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Abstract—The accelerations of and forces among contacting
rigid bodies may be computed by formulating the dynamics equa-
tions and contact constraints as a complementarity problem [1].
Dantzig’s algorithm, when applicable, will find a solution to the
linear complementarity problem corresponding to an assembly
with n contacts in O(n) major cycles.
Can the dynamics of an assembly be computed more quickly

if the dynamics of a subassembly are already known? This paper
shows that Dantzig’s algorithm will find a solution in O(n − k)
major cycles if the algorithm is initialized with a solution to the
dynamics problem for a subassembly with k internal contacts.
We apply this observation to two robotics problems: dynamic

simulation and assembly sequence planning. In dynamic simula-
tion, the positions of several bodies might remain fixed during a
sequence of frames. We compute the dynamics of this motionless
subset (which might not be motionless when considered in
isolation), and use the result to initialize the computation for
the entire assembly. In assembly planning, non-disjoint sets of
objects are typically considered sequentially by the planner. If
the configuration of only one body is varied, the dynamics of
successive assemblies can be computed in a constant number of
major cycles.

I. INTRODUCTION

The problem of determining the motion of and forces
among contacting rigid bodies is fundamental to many areas
of robotics, including dynamic simulation, control, and manip-
ulation planning. The primary contribution of this paper is the
observation that in many cases, common physical structure can
be exploited to solve a sequence of related dynamics problems
more efficiently than if each problem were considered in
isolation.
The typical model of contacting rigid bodies consists of

the Newton-Euler dynamics equations, unilateral-force con-
straints, non-penetration constraints, and frictional constraints.
With the correct choice of coordinates, the equations and
constraints form a complementarity problem [1]. We consider
only linear complementarity problems (LCPs), such as those
that arise in planar systems, in spatial systems without friction,
and in spatial systems with linearized friction cones.
For some constant n × n matrix A, and constant vector

b of length n, a complementary feasible solution to a linear
complementarity problem (A,b) is a a pair of vectors (f , a)
satisfying

a = Af + b, (1)

a, f ≥ 0, (2)

aT f = 0. (3)

The structure of the matrixA and the physical interpretation
of the vectors depend on the particular dynamics formulation.
For example, in [2], a is a vector of relative accelerations at the
contact points, f is a vector of forces applied at the contacts,
and

A = JM−1JT and b = JM−1Fext, (4)

whereM is the mass matrix, J is the Jacobian relating motion
of the bodies in generalized coordinates to motion of the
contact points, and Fext is the vector of external and velocity-
dependent forces. In [3], a is a vector of velocities, and f
contains impulses. In most formulations, A can be partitioned
in such a way that each block corresponds to a particular
contact present in the physical system.
The Dantzig algorithm performs a series of n or fewer major

cycles to successively satisfy each constraint ai ≥ 0, fi ≥ 0,
as described by equation 2. We show that the solution to the
dynamics equations for a structure can be found in n − k
or fewer major cycles of Dantzig’s algorithm if the solution
for the dynamics equations are known for any k-dimensional
subproblem. Although this result seems physically intuitive, it
is not clear how computation can be similarly reused in other
complementarity algorithms such as Lemke [4] or PATH [5].
We consider two example applications of this algorithm:

dynamic simulation, and assembly planning.

• Dynamic simulation. During simulation, the positions of
several bodies might remain fixed throughout a sequence
of frames; figure 1 shows an example. Our algorithm
computes the dynamics to identify the set of motionless
bodies, re-computes the dynamics of that substructure,
and uses the result as a starting point to compute the
dynamics of the complete structure in successive time
steps. For the problem shown in figure 1, the time savings
was approximately 45%.

• Assembly planning. Consider the problem of finding a
sequence in which to disassemble the simple five-block
structure shown in the upper left corner of figure 5 so
that it does not collapse. At one point in the planning
algorithm it may be necessary to analyze the stability of
the structure {1, 3, 5}; at another point, it may be neces-
sary to analyze the stability of the structure {1, 3, 4, 5}.
We show that it is possible to reuse the results of the
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Fig. 1. A column falling apart. Dark gray blocks are motionless. The motionless set changes at frames 60 and 195.

stability computation for the smaller structure to quickly
compute the stability of the larger structure.

A. Related Work

Formulation of rigid-body dynamics as a linear comple-
mentarity problem allows both principled analysis and robust
simulation. Lötstedt was the first to show that if the system
constraints are inequality constraints, e.g. contact forces, then
the system dynamics can be modeled as a quadratic pro-
gram [6] or a linear complementarity problem [1]. Recent
formulations allow for impact and make additional guarantees
about convergence; see Anitescu and Potra [7], and Stewart
and Trinkle [3].
Dynamics problems for rigid bodies with a Coulomb fric-

tion model are complicated by the fact that, for particular
configurations, the dynamics equations may have multiple
solutions (indeterminacy) or no solutions at all (inconsistency),
(Painlevé, 1895 [8]). In the present work, we assume that
solution existence and uniqueness have been analyzed by other
means. The problem of finding sufficient conditions for stabil-
ity with friction has been explored by Pang and Trinkle [9],
[10], who use a complementarity formulation to show that
if friction coefficients are sufficiently small, a solution to
the dynamics problem exists and is unique. In some cases,
manipulation strategies may be chosen to avoid problems of
frictional indeterminacy; see Balkcom and Trinkle [11], as
well as Erdmann’s [12] seminal work on force closure and
friction grasps.

We explore two applications of computation reuse: dy-
namic simulation and assembly planning. Our algorithm for
dynamic simulation is based on Baraff’s algorithm [2] for
computing contact forces in an assembly of rigid bodies; in
the frictionless case, Baraff’s algorithm reduces to Dantzig’s
algorithm. Within assembly-planning, subassembly stability
has been studied by Boneschanscher et al. [13]. Wilson and
Rit [14] consider computation reuse in the context of assembly
problems, but focus on geometric computations to determine
free motions of the bodies, and note that they “have not found
such regularities for stability information.”

II. THE PRINCIPLE PIVOTING METHOD

In this section we describe Dantzig’s algorithm, sometimes
called the principle pivoting method. We first introduce some
terminology commonly used when discussing LCPs. A solu-
tion (f , a) for equality 1 is feasible if it satisfies equation 2. A
complementary solution is one that satisfies equation 3. Every
solution technique for a linear complementarity problem seeks
a complementary feasible solution for equation 1.
The principle pivoting method described by Cottle and

Dantzig [15] begins by initializing (f , a) with the comple-
mentary solution (0,b). It progresses by means of major and
minor cycles. If the problem is nontrivial, there exists an index
i such that ai < 0. The goal of a major cycle is to achieve
feasibility for the pair (fi, ai). Within a major cycle, some
number of minor cycles occur to ensure that feasibility and
complementary conditions are maintained for all previously



considered indices. A minor cycle consists of a single pivot
operation. At the end of the major cycle, the pair is feasible
and complementary. The algorithm continues until no negative
variables remain in a.

III. COMPUTATION REUSE

To solve the LCP (A,b), the principle pivoting method
may execute as many as n major cycles, as shown in [15]. We
show in this section that if we initialize the algorithm with
a solution to a subassembly LCP, we reduce the maximum
number of major cycles.
Theorem 1: Let (A,b) be an LCP, let A11 be any k × k

principle submatrix of A, and let b1 be a k-dimensional
subvector of b with the same rows removed. If (x,y) is
a complementary feasible solution to the LCP (A11,b1),
then initializing Dantzig’s algorithm with the complementary
solution ([ x 0 ]T , [ y A21x + b2 ]T ) will allow it to find
a complementary feasible solution for the LCP (A,b) in at
most n− k major cycles.

Proof: If (x,y) is a complementary feasible solution to
the LCP (A11,b1), then there exists a such that ([ x 0 ]T , a)
is a complementary solution to (A,b). Since contact ordering
is arbitrary, we can arrange A and b such that A11 is the
upper left k×k principle submatrix of A, and b1 is the upper
k-dimensional subvector of b. Thus, we may partition A and
b as in the equation[

A11 A12

A21 A22

] [
x
0

]
+

[
b1

b2

]
=

[
y

A21x + b2

]
. (5)

Since (x,y) is complementary, (f ,a), where f = [ x 0 ]T , a =
[ y A21x + b2 ]T , is a complementary solution for (A,b).
Solving this equation, each major cycle reduces the number

of negative variables in a by at least one. Since y is feasible,
there are at most n − k negative elements in a. Thus, the
algorithm can make no more than n− k major cycles.

A. Reuse for physical structures

In this section, we show that we can reuse computation in
a dynamics formulation for physical structures. Specifically,
we show that a subproblem corresponds to the dynamics of a
substructure.
The series of steps in figure 2 illustrate how we use

Dantzig’s algorithm to solve the system dynamics incremen-
tally. In the first frame, the contact forces on a single block are
computed without considering the force contributions of the
other blocks. In the next frame a block is added, and the forces
at c1 and c2 are adjusted as contact forces on the second block
are computed. In the last frame, a final block is added, and
the contact forces beneath the first two blocks are adjusted.
In order to reuse computation as discussed in this example,

a subproblem of the system dynamics must correspond to a
substructure. Specifically, we show that for the LCP (A,b)
from Baraff’s model of the system dynamics, described in
equation 4, (A11,b1) is the system dynamics of a substruc-
ture.

f gc1 c2 f gc1 c2

f gc3 c4 f gc3 c4

f gc5 c6

f gc1 c2

Fig. 2. Sequential computation of contact forces for subassemblies. ci
indicates the ith contact force and fg the gravitational force. The length of
an arrow shows the relative magnitude of the force it represents.

In equation 4, rows of J correspond to contacts in the
structure and columns correspond to bodies, rows and columns
of M correspond to bodies, as do rows of Fext. Thus, for a
given structure and substructure, we can partition these terms
as

J =
[

J11 J12

J21 J22

]
, M−1 =

[
M−1

11 0
0 M−1

22

]
,

Fext =
[

Fext
1

Fext
2

]
,

(6)

where the top and left partitions correspond to elements
present in the structure but not in the substructure. Then,

A11 = J11M−1
11 JT

11 + J12M−1
22 JT

12,

b1 = J11M−1
11 F1 + J12M−1

22 F2.
(7)

However, J12 = 0, since no contacts present in the sub-
structure are contacts between objects that are not in the
substructure. Thus equation 7 reduces to

A11 = J11M−1
11 JT

11,

b1 = J11M−1
11 F1,

(8)

the exact formulation of the substructure LCP.

IV. APPLICATION: DYNAMIC SIMULATION

During simulation, it is often the case that a subset of
contacting rigid bodies remains motionless for many time
steps. Reusing the persistent substructure’s solution allows us
to optimize the contact force calculation for the simulation
as described in the previous section. Figure 3 illustrates this
approach. We compute the dynamics to identify the set of
motionless bodies, re-compute the dynamics of that subset as
a partial solution, and use this partial solution as a starting
point for computing the dynamics of the complete structure in
successive time steps. If the set of motionless bodies changes,
we compute the partial solution corresponding to the new
motionless set, and use it until the motionless set changes
again. This algorithm may be written
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Fig. 3. Illustration of how an LCP solution may be reused in dynamic simulation. Shaded areas represent the portion of the LCP that must be evaluated at
each step. In frame k, an element that was previously motionless begins to move, so we must solve the LCP corresponding to the new motionless set and
store it for reuse in subsequent frames.

SIMULATE(world)

1 prevSoln← ∅
2 prevMotionless← ∅
3 time← 0
4 while (time++ < SIMULATIONTIME)
5 do SOLVELCP(world, prevSoln)
6 motionless← GETMOTIONLESSBODIES(world)
7 if (prevMotionless �= motionless)
8 then prevSoln ← SOLVELCP(motionless, ∅)
9 prevMotionless← motionless

At each time step, we apply the external and contact forces
to find the acceleration of each body, and then integrate
accelerations to find the location and velocity of the bodies
in the next time step.
We have implemented this algorithm for a planar simulator

with and without friction. The frictionless case reduces to
Dantzig’s algorithm. In the frictional case, we use Baraff’s
modification to Dantzig’s algorithm [2]. Baraff’s formulation
is not a true LCP, as it also includes a number of auxiliary
conditions in addition to the standard complementary and
feasibility conditions of an LCP. This algorithm is not proven
to converge, but is considered to be reliable in practice. The
SIMULATE function with computation reuse is also applicable
to Baraff’s three-dimensional model, and to three-dimensional
models that employ linearized friction cones, where A is a
P-matrix or is PSD.
For the example in figure 1, simulated with a small coef-

ficient of friction, our optimized algorithm reduced the time
spent solving LCPs from 2.2 s to 1.2 s, a reduction of 45%. For
those frames where five of the seven blocks are motionless,
the average savings from computation reuse was 65%.
We expect the simulation reuse algorithm to be fastest when

the motionless structure is large and when we are able to reuse
a solution across many frames, as is the case when we use a
small integration step. Thus, this algorithm allows a more fine-
grained time step, and we expect it to be particularly useful
for applications where a highly detailed simulation is required,
such as mechanism analysis.
Although reducing the number of major cycles in Dantzig’s

algorithm usually improves the overall running time of the
algorithm, this is not always the case. The number of minor
cycles within a major cycle may depend on the order in

a
b

c

d

e

Fig. 4. Three different motionless sets appear in this simulation: first only
a and b are in motion, then c, d, and e move as well, then all blocks fall.

which contacts are considered. We have observed that in
some cases, the contact ordering imposed by the computation
reuse algorithm causes major cycles to take more time. In the
example in figure 4, there are three simulation segments. For
the first 41 frames, only blocks a and b are in motion. In the
next 46 frames, c, d, and e are in motion as well. For the
remainder of the simulation, all blocks except for ground are
moving. LCPs in the second segment take nearly four times as
long to compute when we reuse computation, in spite of the
fact that the algorithm makes only 22 major cycles instead of
60. This is due to a greater number of minor cycles in each
major cycle.

V. APPLICATION: ASSEMBLY PLANNING

A fundamental problem in mechanical assembly is to find
an order in which a product can be assembled or disassembled.
In this section, we consider the problem of finding a stable
disassembly sequence, that is, an order in which we can
remove every object from the structure without causing it to
collapse under gravity after any step. As in dynamic simula-
tion, structures with substructures in identical configurations
arise naturally in this problem. Researchers have considered
reusing similar geometries for movability [14], [16], but, to
our knowledge, not for determining stability. In automated
assembly sequencing, it is typical to determine stability by
solving a linear program (LP) corresponding to the static
force-balance equations [17]. We show that our LCP stability



Fig. 5. A simple structure and its disassembly graph.
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Fig. 6. Number of pivots required by a single stability test, by the size of
the subassembly tested, for the 84-block randomly generated structure shown
in figure 7.

test with computation reuse outperforms this approach, even
though we expect system dynamics to be more complicated
than statics, as illustrated by the difference between LpSolve
and Dantzig LCP columns in table I.
A basic approach for finding a stable disassembly sequence

is as follows. Consider the set of all objects in a structure.
Collect all possible subsets into a disassembly graph, as shown
in figure 5. Search the graph, testing the stability of each node
as it is visited. Any path of stable nodes from start to goal is
a stable disassembly sequence.
Many researchers have considered the problem of improving

the performance of this algorithm by reducing the number of
nodes visited [18], [14]; we focus on reducing the amount
of time spent testing the stability of a node. We can test
stability by computing a solution for the contact forces, and
then verifying that body accelerations are zero. (If there is
friction, this test is only a necessary condition for stability;
computing strong stability is beyond the scope of this paper.)
Since we add a single block at a time, and only consider

successors to stable nodes, we can use the complementary
feasible solution from any parent as a starting point for
computing the stability of the current node, reducing the
number of major cycles from n or fewer to a small constant.
We have implemented an unstacking planner for planar sys-

Fig. 7. A randomly generated assembly, where disassembly order is indicated
by block color. Observe that blocks in the column on the far right must be
removed before other blocks at higher levels in the structure.

TABLE I

TOTAL NUMBER OF PIVOTS BY ALGORITHM, FOR FRICTIONLESS

EXAMPLES.

Structure Blocks LpSolve Dantzig LCP LCP + Reuse
Random 10 102 127 13
Column 50 2352 2352 96
Column 80 6162 6162 156
Random 84 11,975 15,136 420
Pyramid 91 8190 8190 180

tems with static friction. A depth-first search strategy was used
to explore the assembly graph. The planner was configured
to use one of three stability tests: solving the system statics,
solving the system dynamics using Dantzig’s algorithm, or
solving the system dynamics using Dantzig’s algorithm with
our modifications for computation reuse. The system statics
stability test was implemented with lp solve – an open-
source linear program solver that uses the revised simplex
method [19] – to determine the feasibility of a structure’s LP.
Since lp solve is written in C and our Dantzig implemen-
tation in Java, we used the number of pivot operations each
algorithm made as our comparison metric. The time it takes to
complete a pivot operation grows with the size of the problem,
so our LCP algorithm with computation reuse is not truly a
linear-time algorithm, but it did consistently outperform the
other approaches, as shown in figure 6.
We tested the different algorithms on a variety of exam-

ples, including columns, pyramids, and randomly generated
structures, such as the one shown in figure 7. More detailed
discussion of these examples can be found in [20]
Table I presents the number of pivots the algorithm made

for a few example problems.

VI. FUTURE WORK

Robotics algorithms typically solve a sequence of dynamics
problems to simulate, reason about, or control the behavior of
a system of rigid bodies. This paper presented initial work
on optimizing dynamics computations by exploiting structure
in linear complementarity problems imposed by similarities



between physical systems.
Although our initial results are promising, there are a

number of limitations to the approach, and many directions
in which the work might be extended.
First, we have only considered Dantzig’s algorithm. There

are many other techniques for solving linear (and non-linear)
complementarity problems, including Lemke’s algorithm [4]
and the PATH solver [5]. Dantzig’s algorithm is guaranteed
to find a solution if one exists, and A is either a P-matrix
(has positive principle minors) or is positive semi-definite.
Lemke’s algorithm is applicable to a somewhat larger class
of problems, and guaranteed to find a solution if A is a
P-matrix or copositive-plus. In practice, Dantzig and Lemke
often converge even in the case where A is not of a suitable
class. It is not immediately clear how to reuse computation
in Lemke’s algorithm, unfortunately, as the algorithm is less
incremental in nature than Dantzig’s.
Second, although in the worst-case analysis, computation

reuse is faster, there is no guarantee that it will be faster in
any particular situation. The time required to execute each
major cycle of Dantzig’s algorithm is dependent on the order
in which contacts are considered, and using the solution to
a sub-LCP as input to the LCP arbitrarily fixes the order in
which the first k contacts have been considered.
The assembly problem we considered is actually a statics

problem, a special case of a dynamics problem. The problem
of determining whether a motionless structure may remain
motionless can be phrased as a linear program (LP) rather
than as an LCP. The LP is simpler than the LCP, the LP matrix
is typically sparse, and there exist robust software packages
to solve very large LPs. Can computation be reused in LP
solution methods? There is a well-known correspondence
between LPs and LCPs; one approach would be to write
the LP as an equivalent LCP, and use Dantzig’s algorithm
LCP to solve. Dantzig’s [21] simplex algorithm is a more
usual approach to solving LPs, but as with Lemke, it is not
immediately clear how to reuse computation.
The examples we have considered hint at the breadth

of problems for which computation reuse of the type we
describe is a useful optimization. In future work, we plan
to implement larger examples, and implement the dynamics
simulation algorithm as a component of a complete rigid-body
simulation package such as ODE [22].
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