k-survivability: Diversity and survival of expendable robots

Yu-Han Lyu, Yining Chen, and Devin Balkcom!

Abstract— We define the k-survivability of a set of n paths as
the probability that at least £ out of n robots following those
paths through a stochastic threat environment reach goals. High
k-survivability sets tend to contain short and diverse paths.

Finding sets of paths with maximum k-survivability is NP-
hard. We design two algorithms: a complete algorithm that finds
an optimal list of paths, and a heuristic method that finds paths
with high k-survivability. Although computing k-survivability
is expensive and this work is still preliminary, we believe that
understanding the relationship between diversity and survival
will yield new insights into multi-robot motion planning.

I. INTRODUCTION

How should a set of robots move through a dangerous
environment to accomplish objectives? Is it better for the
robots to travel together, or should the robots split up? What
is the relationship between survival and diversity of actions?

As an example, consider the following whimsical planning
problem: n ants must migrate from one nest to another
through a field containing both obstacles and antlions, which
make disc-shaped traps. If we assume a uniform distribution
of trap locations, which n paths should the ants follow, if
the ants must decide their paths before moving and cannot
reroute during movement?

One idea might be to maximize the expected number of
surviving ants. However, the best strategy for this problem
turns out to be uninteresting and unwise: find the safest path
for a single ant (for simplicity, assume there is a unique
safest path), and have all ants follow that path. This solution
is not robust — a single trap could destroy the entire colony.
Therefore, we consider a problem that is more suitable if
ants are expendable: maximize the probability that at least
some k (with k < n) ants survive. If the number of traps is
unknown, the solution may contain up to n unique paths.

Figure 1 shows an example problem for which paths have
been selected to achieve high survivability of routes across
a college campus. The paths are short, interestingly diverse,
and may be of practical interest if there is actual danger,
traffic congestion, or surveillance to be avoided.

We believe this to be the first work that explicitly stud-
ies the theoretical implications of robot expendability. Path
diversity has been explored in several settings, with appli-
cations including motion planning [1]-[7], robust routing in
computer networks [8], and dissimilar paths in transporta-
tion [9]. Approaches to finding diversity typically involve
defining an arbitrary distance metric that describes separation
of paths, and finding solutions that balance distance between
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Fig. 1: A high 1-survivability set of three paths from Depart-
ment of Computer Science (Sudikoff) to food court (1953
Commons) on the Dartmouth campus; gray circles represent
the discretization of the environment.?

paths against length of paths, using linear or non-linear
weights, constrained optimization, or by analyzing the Pareto
frontier.

Instead of defining an arbitrary pairwise path diversity
metric or choosing arbitrary tradeoffs between path lengths
and diversity metrics, our approach proceeds directly from
the threat model, since we believe that diversity should be
considered as a means rather than an end.

We define k-survivability to measure the quality of paths
in a stochastic threat environment. Sets of paths with high k-
survivability naturally balance length and diversity. Although
choosing sets of paths to maximize k-survivability is NP-
hard, we design a complete algorithm. Since the maximiza-
tion algorithm is computationally infeasible except for k = 1
and n = 2, we also design a practically faster heuristic
method that finds paths with high k-survivability.

2The campus map is from the Dartmouth College website and the street
data is from OpenStreetMap. Since data from OpenStreetMap is inconsistent
with the campus map, some vertices are slightly inside buildings.


https://dartmouth.edu/sites/default/files/dartmouth_campus_map_11x17.pdf
https://www.openstreetmap.org/

Fig. 2: Eight paths with high 1-survivability. Small gray
circles are vertices of G (4-connected). Squares are obstacles;
diamonds are example fixed traps.

A. Model

We focus on the discrete problem in which the environ-
ment is represented by a point set D and the free space
is represented by a graph G = (V, E), where V. C D.
Unknown stochastic dangers are called traps. Several models
of traps will be discussed in the next section.

Our problem is to find paths for n point robots such that
the i-th path connects the designated start vertex s; € V
and the designated goal vertex g; € V. See Figure 2.
Robots cannot communicate, do not have sensors, and cannot
reroute; both obstacles and traps are time-independent.

We define k-survivability to be the probability that at least
k paths successfully connect their (perhaps different) starts
to goals. The k-survivability problem (kSP) is formalized as:

Input = (G, M, {(si,9:)}4, k), where

1) G = (V, E) denotes the free space.

2) M is a trap model (see next section).

3) n point robots have start locations s; € V

and goal locations g; € V for all 1 < i < n.

4) survivability parameter k, with 1 < k < n.
Output = P, a list of n paths maximizing k-
survivability such that for all 1 <¢ < n, P, € P
connects s; and g;.

We now discuss two trap models: fixed traps, which have
known shapes, and variable traps, for which the shape is
unknown but drawn from some known distribution. Even
under the fixed trap model, a different trap shape (or even
multiple traps) may be placed at each vertex.

A fixed trap F is a subset of D. When a fixed trap F
is in effect, all paths passing through F' are blocked. A
fixed trap model M = {(F;,p;)}}""| is a collection of fixed
traps and their corresponding, independent probabilities. If

(a) Paths with the high- (b) Paths with high 1- (c) Paths with high
est 1-survivability un- survivability under the 1-survivability under
der the fixed 1-disc trap fixed 3-disc trap model. the variable 5-disc trap
model. model.

Fig. 3: Example paths for two robots in different environ-
ments and parameters. In Figure 3a, since » = 1, the optimal

solution has parallel subpaths with distance two to avoid
being destroyed by one 1-disc easily.

all probabilities are equal, then the model is a uniform fixed
trap model.

For example, under a uniform fixed r-disc trap model, each
vertex has equal and independent probability to be the center
of a disc trap of radius r. Figures 3a and 3b show examples.

A variable trap A is represented by a distribution over a
set of fixed traps. A variable trap model M is represented by
a collection of variable traps and corresponding probabilities:
M = {(As,pi)} 2.

For example, under a variable r-disc trap model, each
vertex has identical and independent probability to be the
center of a disc trap, whose radius follows a geometric
distribution with mean r. Two paths with high 1-survivability
under the variable 5-disc trap model are shown in Figure 3c.

II. RELATED WORK

Diversity has been studied in location theory, motion plan-
ning, graph theory, computer networks, and transportation.

Location theory: In location theory, the maximum di-
versity problem is to find m points maximizing diversity
among given points in a metric space. Although location
theory focuses on finding diverse points, methods can be
adapted to find diverse paths as long as a metric space on
paths can be defined. Formulations include [10]:

1) remote-edge problem: find a set of points maximiz-
ing the minimum mutual distance (also called the p-
dispersion problem [11]).

2) remote-pseudoforest problem: find a set of points maxi-
mizing the sum of the distance to the nearest neighbors
(also called the p-defense problem [12]).

3) remote-clique problem: find a set of points maximizing
the sum of mutual distances (also called the max-
avg facility dispersion problem [13], or the maximum
dispersion problem [11]).

Diverse trajectories in motion planning: Increasing the
diversity of trajectories in motion planning has been studied
by several researchers [1]-[7]. Our work is most related
to Erickson’s and LaValle’s work [14]. They propose a
definition of survivability that measures the correlation of



damage on paths when a random disc obstacle is placed
on a path. Whereas survivability favors separated paths, k-
survivability is a direct probabilistic measure of survival that
in some cases can be maximized by allowing robots to follow
overlapping short paths.

Finding trajectories in a threat environment has been
studied for aircrafts [15], UAVs [16], vehicles [17], and
ships [18]. Our work differs in that the threat model is
probabilistic, and in the search for multiple trajectories.

In the Euclidean plane, finding a path connecting two
points among polygonal obstacles can be solved effi-
ciently [19]. One possible definition for the diversity of paths
in the Euclidean plane is the number of distinct homotopy
classes of paths [20]. Eriksson-Bique er al. studied the
problem of finding k shortest paths with distinct homotopy
classes [21].

Path diversity on graphs: The problem of finding k-
shortest paths on a graph has been studied since the *70s [22],
as the problem of finding vertex or edge disjoint paths [23].
When each vertex/edge is associated with a failure proba-
bility, short and reliable paths are desirable. Finding short
paths subject to reliability constraints can be considered
as resource-constrained shortest-path problems [24]. These
models only disfavor paths sharing edges or vertices, while
k-survivability disfavors paths passing through the same
traps, which is more general.

Robust routing in computer network: One way to improve
the robustness of a network is to increase the path diversity
between end-points [25]. Diverse routing problems have
been studied for more than a decade using graph theory
methods [8]. Rohrer ef al. define the diversity of paths based
on the distance on graphs and geographic distances [26],
which is similar to the idea of path space [5].

Dissimilar paths in transportation: The problem of find-
ing dissimilar paths has been studied in transportation, since
dissimilar paths avoid bottlenecks and are beneficial for e.g.
hazardous waste transportation [9], [27].

III. COMPUTING k-SURVIVABILITY

Since k-survivability is independent of the order of ver-
tices along paths, paths are represented as sets of vertices.

A. Computing k-survivability under the fixed trap model

Given a fixed trap model M = {(F}, pl)}‘lfll and a path P
on a graph G, the forbidden index set of P is Forbid(P) =
{i | PN F; # 0}. The probability that P is not blocked
equals Pr(P) = [[;cromiap)(1 — pi). Similarly, for a set
of paths P = { Py, ..., Py}, the forbidden index set of P is
Forbid(P) = Upep Forbid(P). The probability that all paths
in P are not blocked equals Pr(?) :.HieForbid(p)(l — Di).

Given a set of paths P, 1-survivability can be computed
by using the inclusion-exclusion principle as follows:

> (=1l pr(s)

SCP,S#£0

Survive; (P) =

The computation of k-survivability is similar but more time-
consuming. For a set of paths P and a positive integer £,

we define comb(P,k) = {S | S C P,|S| = k}; that is,
comb(P, k) contains all k-subsets of P. Given a set of paths
P, k-survivability can be computed by using the inclusion-
exclusion principle:

Survivey (P) = Z

RCcomb(P,k),R#0

(—1)/RH Pr(UsersS)

B. Computing k-survivability under the variable trap model

Let M = {(Al,pl)}‘lfll be a variable trap model. Each
variable trap A; can be represented as a collection of fixed
traps and their probabilities: A; = {(F,»J,p?;,j)}g.‘i"l‘. Given
a path P on a graph G, the forbidden index set of P with
respect to the ¢-th variable trap is Forbid(P,i) = {j | P N
F;; # 0}. The probability that P is not blocked equals
Pr(P) = [L;(1 = 3, cromia(p,i) Pi,j)- The calculation of k-
survivability can be derived in the same manner as under the
fixed trap model.

IV. THEORETICAL RESULTS

In this section, we show that kSP is NP-hard. We also
show that maximizing k-survivability leads to diversity in
the sense that at most k robots will follow the same path, if
other paths are available.

A. NP-hardness of kSP

We show that kSP under the uniform fixed trap model
is NP-hard with n = k£ = 1. Since the fixed trap model
is a special case of the variable trap model, £SP under the
variable trap model is also NP-hard.

Our proof, similar to the NP-completeness proof of the
minimum color path problem [28], is a reduction from the
minimum set cover problem (MSCP), defined below, to kSP.

Input = (S,C), where

1) S ={1,...,a} is a set of positive integers
from 1 to a.
2) C ={C4,...,Cy} is a collection of subsets

of S.

Output = C' C C a minimum cardinality collection
of subsets whose union is S.

Theorem 1. kSP under the uniform fixed trap model with
n =k =1 is NP-hard.

Proof. Let (S,C) be an instance of MSCP. We construct an
instance (G, M, {(s,9)},1) of kSP in polynomial time such
that an optimal solution in kSP can be transformed into a
minimum set cover of (S,C) and vice versa.

We construct G = (V, E), which is a subgraph of a grid
graph, as follows. First, for each element i € S, we create
three vertices v = (4,0), v;° = (4i 4 1,0), and v} =
(4i+3, Og. We create edges (v.°°,v,%) forall 1 < i < a and
edges (v; 0, v?_;_ol) for all 1 <+¢ < a. Our idea is to design a
gadget for each element ¢ € S such that ¢ can be covered by
a set in C if and only if a solution of £SP, which is a path,
passes through v?’o and v?’o. .

Second, for each j € {1,...,b}, we create vertices vil’] =
(4 4+ 1,j) and v} = (4i + 3,;) for all 1 < i < a. Then,



Fig. 4: Gadget used in the proof of Theorem 1.

1, 1j+1 3
we create edges (v;”7,v;” ") and (v}”

7, I P for all 0 <
j < b. Intuitively, the j-th row represent the j-th set in C.

Finally, we create vertices yf Y= (4i + 2,7), edges
(vj7,v}7), and edges (v>7,v>7) for each i € C;. We use
these vertices to model the constraint that every element in
S is covered by a set in C. See Figure 4.

The uniform fixed trap model is M = {( js p)}® j— for an
arbitrary choice p € (0,1), where Fj = {v>"/ | i € C;j}. The
start vertex is v(l)’ and the goal vertex is v

Let P be an optimal solution of the instance
(G, M, {(v°,v39)},1) of kSP. By the construction of the
graph, P passes every vertex vi O forall 1 < i < a
Moreover, for each 1 < ¢ < a the only way to get v3 0
is to pass through a vertex v; 23 for some 1 < j < b
Since v>/ exists if and only if i € Cy, the set C' = {C} |
nglgaP passes v/ } is a set cover of S.

Moreover, since all traps have the same probability, max-
imizing 1-survivability is the same as minimizing {j |
Ji<i<a P passes vf’y}. Hence, C’ is also an optimal solution
of MSCP.

Transforming an optimal solution of MSCP to an optimal

solution of kSP can be done similarly. O

Note that this reduction relies on the fact that individual
fixed traps might be formed from disconnected sets of
vertices. However, even if we restrict individual fixed traps
to be contiguous, the problem still appears to be hard, since
kSP under the uniform fixed trap model with n = k£ = 1 can
be used to solve the barrier resilience problem [29]. The
complexity of the barrier resilience problem is still open and
currently no polynomial time algorithm exists.

Even approximating an optimal solution is hard:

Theorem 2. No polynomial time algorithm with constant
approximation ratio for kSP with n = k = 1 under the
uniform fixed trap model exists unless P = N P.

Proof. We show that if a r-approximation polynomial time
algorithm for KSP exists for some constant r, then we can
solve MSCP in polynomial time.

Let (S,C) be an instance of MSCP and ¢ be the size
of a minimum set cover. By using the same reduction
as in the proof of Theorem 1, we obtain an instance

(a) kK = 1. All robots (b) k = 2. Robots form (¢) k = 4. All robots

take different paths. two groups. take the same path.

Fig. 5: Example paths with high k-survivability for different
values of k£ under the fixed 5-disc trap model.

(G, M,{(s,g)},1) of kSP. Since c is the size of a minimum
set cover, the optimal solution of (G,M,{(s,g)},1) has
value (1 — p)©.

Suppose that a r-approximation algorithm for £SP exists,
0 < r < 1, and this approximation algorithm is guaranteed
to find a solution with 1-survivability at least r(1 — p)°.
Since the choice of probability p in the reduction is arbitrary,
we set p to be a value satisfying » > (1 — p). Because
r(1—p)¢ > (1 —p)°*! and a path can only pass through an
integral number of fixed traps, the approximation algorithm
must return a solution with value (1—p)°, which is an optimal
solution of (G, M,{(s,g)},1) and can be transformed into
an optimal solution of (S,C) in polynomial time. O

B. Properties of kSP

We now show that k-survivability leads to diverse paths.

Observation 3. For kSP under the fixed trap model with
k = 1, if n paths with different forbidden index sets exist,
then any optimal solution does not have duplicate paths.

Proof. Since paths with the same forbidden index sets are
either all-safe or all-blocked, using paths with different
forbidden index sets improves 1-survivability. O

Observation 4. For kSP under the fixed trap model, if at
least [n/k] paths with different forbidden index sets exist,
then at most k robots follow the same path in an optimal
solution.

Proof. If more than k robots follow the same path, moving
one robot to another path always improves k-survivability.
O

Note that when £ increases, the number of different paths
in optimal solutions may decrease. See figure 5, which shows
some high-survivability paths for different values of k.

V. ALGORITHMS

In this section, we first describe a complete algorithm to
find optimal solutions. Then, we describe a typically faster
heuristic method to find good solutions. For simplicity, we
assume that all robots have the same start s and the same
goal g, but this assumption may be easily lifted.



A. Complete algorithm

In this section, we design a complete state space search
algorithm for kSP under the uniform fixed trap model with
n = 2 and k = 1. Although it is easy to extend this algorithm
for larger k£ and n, solving even small problems becomes
computationally infeasible with this approach.

We need several definitions. A path P is an ordered list of
vertices. A path P’ extends another path P, if P is a prefix
of P’. A path P’ is a feasible extension of P if either P ends
at g and P’ = P, or P does not end at g and P’ extends
P by one vertex. Let Ext(P) denote the set of all paths that
end at g and are extensions of path P.

The complete algorithm is a state space search algorithm.
Each state ¢ consists of two simple paths (P;, P») starting
from s. A state (P}, Pj) is a successor of a state (Py, Py) if
P{ and P are feasible extensions of P; and P, respectively.

The initial state is ({s), (s)) and the goal states are all
states (Py, P») that both P, and P, end at g. We will find
one goal state with maximum 1-survivability.

Since the state space is a tree, we can use a brute-force
approach to traverse the tree to find an optimal solution.
In order to speed up the brute-force approach, we design a
heuristic function h of states, where h(t) is an upper-bound
of 1-survivability of all goal states that are reachable by state
t. As long as h(t) is optimistic, then the tree search will
find an optimal solution. Using the heuristic function, we
can prune unnecessary branches and stop search when the
algorithm reaches one of the goal states for the first time.

We construct a heuristic function & as follows. Remember
that when n = 2, 1-survivability of two paths P; and P»
is Pr({P1}) + Pr({P2}) — Pr({P1, P»}). Suppose that there
is a function h for paths that h(P) is an upper bound of
Pr({P'}) for all P’ € Ext(P). Then, we obtain a heuristic
function h((Py, Py)) = h(P1) + h(Py) — Pr({Py, P2}).

Now, we show how to construct a function h. Let M be
the uniform fixed trap model. For any path P, 1-survivability
of P is (1 — p)Feid(P)] which only depends on the size of
Forbid(P). Let LB(P) be the minimum number of additional
fixed traps that any extension of path P must pass through
to reach the goal. Formally,

LB(P) = |Forbid(P") \ Forbid(P)|.

min
P’ €Ext(P)
Then, (1 — p)/Forid(P)FLB(P)| s the least upper bound of
Pr({P’'}) for all P' € Ext(P).

Note that computing LB(P) exactly is the same as solving
kSP under the uniform fixed trap model with n = k = 1,
which is a NP-hard problem by Theorem 1. In order to get
an upper bound of all Pr({P’}), where P’ is in Ext(P), it
suffices to obtain a lower bound of LB(P).

Our idea of obtaining a lower bound of LB(P) is as
follows. Let F; be a fixed trap that ¢+ does not belong to
Forbid(P). If an extension P’ of P passes through one vertex
of F;, then charge P’ by 1/|F; N V|. Thus, if an extension
P’ of P passes through one v € V, then we charge P’
by > igromia(p)ver; 1/|F5 N V]. The minimum charge of

Algorithm 1: Heuristic algorithm for £SP

input : (G, M,{(si,9:)}" ¢, k,w,T), where
(G, M,{(ss,9:)}_1, k) is an instance of kSP,
w is a parameter of the path generation, and
T is a parameter of the path improvement.

output: n paths connecting (s;, g;) respectively.

‘R = path_generation(w)

S = path_selection(R)

S = path_replacement(S, R)

Q=0

while |Q| < T do

L S = path_shortening(S)

Q=Qu{s}
S = escape(S)
return the best solution in Q.

any extension of P that reaches the goal, LB’(P), can be
computed efficiently by using a shortest path algorithm.

It is easy to see that LB’(P) is a lower bound of LB(P)
and we know

LB'(P) < LB(P) < max|F,| - LB'(P).

Thus, we can use h(P) = (1 — p)Ferbid(P)+LB'(P)] 14 obtain
a heuristic function h.

B. Heuristic algorithm

The previous algorithm uses a heuristic function for prun-
ing, but is guaranteed to find optimal solutions. The heuristic
algorithm described in this section does not provide this guar-
antee. There are three phases: path generation, path selection,
and path improvement. Due to the high-dimensional search
space of kKSP, we first generate a set of candidate paths
with size w > n to reduce the search space to these w
paths. Then, we heuristically find n paths among the set of
candidate paths as an initial solution. Finally, we use local
search to improve the solution until the process is stabilized.
Algorithm 1 outlines the approach.

Since computation of k-survivability is potentially expen-
sive, we only use the computation of k-survivability in the
last phase. Moreover, this heuristic algorithm only needs a
black box to compute k-survivability, and the same algorithm
can be used for both fixed trap and variable trap models.

1) Path generation: The purpose of this phase is to
generate a set R of w > n paths. We design two methods:
random generation, and an iterative penalty approach.

a) Random generation method: To generate one ran-
dom path, we generate a random spanning tree first and then
pick the unique path between s and g on the tree. We repeat
this process until w paths are generated.

b) Iterative penalty method: Another way to generate
w paths is repeatedly apply a shortest path algorithm. After
a shortest path P is found, we increase the edge weights
of all edges in P and repeat. Akgiin et al. discuss several
variants of iterative penalty methods that have different ways
to penalize the path [27].



2) Path selection: The purpose of this phase is to generate
a set n paths among w candidate paths generated in the path
generation phase. Although we can design an algorithm to
find n paths that maximize k-survivability, since the com-
putation of k-survivability is exponential in n, this approach
would be expensive. Thus, our strategy is to use different
heuristics to obtain an initial solution without evaluating k-
survivability. Then, improve the initial solution based on k-
survivability in the next phase.

We find an initial solution by solving a different but related
optimization problem.

a) Distance-based heuristic: We use dg (P, P’) to de-
note the distance between two paths P and P’ on a graph
G. One candidate of the distance function is discrete Fréchet
distance [7] and other candidates of distance function can be
found in Knepper’s thesis [4].

Based on the distance function, we can set up several
optimization problems.

1) remote-clique problem: find

> da(P,P).

P,P'eS

S = arg

max
SCR,|S|=n

2) remote-edge problem: find

S=arg m dg(P, P").

ax min
SCR,|S|=n P,P'€S,P#P’
3) remote-pseudoforest problem: find

S =arg max

E win dg(P, P").
SCR,|S|= P'ES,P#P!
CR|Sl=n St PreS, P

The remote-edge problem is sensitive to the closest-pair of
paths, since two solutions with the same closest pair of paths
will have the same minimum distance, even if one solution
is much longer than the other [7]. Since all these maximum
diversity problems are NP-hard, we use heuristic methods to
find a good solution [30].

b) Survivability-based heuristic: We also can use Er-
ickson’s and LaValle’s notion of survivability [14] in our
heuristic. We heuristically find n paths with high survivabil-
ity and use this set as an initial solution.

3) Path improvement: The purpose of this phase is to
improve k-survivability of an initial solution S by using
local operations: path replacement and path shortening. Path
replacement iteratively replaces one path to improve k-
survivability. Path shortening iteratively replaces a subpath
of one path to improve k-survivability.

We first apply path replacement to improve k-survivability
and then apply path shortening. Since path improvement is
a local search method, the search process may be trapped
in a local maximum. Thus, when the search reaches a local
maximum, we use a randomized method to escape from the
local maximum and then apply path shortening again.

a) Path replacement: Replace one path in the current
solution by another path in R giving the maximum k-
survivability for the set; repeat until no further improvement
can be made.

b) Path shortening: Find the maximum improvement of
k-survivability that can be made by replacing one subpath
of a path in the current solution by a shortest path on G
connecting the endpoints of the subpath. Repeat shortening
until no further improvement can be made.

Although path shortening is very effective under the fixed
r-disc trap model, path shortening may not be useful in
general models. Moreover, for kSP with k£ > 1, shortening
just one path at a time may lead to getting trapped in
local maxima easily. For example, Figure 5c shows such a
case; all four overlapping paths would need to be shortened
simultaneously and in the same way to allow the four robots
to follow a better route.

¢) Escape from local maxima: Since path shortening
is a local search method, path shortening may get trapped
by local maxima. When no path shortening can be made,
we randomly pick a path in the current solution and reroute
a subpath randomly. Then, run the path shortening method
again to reach another local maximum. We repeat this
process until 7" local maxima are found for a threshold value
T, and choose the best.

VI. EXPERIMENTAL RESULTS

In this section, we describe several experiments (in sim-
ulation) on different heuristic methods, and compare them
in terms of computation time and k-survivability. Remember
that our heuristic method consists of three phases. We suggest
two choices in the path generation phase: random generation
(RG) and iterative penalty (IP) methods. We suggest four
choices in the path selection phase: remote-clique (RC),
remote-edge (RE), remote-pseudoforest (RF), and survivabil-
ity (SU). Finally, we test two additional methods in the path
selection phase:

1) random (R): pick n paths in R uniformly at random.

2) first n paths (FN): if the paths are generated by the
iterative penalty method, we pick the first n generated
paths.

A. Experiment setup

We used an environment containing 2500 vertices and
80 rectangular obstacles under the fixed r-disc trap model,
where » = 5 and p = 0.004. The environment is shown
in Figure 5. We used the heuristic algorithm to find n = 5
paths with high k-survivability, for £ = 1...4. We generated
w = 100 paths in the path generation phase and found 7" = 3
local maxima in the path improvement phase.

The heuristic algorithm is implemented in Java and all
tests were conducted on a laptop (2010 MacBook Pro) with
an Intel Core i5 2.4 GHz CPU and 8GB RAM. We repeated
the experiments ten times and took the average of the results.

B. Results

We first show k-survivability of each phase for each
method in Figure 6. When £ is small, path shortening effec-
tively improves the k-survivability and the iterative penalty
method tends to perform better. However, when k& = 4, path
shortening is not effective, since our algorithm only tries to



T - A
s .
0.85 - 4
P
- X —— RG+R
= 08f ——RG +RC
< —+— RG +RE
s
Z —— RG + RF
5 RG + SU
< - IP+R
= 0.75¢ <. IP+RC
.. IP+RE
.. IP+RF
IP + SU
0.7 ) -+ IP+FN
Selection Replacement Shortening
(a) 1-survivability.
0.5 i
2
= 0451 i
£
<
B
z
7
o 04 R
ar | i
035 o \ \
Selection Replacement Shortening

(c) 3-survivability.

0.7

2z 065 B
E
]
s
=
3
& 0.6 N
0.55 - -
Selection Replacement Shortening
(b) 2-survivability.
0.5
0.4 4
z
E
<
2
z 03f 4
E
-
02F Y B
o
.
i | |
Selection Replacement Shortening

(d) 4-survivability.

Fig. 6: All methods’ k-survivability at the end of path selection phase, path improvement phase and path shortening phase.
All methods that are using random generation method are represented by solid lines and all methods that are using iterative
penalty method are represented by dotted lines. Different methods in the second phase are represented by different colors.

shorten one path at a time but escaping from a local minimal
may require shortening several paths at the same time.

We measured the running time for all methods maximizing
k-survivability; the running times for each method for £ = 1
are shown in Table I. The naive algorithms IP + FN and
RG + R are the most efficient methods. This may hint that
although kSP is hard in general, £SP under the fixed r-disc
trap model may be tractable. For k£ > 1, the naive algorithm
IP + FN is slightly faster than other methods, but we omit
the results due to the page limitation.

VII. CONCLUSION & FUTURE WORK

This work is preliminary, and considers only sim-
ple k-survivability problems; however, we believe that k-
survivability motivates a wealth of interesting practical
and theoretical problems. For example, the problem of k-
survivability might be reversed to plan defenses against infil-
tration or attack. Not all applications of k-survivability need
be violent. For example, k-survivability can be considered
in the context of visibility or stealth, as has turned out to
be central in multi-robot pursuit-evasion games [31]-[33]
for search-and-rescue operations. With a model of feedback
or communication, we imagine that k-survivability might
also provide some insights into collaboration and cooperation
problems such as those that arise in sports [34] or control of
large robot swarms [35].

Several future directions of theoretical research are pos-
sible. Continuous-space models might be approached using
variational calculus or optimal control techniques [15], [16].
Obstacles such that the risk of a path depends on the distance

between the robot and the obstacle, as for paths in mined
water [18] are a potential future direction, as are time-
dependent obstacles.
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