be folded along the boundary;
(b) If there is no unfolded strip on the left side below S1 and right side of
S2, it implies that the boundary turn around along the right side of S2 and
then to the left-upmost neighbor strip of S2.

B. Walk from right to left
Suppose we are folding the strips along the boundary from

right to left. We just finished folding one strip, say S1, and
have detected that the next strip to be folded is S2, which is
left-upmost neighbor of S1. Thus we continue walking from
right to left to fold S2. The way of folding S2 is shown in
Figure 11, in which the folding plan guarantees that there is
at most one nonrigid vertex at any time.

There are two cases shown in Figure 11. In both cases,
the folding starts from the parallelogram parallel to the top
of S1 and fold the part of S2 below that parallelogram. In
Figure 11(a), the lower part of S2 is not longer than S1; we
follow the order of the links. In Figure 11(b), the lower part
of S2 is longer than S1; some extra links are necessary to
ensure that at most one nonrigid vertex during the folding.
After folding the lower part of S2, we go up to fold the upper
part of S2, if there is any. We achieve this by climbing along
the left side of the already folded structure, as shown by
Figure 11. The plan for folding the strips along the boundary
from right to left is quite different from that from left to right.
But we still can make sure that there is at most one nonrigid
vertex during the folding.



Fig. 11. Walk from right to left along the boundary while folding the
strips: (a) If S2 is not longer than S1 in the down direction; (b) If S2 is
longer than S1 in the down direction.

Fig. 12. Detect the boundary while walking from right to left. After folding
the strips S1 and S2: (a) If there is a downmost unfolded neighbor strip of
S2 above S1, it is the next strip supposed to be folded along the boundary;
(b) If there is no unfolded strip on the right side above S1 and left side of
S2, it implies that the boundary turn around along the left side of S2 and
then to the right-downmost neighbor strip of S2.

After folding S2, we will continue walking along the
boundary counter clock-wise. Thus we need to identify the
next strip to be folded. Since we are walking from right to
left, we follow the order of operations below:

If S2 has a right neighbor above S1, then the next strip
along the boundary is the right-downmost neighbor of S2.
This claim directly follows the Observation and is illustrated
by Figure 12(a).

Else if S2 has a left neighbor, then the next strip along
the boundary is the left-upmost neighbor of S2. This case
follows the Observation and is illustrated by Figure 11.

Else The boundary goes around the left side of S2 and
turn to its right-downmost neighbor. This is shown in Fig-
ure 12(b). Then we will walk along the boundary from left
to right, which is already introduced in the first sub-section.

By following the three steps above, we can ensure that
we walk along the boundary and identify the next strip to be
folded accurately.

Fig. 13. Climbing over the already-folded structure along the boundary.

Fig. 14. Approximation bound of the algorithm.

C. Climb along the boundary

Each strip has two endpoints on the boundary. Each time
the algorithm reach a strip, the algorithm folds the strip
completely. Thus, it is inevitable that the algorithm reaches
each strip a second time, and the strip is already folded. In
this case, it is necessary to climb over the strip and continue
walking along the boundary.

We show this procedure through an example in Figure 13.
After generating the k-lattice, we start to construct it from the
left-downmost strip, indicated in Figure 13. Then we fold the
strips while walking along the boundary counter clock-wise.
After folding the rightmost strip, the algorithm turns around
and searches along the boundary from right to left. Then,
while walking along the boundary from right to left, we find
that the strips that we encounter are already folded. Thus we
climb over them. This is shown in Figure 13 by a sequence
of arrows, which indicate how to climb along the boundary.
Finally, we arrive at the last strip that is supposed to be
folded. It is always possible to climb along the boundary of
the already-folded structure.

V. APPROXIMATION BOUND OF THE ALGORITHM

The algorithm is guaranteed to fold the sub-lattice for
the target shape completely. The sub-lattice is at most l
smaller than the target shape along the boundary, as shown
in Figure 14. While folding the cover, we incorporate some
extra structure outside of the sub-lattice in order to ensure
that there is at most one nonrigid vertex at any step. Thus
the final structure folded by our algorithm is at most 3l
bigger than the target shape along the boundary, as shown
in Figure 14. Therefore, by choosing the length of the
links for the lattice to be no larger than one quarter of the
minimum local feature of the shape, the lattice structure can
be folded without collision; smaller link lengths allow tighter
approximation.



Fig. 15. Converting the sub-lattice of a shape with holes to one without
holes. The algorithm folds the lattice while walking along the boundary
counter-clockwise, and fills the pipe while climbing out of the hole.

VI. ALGORITHM FOR THE SHAPE WITH HOLES

For the shape with holes, we first generate the sub-lattice.
However, it could happen that some strips have no endpoint
on the boundary, and therefore could not be folded by our
algorithm. To solve this problem, we convert the sub-lattice
with holes to one without holes by deleting one strip. We
term that strip a pipe, as shown by Figure 15. Then we follow
the algorithm for folding the shape without holes. We fill the
pipe as a final step, while climbing out of the hole.

We illustrate how to fill the pipe in Figure 15. By the
algorithm, after folding the strip S1, we will walk into the
hole along the dotted triangles on the left of S1. Then we
will fold the strips while walking along the boundary of the
hole. After folding strip S2, the algorithm will climb along
the triangles on the right side of S2 for folding the shape
without holes. But now we need to fill the pipe by following
the folding plan shown in Figure 15.

We just articulated a simple example with one hole. For
the sub-lattice of the target shape with many holes, we build
a pipe for each of the holes. Then we obtain a sub-lattice
without holes. We follow the algorithm for folding the shape
without holes. While climbing out of each hole, we block the
pipe by following the folding plan illustrated by Figure 15.
This achieves our goal of folding the sub-lattice of any shape
with holes.

VII. CONCLUSION

This paper explored a particular method of folding linear
chains into rigid planar shapes. The algorithm developed
draws some inspiration from algorithms designed for mobile
robot area-coverage problems [16], [17]. Although the basic
folding strategy is simple (fold sequential strips of triangles),
some challenge is introduced by the need to connect strips
in such a way as to ensure complete coverage, with a single
rigid substructure complete at each stage in the fold, and
without folding too far outside of the permitted region.

This paper represents only an initial exploration of an
interesting geometric problem, but the problem and approach
suggest several very interesting directions of future work.
Can 3D trusses be folded on-demand given a target 3D
shape? How can folding be accomplished with other methods
of actuation; for example, parallel actuation of all joints?

VIII. ACKNOWLEDGEMENTS

The authors wish to acknowledge Weifu Wang, Corey
O’Hern, and Lynne Regan for their insightful comments,

input, and feedback. Work on this project was in part sup-
ported by NSF grants IIS-0953856 (Dollar) and IIS-1217447
(Balkcom).

REFERENCES

[1] C. D. Onal, R. J. Wood, and D. Rus, “Towards printable robotics:
Origami-inspired planar fabrication of three-dimensional mecha-
nisms,” Proceedings of IEEE International Conference on Robotics
and Automation, pp. 4608–4613, 2011.

[2] P. J. White, C. E. Thorne, and M. Yim, “Right angle tetrahedron chain
externally-actuated testbed (ratchet): A shape changing system,” Pro-
ceedings of International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, vol. 7,
pp. 807–817, 2009.

[3] F. Jaeger, “A note on sub-eulerian graphs,” Journal of Graph Theory,
vol. 3, p. 91, 1979.

[4] M. Yim, P. J. White, M. Park, and J. Sastra, “Modular self-
reconfigurable robots,” Encyclopedia of Complexity and Systems Sci-
ence, pp. 5618–5631, 2009.

[5] G. Chirikjian, “Kinematics of a metamorphic robotic system,” Pro-
ceedings of IEEE International Conference on Robotics and Automa-
tion, vol. 1, pp. 449–455, 1994.

[6] P. J. White and M. Yim, “Reliable external actuation for extending
reachable robotic modular self-reconfiguration,” International Sympo-
sium on Experimental Robotics, pp. 13–23, 2008.

[7] C. Unsal, H.Kiliccote, and P. Khosla, “I(ces)0-cubes: A modular
self-reconfigurable bipartite robotic system,” In Proceedings of SPIE,
vol. 3839, pp. 258–269, 1999.

[8] S. Murata, H. Kurokawa, E. Yoshida, K. Tomita, and S. Kokaji, “A
3d self-reconfigurable structure,” Proceedings of IEEE International
Conference on Robotics and Automation, vol. 1, pp. 432–439, 1998.

[9] S. Murata, H. Kurokawa, and S. Kokaji, “Self-assembling machine,”
Proceedings of IEEE International Conference on Robotics and Au-
tomation, pp. 441–448, 1994.

[10] K. Kotay, D. Rus, M. Vona, and C. D. McGray, “The self-reconfiguring
robotic molecule,” Proceedings of IEEE International Conference on
Robotics and Automation, pp. 424–431, 1998.

[11] D. Rus and M. Vona, “A physical implementation of the self-
reconfiguring crystalline robot,” Proceedings of IEEE International
Conference on Robotics and Automation, pp. 1726–1733, 2000.

[12] R. Fitch, Z. J. Butler, and D. Rus, “The crystal robot: Implementation
and demonstration,” AAAI Mobile Robot Competition, pp. 65–71,
2002.

[13] S. Griffith, Growing Machines. PhD thesis, Massachusetts Institute of
Technology, 2004.

[14] C. W. III, A. Buchan, B. Brown, J. Geist, M. Schwerin, D. Rollinson,
M. Tesch, and H. Choset, “Design and architecture of the unified
modular snake robot,” Proceedings of IEEE International Conference
on Robotics and Automation, pp. 4347–4354, 2012.

[15] C. W. III, A. M. Johnson, A. Peck, Z. McCord, A. Naaktgeboren,
P. Gianfortoni, M. Gonzalez-Rivero, R. L. Hatton, and H. Choset,
“Design of a modular snake robot,” Proceedings of the International
Conference on Intelligent Robots and Systems, pp. 2609–2614, 2007.

[16] E. U. Acar, H. Choset, A. A. Rizzi, P. N. Atkar, and D. Hull, “Morse
decompositions for coverage tasks,” International Journal of Robotics
Research, vol. 21, no. 4, pp. 331–344, 2002.

[17] E. U. Acar and H. Choset, “Sensor-based coverage of unknown
environments,” International Journal of Robotics Research, vol. 21,
no. 4, pp. 345–366, 2002.

[18] E. U. Acar and H. Choset, “Critical point sensing in unknown envi-
ronments,” Proceedings of IEEE International Conference on Robotics
and Automation, pp. 3803–3810, 2000.

[19] H. Choset, “Coverage of known spaces: The boustrophedon cellular
decomposition,” Autonomous Robots, vol. 9, no. 3, pp. 247–253, 2000.

[20] W. H. Huang, “Optimal line-sweep-based decompositions for cover-
age algorithms,” Proceedings of IEEE International Conference on
Robotics and Automation, pp. 27–32, 2001.

[21] H. Choset, “Coverage for robotics - a survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, no. 1-4, pp. 113–
126, 2001.

[22] E. Demaine, M. Demaine, and J. Ku, “Folding any orthogonal maze,”
Proceedings of the 5th International Conference on Origami in Sci-
ence, Mathematics and Education, vol. 13-17, p. 449, 2010.

[23] E. D. Demaine, M. L. Demaine, and J. S. B. Mitchell, “Folding
flat silhouettes and wrapping polyhedral packages: New results in
computational origami,” Computational Geometry, vol. 16, no. 1,
pp. 3–21, 2000.

[24] R. Connelly, E. D. Demaine, and G. Rote, “Straighting polygonal arcs
and convexifying polygonal cycles,” Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, pp. 432–442, 2000.

[25] N. Amenta, M. Bern, and D. Eppstein, “The crust and β-skeleton:
combinatorial curve reconstruction,” Graphical Models and Image
Processing, vol. 60, no. 2, pp. 125–135, 1998.


