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Abstract
The optimal trajectory with respect to some metric for

a system with a discrete set of controls may require very
many switches between controls, or even infinitely many,
a phenomenon called chattering; this can be problematic
for existing motion planning algorithms that plan using a
finite set of motion primitives. One remedy is to add some
penalty for switching between controls. This paper explores
the implications of this switching cost for optimal trajecto-
ries, using kinematic rigid bodies in the plane (which have
been studied extensively in the cost-free-switch model) as
an example system. Blatt’s Indifference Principle (BIP) is
used to derive necessary conditions on optimal trajectories;
Lipschitzian optimization techniques together with an A*
search yield an algorithm for finding trajectories that can
arbitrarily approximate the optimal trajectories.

1. Introduction

Consider the following problem. A mover would like to
move a heavy park bench (modeled as a line segment) from
one location and orientation to another, as efficiently as pos-
sible. Since the bench is heavy and there is only one mover,
the bench can only be moved by lifting one end and rotating
the bench around the end that is still on the ground, with
rotational velocity of ±1. We wish to find a sequence of

∗This work was supported in part by NSF grant IIS-0643476. e-mail:
yuhanlyu@cs.dartmouth.edu
† This work was supported in part by NSF grant IIS-0643476. e-mail:

devin@cs.dartmouth.edu

(a) Costly-switch model with switch cost 1

(b) Chattering

Fig. 1. Trajectories for a bench starting at (-4, 0, 0). When the
switch cost is one, the optimal trajectory takes 5 actions, shown on
the top. However, if there is no switch cost, by increasing number
of actions, it is always possible to create a faster trajectory, shown
on the bottom.

durations and directions of rotations that bring the bench to
the final configuration, while minimizing the total time of
the trajectory (computed as the sum of the absolute values
of the angles rotated through). This problem is very related
to the Reeds-Shepp problem of finding the shortest path for
a steered car ([25]), but with only four discrete controls.

For some configurations (moving the bench in a straight
line), there exists no optimal trajectory with a finite number
of actions: for any trajectory with finitely many switches,
there is a faster trajectory with more switches, a phenomenon
called chattering, see Figure 1. When chattering occurs, the
bench mover is required to run back and forth between ends
of the bench infinitely many times, rotating the bench by an
infinitely small angle, see Figure 1.
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The chattering phenomenon is a fundamental problem in
robot motion planning. Sussmann showed that an extension
of the well-known Dubins car ([12]) to include bounds on
angular acceleration leads to chattering ([30]). Desaulniers
showed that chattering may occur if there are obstacles in
the environment, even for Reeds-Shepp car that are well-
behaved without obstacles ([11]).

One might argue that a motion planner does not need to find
an optimal trajectory, and that it suffices to find a trajectory
that is “good enough”. This is perhaps true, but systems that
chatter also tend to expose weaknesses in the model that may
not have been immediately apparent. A trajectory with very
many turns is in fact quite bad for the bench mover, even if
it is “short" in configuration space.

Choosing a set of primitive controls is a required first
step for many general-purpose approaches to non-holonomic
motion planning, including, for example, RRT-type motion
planners ([15]). A natural, although certainly imperfect,
approach to avoiding a very large number of discontinuous
switches between discrete controls is to charge a fixed cost
for switches; this approach has been used in practice at least
as far back as ([4, 29]). This fixed cost both avoids chatter-
ing, and penalizes otherwise un-modeled costs (such as the
cost of wearing out a switching mechanism, or the time cost
of running between ends in the bench mover’s problem).

However, the implications of switching costs for optimal
trajectories have perhaps not been thoroughly explored. In
this paper, we limit the choice of controls to certain motion
primitives. With this set of primitives, we associate with each
pair of switch of controls a predetermined fixed cost. This
predetermined cost may be suggested naturally by the design
of the robot (for example, time cost of running between ends
of a bench), or may be selected more arbitrarily to indicate
a user preference for trajectories with fewer switches.

In order to make the consideration of switching costs
more concrete, this paper focuses on time-optimal trajec-
tories of kinematic rigid bodies in the plane. Rigid bodies
are building blocks for many models of robotic locomo-
tion or manipulation systems, and the time-optimal trajec-
tories for the case when switching costs are zero are already
well-understood [13].

A trajectory is defined by an initial configuration, and a
sequence of motion primitives, each executed for some par-
ticular duration. We can view the optimal control problem as

having two parts: selecting a sequence of primitives (the dis-

crete structure of the trajectory), and choosing each duration
(from a continuous interval).

For the problem of finding time-optimal trajectories of
the cost-free-switch model studied in [13], Pontryagin’s
Maximum Principle (PMP, [24]) was shown to give strong
necessary conditions on both the discrete structure and con-
tinuous durations of optimal trajectories. A related principle,
Blatt’s Indifference Principle (BIP), demonstrates existence
of optimal trajectories for the costly-switch model, and also
gives necessary conditions. However, the necessary condi-
tions derived using Blatt’s Indifference Principle are weaker
than those given by Pontryagin’s Maximum Principle, and
although they tell us much about the continuous dura-
tions along trajectories, they do not constrain the discrete
structures as strongly.

After deriving certain necessary conditions using BIP, we
then work through an example of applying these neces-
sary conditions directly to analyze time-optimal trajectories
for the relatively simple bench-mover’s problem described
above. However, due to the lack of constraints on trajectory
structures, it appears very difficult to find similarly strong
analytical results for more complicated systems, including
other kinematic planar rigid bodies.

To attack the problem of finding optimal trajectories for
kinematic planar rigid bodies with a specified set of primi-
tives, we use BIP to classify trajectories into several types,
which will be described later. For all but one of these classes,
durations can be computed exactly, and we use an A* to
search over trajectory structures. For the last remaining class,
we show that Lipschitzian optimization techniques can be
used to find good numerical approximations for the dura-
tions, while applying a different A* search over trajectory
structures.

Although we believe that this work represents an interest-
ing new exploration the connection between motion plan-
ning and optimal control, we admit that the algorithmic
techniques presented in this paper suffer from some limi-
tations. Many of these limitations do suggest rich problems
for future study.

The focus on kinematic planar rigid-bodies with a time
metric is limiting. Extending work on cost-free-switch mod-
els beyond simple systems or simple metrics using PMP
has proved challenging, because the optimal trajectories for
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more complex systems may not be easy to describe ana-
lytically. However, choosing discrete (perhaps piecewise-
constant) controls with a cost of switching ensures that
optimal trajectories are describable by recognizable func-
tions, and we believe the current techniques (particularly
including application of Karush-Kuhn-Tucker conditions,
which do not require integration of an adjoint vector) could
be extended to more interesting systems.

Similarly, the current paper does not consider obstacles –
but we do not believe this is a fundamental limitation. [13]
has shown that optimal trajectories certainly exist for strictly
positive switching costs even in the presence of obstacles
(this not necessarily true for the cost-free-switch model),
and although BIP has not been extended to allow for state
constraints, we believe that it could be.

Perhaps the main limitation of the algorithms in this paper
is computational cost. Due to the relative weakness of BIP
w.r.t. PMP, the number of sequences of primitives gener-
ated in the algorithm may be exponential in the number of
primitives, while they are only polynomial for the cost-free-
switch model. Furthermore, the number of of sequences of
primitives generated in the algorithm will increase when
the cost of switch decreases. Hence, finding approximate
optimal trajectories with many primitives is computationally
infeasible by this method and we only use simple systems
to demonstrate our technique in this paper. We believe that
good heuristics for the A* search over discrete trajectory
structures may ameliorate this issue.

1.1. Model and Notation

We use q to denote a configuration of the system and use u
to denote a control in the control space U , which contains
finite number of primitives.

At a configuration q, if we apply a control u, the instan-
taneous configuration space velocity can be expressed as
a function f , such that q̇ = f(q, u). A trajectory can be
represented as a pair of sequences (u, t) with the initial
configuration qs, where u ∈ Un is a sequence of controls
and t ∈ Rn+ is a sequence of durations. When the initial
configuration is clear from the text, we use (u, t) to denote
a trajectory.

We model the cost of control switches as a function C :

U × U → R+ that depends on the control applied before

and the control applied after. Furthermore, we assume that
for any three controls ua, ub, and uc, the cost of switching
satisfies the triangle inequality, C(ua, ub)+C(ub,+uc) ≥
C(ua, uc), to ensure that switching from ua to uc directly is
always faster than switching touc through other intermediate
controls. The cost of a trajectory is the summation of all
durations and all switch costs of a trajectory.

Problem statement: given a start configuration qs, a final
configuration qf , a finite control set U , and a cost function
C, find a trajectory (u, t) with minimum cost, connecting
qs to qf .

1.2. Related Work

For some models of mobile robots in the plane, optimal
trajectories can be found analytically, including Dubins
car([12, 10] and Reeds-Shepp car([25, 31, 28]). We and
many other researchers have tried to generalize techniques,
typically based on Pontryagin’s Maximum Principle ([24]),
aiming to gain a greater understanding of optimal motion for
mobile robots, including differential-drive ([26, 8, 7, 3, 27]),
omni-directional vehicle ([2, 33]),and others([9, 1]). How-
ever, we are aware of little work in the robotics community
providing strong results on optimal trajectories with a cost
of switches; a notable exception is work by Stewart using a
dynamic-programming approach to find optimal trajectories
with a costly-switch model([29]).

The problem of costly switches has been studied in the
optimal control community with results dating back as far as
the 1970s. One of the most powerful tools for solving optimal
control problems, Pontryagin’s Maximum Principle (PMP),
does not appear to be the right tool to characterize optimal
trajectories in the costly-switch model due to the disconti-
nuity with respect to time in the control and cost functions
([24]). In [6], Blatt proposed a model in which the control
set contains certain primitives (a discrete set of actions), and
there is some fixed cost associated with switching between
controls. Blatt characterized a set of necessary conditions for
optimal trajectories under this model; these necessary condi-
tions are known as Blatt’s Indifference Principle (BIP). Blatt
showed that optimal trajectories always exist and the num-
ber of actions must be finite. Blatt’s necessary conditions are
similar to, but weaker than, those provided by PMP; using
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BIP to solve an optimal control problem is more challeng-
ing than using PMP in the cost-free-switch model. In Blatt’s
model, the control set is a discrete set, but other models have
been proposed ([21, 14, 20]).

Although the costly-switch model was proposed in the
’70s, no algorithms for finding optimal trajectories in costly-
switch model were proposed until the ’90s ([32, 29]); several
algorithms have been developed recently ([17, 34]). These
recent approaches are based on approximating the control
function as a piecewise-constant functions, and applying
global optimization techniques to find optimal solutions.
These algorithms converge to optimal solutions as the num-
ber of iterations approaches infinity, but cannot guarantee
a bound of error within finite time. In this paper, we pro-
vide a stronger result for a particular system; the algorithm
presented in this paper guarantees a bound of error within
finite time, for the restricted problem of finding optimal
trajectories of rigid bodies in the plane.

2. Mathematical Background

In this section, we review two mathematical tools for optimal
control and non-linear programming: Blatt’s Indifference
Principle ([6]) and Karuhn-Kush-Tucker conditions.

For the rigid-body system studied in this paper, the Indif-
ference Principle is sufficient. However, it is interesting that
once a particular sequence of discrete, constant controls
have been selected for a trajectory, the problem of select-
ing durations for each control is simply a finite constrained
non-linear optimization problem for which KKT may be
applied. Although we have used both approaches to derive
similar results, the KKT approach is simpler in that it does
not require the analytical integration of an adjoint vector –
it is for this reason that we present both approaches.

2.1. Blatt’s Indifference Principle

For the costly-switch model, BIP provides a set of necessary
conditions for optimal trajectories for any finite dimension
configuration space with finite control set ([6]). The configu-
ration and control over time of an optimal trajectory (u∗, t∗)
from a configuration qs can be represented as two functions
q∗(t) and u∗(t), where q∗(t) and u∗(t) are the configuration
of the robot and the control at time t respectively. BIP states
that:

1.There exists a continuous adjoint function λ(t), which is
non-trivial.

2.The adjoint function satisfies

dλ

dt
=

∂

∂q
H(λ(t), q∗(t), u∗(t))

where H is the Hamiltonian, which is the product of the
velocity in the world frame and the adjoint function.

3.At the time t̂ of switching controlu tou′, the Hamiltonian
is indifferent to both u and u′:

H(λ(t̂), q∗(t̂), u) = H(λ(t̂), q∗(t̂), u), (1)

and the Hamiltonian function is a positive constant along
the trajectory.

For the cost-free-switch model, PMP also provides a set
of necessary conditions on optimal trajectories, which has
the same first two conditions, and different third condi-
tion: the control u∗(t) maximizes the Hamiltonian along
the trajectory.

2.2. Karush-Kuhn-Tucker Conditions

Karush-Kuhn-Tucker Conditions provides a set of neces-
sary conditions for optimal solutions ([5]) of constrained
non-linear optimization problems. Consider a non-linear
optimization problem as follows

minimize f(x)

subject to q(x) = 0

g(x) ≤ 0

x ∈ Rn,with f : Rn → R, q : Rn → Rm,

and g : Rn → Rp differentiable.

The Karush-Kuhn-Tucker conditions are: If x̂ is a local
minimum and satisfies LICQ, then there exists λ ∈ Rm and
µ ∈ Rp, such that

1.∇f(x̂) + λ · ∇q(x̂) + µ · ∇g(x̂) = 0.
2.µ ≥ 0.
3.µ · g(x̂) = 0.

In order for these conditions to hold, certain constraint

qualification conditions must be satisfied; since the pri-
mary focus of this paper is on BIP, we omit discussion
of constraint qualification.
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Fig. 2. Trajectories for an omni-directional vehicle starting at (-3,
-1, π). For the cost-free-switch model, the optimal trajectory takes
5 actions. For the costly-switch model, the (approximately) optimal
trajectory takes 3 actions. Thick lines are control lines.

3. Necessary Conditions for Optimal Trajecto-
ries

In this section, we will derive necessary conditions for
optimal trajectories for rigid bodies in the plane in the
costly-switch model. Based on these necessary conditions,
we classify optimal trajectories into several classes and we
also show that in order to find optimal trajectories, it suf-
fices to find optimal trajectories in some trajectories classes.
Since we focus on planar rigid-body robot, the configura-
tion space is SE(2) and we use u = (vx, vy, ω) ∈ R3

to denote a control: x and y velocities in a frame attached
to the body (robot frame), and angular velocity. Let U be
the control space containing a finite number of primitives:
constant-control actions. For example, one action might be
(vx, vy, ω) = (1, 0, 0), corresponding to driving in a straight
line.

Due to the similarity between BIP and PMP, several results
in [13] in the cost-free-switch model can be extended to the
costly-switch model by similar mechanisms.

Theorem 1. For any rigid body in the plane in the costly-

switch model, any optimal trajectory (u∗, t∗) with n actions

satisfies the following property: there exist four constants

H > 0, kx, ky , and kθ, such that for any control u∗i , 1 ≤
i ≤ n, with the instantaneous velocity (vx, vy, ω) in the

world frame when ui is applied at a configuration (x, y, θ),

we have

kxvx+kyvy+ω(kxy−kyx+kθ) = H,where k2x + k2y ∈ {0, 1}.
(2)

We also can derive the same result by applying KKT con-
ditions (assuming constraint qualification holds), by fixing
the sequence of controls in a trajectory, and showing that
because the sequence is arbitrary, the result holds across
all trajectory structures. The variables kx, ky , and kθ are
Lagrange multipliers from the KKT conditions; in Blatt’s
indifference principle, they arise as constants of integration.

A trajectory (u, t) is called extremal if there exist four
constants H > 0, kx, ky , and kθ, such that Equation 2 is
satisfied.

Equation 2 is virtually identical to the necessary condi-
tion derived using PMP for the cost-free-switch problem,
except that there is no requirement that controls maximize
the Hamiltonian H . Instead, the Hamiltonian needs only be
constant throughout the trajectory. Because of this similar-
ity, a similar geometric structure to that which arises for the
cost-free model exists. If k2x + k2y = 1, then the expression
kxy − kyx + kθ in Equation 2 can be interpreted as com-
puting the distance of a point x, y from some line described
by constants kx, ky , and kθ. We therefore call such a trajec-
tory a control line trajectory. An extremal trajectory with
k2x+ k2y = 0 is called a whirl trajectory because the angular
velocity of body is constant and non-zero over the trajectory.

3.1. Control Line Trajectories

There is a nice geometric interpretation for Theorem 1 when
k2x + k2y = 1, related to the control line interpretation in
[13]. For a control line trajectory (u, t), we define its cor-
responding control line, represented as (kx, ky, kθ) as a line
in the plane with heading (kx, ky) and distance kθ from the
origin. Now, consider Equation 2. The term kxvx + kyvy

becomes the translational velocity along the vector (kx, ky)
and the term kxy − kyx + kθ becomes the signed distance

from the reference point of the robot to the control line. By
Corollary 1 in [13], when a rotation is applied, the signed
distance from the rotation center to the control line is always
H/ω. Similarly, when a translation is applied, the dot prod-
uct between (kx, ky) and (vx, vy) must be the Hamiltonian
value H . See Figure 2 for an (approximately) optimal tra-
jectory for an omni-directional vehicle with control lines in
the cost-free-switch model and in the costly-switch model.
When the switch cost is introduced, optimal trajectories tend
to use fewer number of switches.
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v a

v b

v
c

vay

vby vcy

Fig. 3. Illustration of proof of theorem 2: a trajectory containing
three actions of translations, va, vb, and vc. The sign of vay and
vby are the same.

Necessary conditions for control line trajectories. We can
prove a further necessary condition for a control line
trajectory to be optimal.

Theorem 2. For any rigid body in the plane in the costly-

switch model, any optimal control line trajectory has either

zero translation actions, one translation action, or two non-

parallel translation actions.

Proof. Let g = (u, t) be a control line trajectory. Suppose
that g is optimal but has two parallel translation actions.
Let va and vb be the velocity vectors in the world frame of
two non-parallel translation actions of g. We can remove the
action of vb from g and increase the duration of va to ta+ tb.
The resulting trajectory still reaches the goal but has one
fewer control and hence has smaller cost. This contradicts
the optimality of g.

Suppose that g is optimal but has more than two non-
parallel translation actions Let va, vb, and vc be the velocity
vectors in the world frame of three translation actions of g.
By Equation 2, we know that the projection of va, vb, and
vc onto the control line must be the Hamiltonian value H .
Let vay , vby , and vcy be the projection of va, vb, and vc onto
the norm of the control line. By the Pigeonhole Principle,
we know that at least two of vay , vby , and vcy have the same
sign.

Without loss of generality, assume that vay and vby have
the same sign; let their durations be ta and tb respectively.
See Figure 3. If vay = vby , then the velocity vectors va
and vb are identical. This contradicts the assumption that va
and vb are non-parallel. If vay 6= vby , then without loss of
generality, we assume |vay | > |vby |.

Since the projections of va and vb onto the control line
are the same, we can remove the actions of vb from g and
increase the duration of va to ta +

tb|vby |
|vay | . Let u be the

control corresponding to the translation vector vb. Let up
and uq be the control before and after u in the trajectory.

The new trajectory will decrease cost by
tb|vby |
|vay | − tb −

C(up, u) − C(u, uq) + C(up, uq), which is strictly larger
than zero. Hence, the resulting trajectory has smaller cost but
still reaches the goal. This also contradicts the optimality of
g.

Singular, TGT, and regular trajectories. [13] classified con-
trol line trajectories into four classes: singular, TGT, generic,
and regular.

A control line trajectory is called singular if there exists
a non-zero measure interval along the trajectory that mul-
tiple controls have the same Hamiltonian value within the
interval.

As an extension of a result in [13], any singular trajectory
in the costly-switch model contains exactly one translation
with velocity vector parallel to the control line, or contains
exactly one switch from one translation to another transla-
tion. Hence, by Equation 2, the Hamiltonian value is either
equal to the velocity of the only translation, or can be com-
puted from the pair of consecutive translations. Since the
control set U is a given finite set, the set of all possible
Hamiltonian values for singular trajectories is finite.

A control line trajectory is called generic if the trajectory
is not singular. For generic trajectories, switching between
two translations can not occur, since switching between two
translations only happens for singular trajectories. A generic
trajectory is further called TGT if both the first control and
the last control are translations, and regular otherwise. For
a TGT trajectory, when the initial configuration and goal
configuration are given, we can obtain the Hamiltonian value
analytically, using methods from [13].

3.2. Whirl Trajectories

For whirl trajectories, Equation 2 only implies that all angu-
lar velocities are equal. We also can extend the result in [13]
to the costly-switch model.

First we show that in order to compute an optimal whirl
trajectory, it suffices to consider a smaller subclass, called
two-stage whirl trajectories:
1. Move the last rotation center to the correct position in the
goal configuration using the minimum cost.
2. Rotate around the last rotation center until the goal
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Fig. 4. Illustration of proof of Theorem 5. The thick line is the
control direction where all rotations except the last one are on this
line.

configuration is achieved.

Theorem 3. For any rigid body in the plane in the costly-

switch model, among all whirl trajectories, there exists one

two-stage trajectory with the minimum cost.

Proof. Let T1 and T2 be the durations corresponding to the
first and the second stage respectively. Let Tf be the dura-
tion of an optimal trajectory. Since Tf is the duration of an
optimal trajectory, Tf ≤ T1 + T2. Moreover, since an opti-
mal trajectory needs to place the last rotation center in the
correct position, Tf ≥ T1. Since T2 is strictly less than 2π,
we have Tf ≤ T1 + T2 < Tf + 2π. For any two admissible
whirl trajectories, the difference of total durations must be a
multiple of 2π. Therefore, Tf must equal T1 + T2.

Furthermore, we extend the result in [13] to the costly-
switch model.

Theorem 4. Any two-stage trajectory must satisfy the fol-

lowing property: there exist three constants Hω > 0, kα,

and kβ , such that for any control ui with the instantaneous

velocity (vx, vy, ω) in the world frame when ui,1 ≤ i < n,

is applied at configuration (x, y, θ), we have

kαvx + kβvy = Hω,where k2α + k2β = 1. (3)

Control direction interpretation for two-stage trajectories.

For a two-stage trajectory, we define its control direction as a
line heading (kα, kβ) through the rotation center of the first
control. By Equation 3, all rotation centers except the last one
should have the same signed distance to this line. Since the
first rotation is on the control direction, all rotation centers
except the last one are parallel to the control direction.

Here is an extension of result [13] in the cost-free-switch
model.

Theorem 5. For the costly switch model, consider a two-

stage trajectory (u, t) with us = u1, ..., un−1 = uk, un =

uf . Let cs, ck, and cn be the rotation centers of u1, un−1,

and un respectively. Let dsf be the distance between cs and

cf . Let dkf be the distance between the rotation centers of

uk and uf in the robot frame. Let li be the distance between

the rotation centers of ui and ui+1 in the robot frame. Let

dsk =
∑n−2
i=1 li. We have

dsk ∈ [|dsf − dkf |, dsf + dkf ]. (4)

Proof. By the geometric interpretation of Theorem 4, since
all rotation centers from u1 to un−1 are on the same line, we
know that dsf , dkf , and dsk form a triangle. See Figure 4.
Moreover, any sequence of controls u that all controls have
the same angular velocity and satisfy Equation 4 can form a
two-stage trajectory.

3.3. Taxonomy of Optimal Trajectories

We summarize the taxonomy of optimal trajectories as
Figure 5.

Since the Hamiltonian values for whirl, TGT, and singular
trajectories can be determined, the problems of finding opti-
mal trajectories in these three classes is equivalent to finding
an optimal sequence of controls, a discrete search problem.
For these three classes, we have designed three different A*
search algorithms to find candidate optimal trajectories by
searching over discrete trajectory structures.

The problem of finding optimal regular trajectories has
two ingredients: one is finding the Hamiltonian value H ,
which is a continuous variable, and another one is finding
the sequence of controls, chosen from a finite set.

4. The Bench Mover’s Problem

In this section, as a working example, we demonstrate how
to use necessary conditions of optimal trajectories to solve
the simple bench mover’s problem exactly.

4.1. Model and Trajectory Types

Consider a park bench with length 2. Let qs be the initial
configuration and (0, 0, 0) be the goal configuration. Figure
6 gives an example with initial configuration (−3,−3, π/4).
Let the reference point be the center of the bench, (0, 0) in the
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Extremal trajectories

Whirl trajectories

Two stage trajectoriesOther whirl

Control line trajectories

Singular trajectories Generic trajectories Other control line trajectories

TGT trajectoriesRegular trajectories

Fig. 5. Taxonomy of optimal trajectories. Each node corresponds to a type of optimal trajectories; each leaf node without border is not
necessary for optimality. All leaf nodes with single border can be solved exactly. For the leaf node with double border, regular trajectories,
we provide a search algorithm that can find a trajectory arbitrarily close to optimal trajectories.

−4 −3 −2 −1 0−4

−3

−2

−1

0

1

k3

he
ad

ing
 (k 1
;k 2
)

H=!

initial configuration

goal configuration

left

right

Fig. 6. Optimal trajectory for initial configuration (−3,−3, π/4)
with switching cost 1, where arrow represents the orientation of
the bench. Thick line denotes the control line for this trajectory.

robot frame. There are two rotation centers: the left rotation
center, (0, 1) in the robot frame, and the right rotation center,
(0,−1) in the robot frame.

Let L be the set of controls containing l+ = (1, 0, 1) and
l− = (−1, 0,−1) corresponding the left rotation center. Let
R be the set of controls containing r+ = (−1, 0, 1) and
r− = (1, 0,−1) corresponding to the right rotation center.
The control set U = L∪R. For two controls u, u′ ∈ U , the
cost of switching from u to u′ is a constant c.

since we can determine optimal durations for a control
sequence with length smaller than three easily, we focus
below on the case where the length of the control sequence
is at least three.

There are three broad types of trajectories:
1. Whirl: trajectories for which kx = ky = 0. All controls
in the trajectory must have the same angular velocity.
2. Alternating sign: the control sequence contains controls
alternating between l+ and r− or alternating between l− and
r+.
3. Mixed: the control sequence contains controls alternating
between L and R but not strictly alternating signs.

Our basic approach, given an initial configuration, is to
compute an optimal trajectory of each of the three types,
and then to compare to find the minimum. The following
sections will demonstrate how to find an optimal trajectory
for each type. For computing optimal trajectories of types
2 and 3, an upper bound on the number of control actions
in the trajectory is required; this bound may be found by
considering the cost of the optimal whirl.

4.2. Whirl Trajectories

For whirl trajectories, all rotation centers except possibly the
last one are on the same line; see Figure 7. This section will
show how this fact can be used to identify the minimum-cost
whirl.

When the first control and the last control are fixed, the dis-
tance between their rotation centers is determined. Since the
length of the bench is two and controls alternate between
L and R, for any two consecutive controls, the distance
between their rotation centers is two. Thus, in order to reach
the goal, there is only one choice of the length of the con-
trol sequence, see Figure 8. Hence, a whirl trajectory can be
described by its first and last control. Since there are only
four choices for the first control and each has two choices
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Fig. 7. Whirl trajectory with initial configuration (−0.5, 0, π/2).
All rotation centers except the last one are on the same line. This is
the optimal trajectory for this initial configuration with switching
cost 1.

for the last control, we can enumerate all possible pairs of
first and last controls for whirl trajectories, see Figure 8.

Fix the first control u1 and the last control un, with rota-
tion centers r1 and rn respectively. Since the last control is
fixed, the second to the last control un−1 is also fixed and
its rotation center rn−1 should be on a circle Cn centered at
rn with radius 2.

Since rotation centers ri, 1 ≤ i < n, are on the same
line, the distance L from r1 to rn−1 is determined in the
following way. Let D be the distance between the first and
the last rotation centers. If u1 = un (u1 6= un−1), then L
is multiple of four plus 2. Otherwise, L is multiple of four.
Since the diameter of C is four and the difference between
any choices is multiple of four,L = 4d(D−4)/4e+2 when
u1 = un, L = 4d(D − 2)/4e otherwise.

After we determine L, we can find a circle C1 centered at
r1 with radius L. The circle C1 intersects with Cn at most
two points and these points are possible locations of rn−1.
When the location of rn−1 is fixed, the durations for all
controls can be determined easily.

r1 rn

rn−1

rn−1

D

2L

2L

Fig. 8. When the first control and the last control are fixed, the
rotation centers r1 and rn are fixed as well. The distance between
r1 and rn is D. Since all rotation centers except for the last one
is on the same line and distance between two consecutive rotation
centers is two, the distance between r1 and rn−1, L, is a multiple
of two. Since the distance between rn−1 and rn is two, there is
only one choice of L and two symmetric choices of locations of
rn−1

4.3. Alternating Sign Trajectories

Since all angular velocities have the same absolute value, all
rotation centers must have equal distance to the control line;
see Figure 6. An alternating sign trajectory can be described
by its first control and the length of the sequence. There
are four choices of first control u1 in U , and the parity of
n determines whether un is the same as u1 or not. We will
now show how to determine possible Hamiltonian valuesH ,
control lines, and durations based on u1 and un.

Determining the Hamiltonian valueH . Let r1 and rn be the
first rotation center and the last rotation center, separated
by distance D. If n is odd, D = (2n − 2)

√
1−H2 and

H =
√
1− D2

4(n−1)2 . In this case, when D2 ≥ 4(n − 1)2,
the control line exists and we can obtain a positive value of
H ≤ 1. Whenn is even, letX be (2n−4)

√
1−H2,D2 will

beX2+
√
1−H2+4. Consequently,D2 = 4n(n−2)(1−

H2)+4 andH =
√

1− D2−4
4n(n−2) . In this case, whenD ≥ 4

andD2 ≤ 4n(n−2)+4 we can obtain a non-negative value
of Hamiltonian values H ≤ 1.

Determining control lines. After we determine the Hamil-
tonian value H , we determine the control line, which is
represented by a tuple (kx, ky, kθ) as follows. Since k2x +

k2y = 1, we can use (cosϕ, sinϕ) to represent (kx, ky). For
one Hamiltonian value, H , there are two possible control
lines. We determine (ϕ, kθ) in a similar way as in [13].
Let r′1x = r1xu1ω , r

′
1y = r1yu1ω , r

′
nx = rnxunω , and
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r′ny = rnyunω . Let dx = r′1x − r
′
nx and dy = r′1y − r

′
ny .

Let (α, β) be (atan(dx, dy), π/2) if the first control and
the last control have the same angular velocity; otherwise
(atan(d′x, d

′
y), acos(

H√
d′x

2+d′y
2
)), where d′x = r′nx + dx/2

and d′y = r′ny + dy/2. Then, ϕ = −α ± β and kθ =
H+r′nx sinϕ−r′ny cosϕ

unω
.

Determining durations. For a given control line L =

(kx, ky, kθ) with a Hamiltonian value H , we can determine
the durations as follows. For a given initial configuration
q0 with reference point at p, we can determine the angle α
between the vector p − r1 and L. Then, we determine the
location of r2 for u2 as follows. By Theorem 1, all rotation
centers have the same distanceH to L. For two consecutive
rotation centers, their distance must be 2, the length of the
bench. Hence, the angle β between the vector r2− r1 and L
can only have two possible values: asin(H) andπ−asin(H)

if u1ω > 0, otherwise π + asin(H) and 2π − asin(H). For
a fixed β, we can determine t1.

For u2, since we switch to u2 at angle β with respect to
L and u3 = u1, we also can switch to u3 immediately with
t2 = 0. Since this null control will be examined by another
control sequence, we ignore this choice. Consequently, we
have only one choice of t2. Similarly, all controls u2 to un−1
have the same duration. This duration will be either 2acosH
(if β ∈ [π/2, π/2]) or 2π − 2acosH (otherwise). The dura-
tion tn can be determined based on t1 to tn−1 based on the
constraint of reaching the goal configuration.

4.4. Mixed Trajectories

Consider a mixed trajectory that contains two consecutive
controls, u and u′, with the same angular velocity. By The-
orem 1, these two controls’ rotation centers, r and r′, have
equal distance to the control line, L, and are on the same
side of the control line. Hence, the line through r and r′ is
parallel to L; see Figure 9. Consequently, if there are three
consecutive controls with the same angular velocity, then the
duration of the second one must be π.

For a mixed trajectory, subsequences of controls with the
same angular velocity may appear anywhere in the control
sequence. However, it is always possible to rearrange the
controls in the control sequence without changing the cost,
such that the prefix of the control sequence has controls

−4 −3 −2 −1 0 1

−1

0

1

2

3

Fig. 9. Mixed trajectory with initial configuration
(−2.8, 3.05, π/4). First two controls have the same angular
velocity and hence they are collinear and parallel to the control
line. This is the optimal trajectory for this initial configuration
with switching cost 1.

with the same angular velocity and the suffix has controls
with alternating angular velocity. Hence, we only consider
control sequences that can be decomposed into two parts in
this way.

Let n be the length of the control sequence, nw < n be
the number of controls with the same sign, and m be n −
nw. Let D be the distance between the first rotation center
and the last rotation center. When m is even, H satisfies
|D − 2(nw − 1)| = 2m

√
1−H2 or D + 2(nw − 1) =

2m
√
1−H2. Hence, H =

√
1− (D−2(nw−1))2

4m2 or H =√
1− (D+2(nw−1))2

4m2 . We can obtain at most two possible
positive H ≤ 1 values.

Whenm is odd,H satisfiesD2/4 = (m2−1)(1−H2)+

2m(nw − 1)
√
1−H2 + n2w − 2nw + 2 or D2/4 = (m2 −

1)(1 − H2) − 2m(nw − 1)
√
1−H2 + n2w − 2nw + 2.

Hence, 1 −H2 = |−b±
√
b2−4ac
2a |, where a = m2 − 1, b =

2m(nw−1), and c = n2w−2nw+2. We can obtain at most
two possible positive Hamiltonian values H ≤ 1 values.

After we obtain Hamiltonian values H , we can compute
the control line and durations by the method mentioned in
the previous section.
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Algorithm
CostlySwitchOptimalMotionPlanner()
C ← feasible trajectories found by any planner.
B ← upper bound of number switches.
// Find best two-stage

trajectories, see Section 6
foreach 3-tuple of controls (us, uk, uf ) with the
same angular velocity. do
C = C∪ best two-stage trajectory (u, t) with
u1 = us, un−1 = uk, un = uf .

end
// Find best TGT trajectories, see

Section 8
foreach 2-tuple of translation controls (us, uf ) do
C = C∪ best TGT trajectory (u, t) with u1 = us
and un = uf .

end
// Find best singular trajectories,

see Section 9
foreach 2-tuple of controls (us, uf ) do

foreach singular value H do
C = C∪ best singular trajectory (u, t) with
u1 = us, un = uf and Hamiltonian value H .

end
end
// Find best regular trajectories,

see Section 10
foreach 2-tuple of controls (us, uf ) do

foreach interval I of Hamiltonian values not
including singular values do
C = C∪ approximately best regular trajectory
(u, t) with u1 = us and un = uf in the
interval I .

end
end
return the optimal trajectory in C

Algorithm 1: Outline of the algorithm

5. Outline of an Algorithm for Finding Optimal
Trajectories for Rigid-Body System in the
Plane

In the previous section, we showed how to find optimal tra-
jectories for a specific system, the bench mover’s problem,
exactly. However, for more complex systems, deriving an
analytical result is challenging, since we not only need to
determine the optimal Hamiltonian value but also the opti-
mal control sequence. In this section, we design an algorithm
to find (approximately) optimal trajectories for all rigid-body
systems.

First, we want to find an upper bound of number of
switches for optimal trajectories. The upper bound limits

the length of control sequence that the algorithm needs to
enumerate. We use the general planner described in [13]
to obtain a feasible trajectory from qs to qf with cost M .
Then, we can get an upper bound of number switches as
B = dM/cmine, where cmin is the minimum switch cost.

By the taxonomy of optimal trajectories, we know that
it is sufficient to find best two-stage, TGT, singular, and
regular trajectories. For each of these four classes, we design
algorithms separately in Section 6 to Section 10.

Since two-stage trajectories are whirl trajectories and all
other three classes are control line trajectories, we explain
how to find best two-stage trajectories first in Section 6.
Then, we introduce several properties for control line trajec-
tories in Appendix A. Finally, we show how to find best TGT
trajectories in Section 8, singular trajectories in Section 9,
and regular trajectories in Section 10.

The idea of finding best trajectories within each class
is quite similar: decompose the problem into several sub-
problems by enumerating the first control, the last control,
and possibly the second to the last control (for two-stage
trajectories only). For two-stage, TGT, and singular trajec-
tories, the sub-problems are discrete optimization problems
so that we use an A* search algorithm to find best trajectories
exactly. For regular trajectories, the sub-problem is a mixed
non-linear optimization problem; we combine Lipschitzian
optimization techniques with an A* search algorithm over
discrete trajectory structures to determine approximately
best trajectories. We give the outline of the algorithm in
Algorithm 1.

6. Finding Best Two-stage Whirl Trajectories

Recall that a two-stage trajectory is a trajectory such that all
controls have the same angular velocity and all rotation cen-
ters except the last one are on the same line. Our approach
is to enumerate all 3-tuple of controls (us, uk, uf ) with the
same angular velocity. For each (us, uk, uf ) ∈ U3, we deter-
mine a best two-stage trajectory (u, t), subject to u1 = us,
un−1 = uk, and un = uf . Then, we pick the best trajec-
tory among all best two-stage trajectories with respect to all
3-tuples of controls.

Fix a 3-tuple of controls (us, uk, uf ) with the same angu-
lar velocities. Let U ′ be the reduced control set that all
controls in U ′ have the same angular velocity as us. We
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want to find a best two-stage trajectory (u, t), subject to
us = u1, ..., un−1 = uk, un = uf and ui ∈ U ′ for all i.

Our method is to incrementally build sequences of con-
trols that could possibly satisfy Equation 4 by using A*
search. Each state is a sequence of controls g = (u1 =

us, . . . , uh−1 = uk, uh = uf ), where all controls have the
same angular velocity. For a state g = (u1, . . . , uh), the
duration of each control ui, 1 < i < h − 1 is fully deter-
mined, since all rotation centers except the last one are on
the same line. Hence, we use the summation of the switching
costs and the durations for each control ui, 1 < i < h−1 as
path cost. The neighbors of a state g = (u1, . . . , uh) are the
states g′ = (u1 = us, . . . , uh−1, u′, uh = uk, uh+1 = uf ),
where u′ ∈ U ′.

A state g = (u1, . . . , uh) reaches the goal if
(u1, . . . , uh, uk, uf ) satisfies Equation 4. When a state
reaches the goal, we can solve for the duration of u1 and
uh exactly with at most two solutions.

In order to speed up the A* search, we need an admissible
heuristic. Let dsf be the distance between the rotation center
ofus at qs anduf at qf . For a state g = (u1, . . . , uh), let lg =∑h−2
i=1 D(ui, ui+1), whereD(u, u′) is the distance between

the rotation centers of u and u′ in the robot frame. That is,
lg is the possible value of dsk for the state in Equation 4. In
order to satisfy Equation 4, we know that Ig must be at least
|dsf −D(uk, uf )|. Hence, we use |dsf −D(uk, uf )| − lg
as an admissible heuristic.

7. Properties of Control Line Trajectories

In this section, we briefly describe several properties of con-
trol line trajectories; additional details are in Appendix A
and B.

Recall that a control line trajectory is an extremal trajec-
tory with constantsH, kx, ky , and kθ such that k2x+k

2
y = 1.

When the initial configuration qs, the first control us, the
final configuration qf , the last control uf , and the Hamilto-
nian value H are given, the control line can be constructed
explicitly:

Theorem 6. For a given initial configuration qs, given goal

configuration qf , first control us, and the last control uf ,

we can determine an interval of Hamiltonian values I =

(0, Hu), such that there exists mappings,L1(H) andL2(H),

from Hamiltonian values in I to control lines.

A singular interval is an interval of time within which at
every time more than one control gives the same value for
the Hamiltonian. Except within singular intervals, knowing
the configuration of the rigid body, the location of the control
line, and the current and next controls, essentially tells when
the next switch will be:

Theorem 7. Given a control line L and a non-singular

interval, the duration of applying a control u from a config-

uration q until switching to another control u′ has at most

two possibilities such that the resulting motion can be a

subtrajectory of a control line trajectory corresponding to

the control line L. Moreover, these two possibilities can be

determined analytically.

Singular trajectories can only occur at particular critical
values of the Hamiltonian. Except at these critical values,
knowing the Hamiltonian value H and three consecutive
controls is sufficient to compute the duration of the middle
control. The following theorem will be proved in Appendix
B:

Theorem 8. Let u, u′, and u′′ be three consecutive controls

in a control line trajectory. Given kx, ky , and a non-critical

Hamiltonian value H , the duration of u′ has at most two

possibilities and can be determined analytically without

knowing the configuration.

Finally, for a given sequence of controls and a control line
L, there is a way to determine the duration of each control
when we are given the initial configuration qs and the final
configuration qf :

Theorem 9. Let u ∈ Un be a sequence of controls. Let

b ∈ {1, 2}n−1 be a sequence of selector. For a given con-

trol line L with a non-critical Hamiltonian value H , initial

configuration qs, and final configuration qf , the duration of

each control is fully determined by u and b.

By Theorem 6, the control line can be parametrized by
the Hamiltonian value H . Suppose that the mapping from
the Hamiltonian values to control lines is fixed. Given a
sequence of control u and selectors, since the duration is
fully determined by the control line L, the durations can
also be parametrized by the Hamiltonian value H .

In order to find best trajectories corresponding to a control
line L of known location, with given initial and final config-
urations of the rigid body, it suffices to search over only a
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finite set of trajectories. Since for a control line L, the num-
ber of corresponding trajectories is finite, if there is only a
finite number of control lines as well, then we can possi-
bly find best trajectories exactly by enumerating all possible
control lines and corresponding trajectories. As it turns out,
the number of control lines for TGT and singular trajecto-
ries are finite and we also can enumerate them. Hence, for
TGT and singular trajectories, we can find best trajectories
exactly. However, for regular trajectories, we do not have
a method to reduce the number of control lines to a finite
set and that’s why we only find approximately best regular
trajectories.

8. Finding Best TGT Trajectories

Remember that a TGT trajectory is a control line trajectory
for which both the first control and the last control are non-
parallel translations. Our approach is to enumerate all pairs
of controls (us, uf ) ∈ U2, where both us and uf are transla-
tions. For each (us, uf ), we determine a best TGT trajectory
(u, t), subject to u1 = us, and un = uf . Finally, we pick
the best TGT trajectory among all best TGT trajectories with
respect to all pairs of controls.

Fix a pair of translation controls (us, uf ). Since the initial
configuration qs and the final configuration qf are given, we
can compute the velocity vectors vs and vf for applying us
at qs and uf at qf respectively. Then, we substitute vs and
vf in Equation 2 and we get a system of linear equations.
Since we know k2x + k2y = 1 and H > 0, we can solve kx,
ky , and the Hamiltonian value H exactly.

Our method is to incrementally build sequences of con-
trols that could possibly satisfy Equation 2 by using A*
search. Each state is sequences of controls and durations
g = (u, t), where |u| = |t| = h, u1 = us, and uh = uf .
Each state also satisfies that each ti, 1 < i < h is com-
puted according to Theorem 7, but t1 and th are undefined.
We use the summation of the switch costs and the dura-
tions ti, 1 < i < h as path cost. The neighbors of a state
g = (u, t) are all states g′ = ((u1, . . . , uh−1, u′, uh+1 =

uf ), (t1, . . . , th−1, t′, th+1), where u′ ∈ U and t′ is com-
puted according to Theorem 8.

We can test whether a state g = (u, t) reaches the goal as
follows: For a state g, since for all ti, 1 < i < h are deter-
mined, the displacement, (δx, δy, δθ) in the configuration

space of the sub-trajectory u2, . . . , uh−1 can be computed.
If qs,θ + δθ 6= qf,θ, then since us and uf are translations, g
cannot reach the goal. Otherwise, since we know the velocity
vs and vf at the initial configuration and the final configu-
ration respectively, we solve the following system of linear
equations to get durations t1 = ts and th = tf for us and
uf .

qs,x + vs,xts + δx + vf,xtf = qf,x (5)

qs,y + vs,yts + δy + vf,ytf = qf,y (6)

In order to speed up A* search, we need to design an
admissible heuristic. A state g = (u, t) can reach the goal
if, and only if, the change of orientation, δθ, equals qf,θ−qs,θ.
Hence, we can use the difference between |qf,θ − qs,θ − δθ|
as an admissible heuristic.

9. Finding Best Singular Trajectories

Remember that a control line trajectory is called singular

if there exists a non-zero measure interval along the tra-
jectory that multiple controls have the same Hamiltonian
value within this interval. Furthermore, the number of sin-
gular Hamiltonian value is a finite set when U is given. Our
approach is to enumerate all pairs of controls (us, uf ) ∈ U2

and singular Hamiltonian value H , where one of us and uf
is a rotation. For each (us, uf ) and H , we determine a best
singular trajectory (u, t), subject to u1 = us, un = uf and
Hamiltonian value is H . Finally, we pick the best singular
trajectory among all best singular trajectories with respect
to all pairs of controls and singular Hamiltonian values.

Fix a pair of controls (us, uf ) and a singular Hamiltonian
value H , where one of us and uf is a rotation. Based on us,
uf , and H , we can construct two control lines according to
Theorem 6. Fix a control lineL, Our method is to incremen-
tally build sequences of controls that could possibly satisfy
Equation 2 by using bidirectional A* search.

There are two different states, S and F , denoting the state
grow from qs and qf (in reverse) respectively. Each state is
sequences of controls and durations g = (u, t), where |u| =
|t| = h. If g ∈ S, then u1 = us and each ti, 1 ≤ i < h is
computed according to Theorem 7 assuming the trajectory
starts at qs. If g ∈ F , then uh = uf and each ti, 1 < i ≤ h is
computed according to Theorem 7 assuming the trajectory is
built from qf backwards. In this way, each state has exactly
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one undefined duration and we use the summation of the
switch cost and the defined durations as path cost.

The neighbors of a state g = (u, t) ∈ S are all states
g′ = ((u1, . . . , uh, u

′), (t1, . . . , th, t′), whereu′ ∈ U and th
is computed according to Theorem 7. We define the neighbor
of a state g ∈ F symmetrically.

For a pair of states g = (u, t) ∈ S and g′ = (u′, t′) ∈ F ,
where |u| = h and |u′| = h′, if both uh and u′1 are trans-
lations, then we can combine the two states to construct a
feasible singular trajectory by solving a system of linear
equations similar to Equations 5 and 6. In order to speed up
the search by using bi-directional A*, we design a heuristic
as follows. For a state g = (u, t) ∈ S, let qg be the configu-
ration that start from qs and apply all ui with duration ti in
order for all 1 ≤ i < h. The distance between qg and qf is
the lower bound of the length of the trajectory from the state
to the goal. Hence, we use the Euclidean distance between
qg and qf divide by the maximum velocity as an admissible
heuristic. For a state g ∈ F , we design a similar heuristic.

10. Finding Best Regular Trajectories

Remember that a regular trajectory is a generic trajectory
either starting or ending with a rotation. Our approach is to
enumerate all pairs of controls (us, uf ) ∈ U2, where one us
of uf is a rotation. Unlike TGT and singular trajectories, the
number of potential control lines for regular trajectories is
uncountably infinite. Hence, we use Lipschitzian optimiza-
tion techniques to determine the best Hamiltonian value and
its corresponding control line.

However, even when we fix a pair of controls (us, uf ),
the trajectories may behave differently with respect to the
Hamiltonian valueH . For some Hamiltonian valuesH , con-
trol u can switch to another control u′, but the switch cannot
happen for some other Hamiltonian values H ′. Therefore,
for each (us, uf ), we partition the Hamiltonian values into
several disjoint open intervals so that within each interval
the change of trajectories with respect to the Hamiltonian
value is Lipschitz continuous.

For each interval I , we use Lipschtzian optimization tech-
niques to determine an best regular trajectory (u, t), subject
to u1 = us, un = uf , and the Hamiltonian value H ∈ I .
During this step, we need a method to determine a regu-
lar trajectory corresponding to a fixed control line L that

approximately minimizes error and time. Similar to the idea
we used for finding best TGT and singular trajectories, we
use A* search to find a regular trajectory that approximately
minimizes error and time. Finally, we pick the best regular
trajectory among all best regular trajectories with respect
to all pairs of controls and all interval of the Hamiltonian
values.

In the following sections, we will explain how to parti-
tion the Hamiltonian values, reduce the problem to a Lip-
schtzian optimization problem, and determine best regular
trajectories corresponding to a fixed control line.

10.1. Partition the Hamiltonian Values

Fix a pair of controls (us, uf ), where one of us and uf is
a rotation. We show how to partition the Hamiltonian val-
ues into several disjoint open intervals so that within each
interval I , if u, u′, and u′′ are three consecutive controls in a
control line trajectory for a Hamiltonian valueH ∈ I , thenu,
u′, and u′′ will also be well-defined for another Hamiltonian
value H ′ ∈ I .

According to Theorem 6, we have two continuous func-
tions mapping from the Hamiltonian value to a control line.
Consider one fixed mapping L(H) of these two mappings.
According to Theorem 8, for any three controls u, u′, and
u′, if these three controls are consecutive in a regular tra-
jectory, then the duration of u′ can be determined by the
Hamiltonian value H . Based on the calculation, we can fig-
ure out the range of the Hamiltonian values that the duration
of u′ is well defined and must be an interval. That is, for
each triple e = (u, u′, u′′) ∈ U3, we can determine the
range of the Hamiltonian values Ie that the duration of u′ is
well-defined.

We collect the intervals Ie for all triple e = (u, u′, u′′) ∈
U3 that the duration of u′ is well-defined for all Hamilto-
nian values in Ie. Let S be the set of numbers containing
all endpoints for all intervals Ie. . The set S partitions the
domain ofL(H), determined by the parametrization and the
control set, into several disjoint open intervals. We have the
following theorem.

Theorem 10. There exists a finite set of critical values of

R that partition the Hamiltonian values into a finite set of

open intervals, such that for each interval I , if u, u′, and u′′

are three consecutive controls in a control line trajectory for
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a Hamiltonian value H ∈ I , then u, u′, and u′′ will also be

well defined for another Hamiltonian value H ′ ∈ I .

10.2. Reduction to a Lipschitzian Optimization
Problem

Fix a pair of controls (us, uf ), an interval of Hamiltonian
values I constructed in Theorem 10, and a mapping L(H)

from the Hamiltonian values to control lines, we pose a
Lipschitzian optimization problem to solve for the Hamil-
tonian value H with time and position error at most ε, for
any desired ε > 0. Here, we briefly introduce Lipschitzian
optimization.

The goal of global optimization is to find optimal solu-
tions of constrained optimization problem even for non-
linear, non-continuous problems. A function f : R → R
is called Lipschitz continuous if there exists a constant
L ≥ 0, such that for all pairs x, y in the domain we have
|f(x) − f(y)| ≤ L|x − y|, where L is called the Lipschitz

constant. Given a Lipschitz continuous function f(x), the
problem of finding the global minimum minx f(x) is called
a Lipschitzian optimization problem. For Lipschitzian opti-
mization problems, there exist efficient algorithms to find
globally (approximately) optimal solutions with arbitrarily
small error in finite time([22]).

One efficient algorithm for solving Lipschitzian optimiza-
tion problem is Piyavskii’s algorithm([23]). The idea of
Piyavskii’s algorithm is to iteratively subdivide a domain
I into several intervals. For each interval, Piyavskii’s algo-
rithm determines the lower bound of the objective function
based on Lipschitz constant, and decides whether to further
subdivide this interval or disregard this interval based on
the lower bound information. For any error bound ε > 0,
Piyavskii’s algorithm is guaranteed to find a solution with
additive an error at most εwithin a finite number of iterations.

The Lipschitizian optimization for finding best regular
trajectories is formulated as follows:

min c(L,u, t)

d(L,u, t) = 0

L = L(H) for some H ∈ I, (7)

and (u, t) is a regular trajectory. (8)

The function c is the cost function that we want to minimize,
which is the cost of the trajectory (u, t). The function d is
the constraint that we want to satisfy, which should be the
minimum distance from the trajectory (u, t) to the goal. We
let c(L(H),u, t) = d(L(H),u, t) = ∞ if the trajectory
(u, t) does not correspond to the control line L(H).

In order to apply Lipschitzian optimization techniques, we
need to show that functions c and d are Lipschitz continu-
ous with respect to the change of the Hamiltonian value H .
That is, we want to show that when the Hamiltonian val-
ues changes, the resulting distance and cost functions are
Lipschitz continuous with respect to the Hamiltonian val-
ues. This differs from TGT and singular trajectories that we
ignore all trajectories not reaching the goal exactly. We will
prove the following theorem in Appendix B.

Theorem 11. Let I = (a, b) be an open interval of the par-

tition of the Hamiltonian values. Let u be a fixed sequence

of n controls. Let ti(H) be the duration for the ui and di(H)

be the length of projection of the sub-trajectory correspond-

ing to ui onto the control line. For any δ > 0, both functions

ti(H) and di(H) are Lipschitz continuous with respect to

the Hamiltonian values H ∈ (a, b− δ) for all 1 ≤ i ≤ n.

Moreover, we need a method to find best regular trajectory
corresponding to a control line L that approximately min-
imizes error and time, which will be explained in the next
section.

10.3. Finding Optimal Trajectories for a Fixed
Control Line L

Fix a pair of controls (us, uf ) and a control line L, we use
A* search to find an best regular trajectory corresponding
to the control line L approximately minimizing error. If it is
possible to reach the goal with error at most ε, the result will
be a regular trajectory approximately reaching the goal with
approximately minimum cost. If it is impossible to reach the
goal with error at most ε, the result will be a regular trajectory
approximately minimizing the distance to the goal.

Our method is to incrementally build sequences of controls
and durations that could possibly satisfy Equation 2 by using
A* search. Each state is a sequence of controls, together with
durations g = (u, t), where |u| = |t| = h and u1 = us and
uh = uf . Each state also satisfies that each ti, 1 ≤ i ≤ h is
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computed according to Theorem 8 with an additional con-
straint that ti is capped byM , the cost of a feasible trajectory.
The neighbors of a state g = (u, t) are all states g′ =

((u1, . . . , uh−1, u′, uh+1 = uf ), (t1, . . . , th−1, t′, th+1),
where u′ ∈ U and t′ is computed according to Theorem
8.

We use the summation of the switch cost and the duration
ti, 1 ≤ i < h as path cost. Note that we did not use th as part
of the path cost; since the duration of uh = uf depends on
uh−1, it may be possible the sum of the durations of a state
g is larger than the sum of the durations of g’s neighbor.

For a state g = (u, t), we define the distance as follows:
Let qg be the final configuration of applying controls u with
durations t. If uf is a translation, the distance from the state
g to the goal is the distance between qg and qf . If uf is a
rotation, then let rf be the rotation center of applying uf at
qf and rg be the rotation center of applying uf at qg . The
distance from the state g to the goal is the distance between
rf and rg .

When the distance from the state g to the goal is zero,
then the state g is at the goal. The distance divided by the
maximum velocity can therefore also serve as an admissible
heuristic for A* search.

There is one difficulty here: for a state g = (u, t), the
switch from uh−1 to uh may be impossible due to the con-
straint on the Hamiltonian values. In this case, we just pick
the largest index i such that ui can switch to ui+1 and let qg
be the configuration at which ui switches to ui+1. Then, use
the Euclidean distance between qg to qf as the distance from
the state g to the goal. In this case, we only use the distance
to guide the search but will not use the trajectory in state g
as a result, since the trajectory is infeasible.

11. Implemetation

We implemented the algorithm described in C++. Our testing
environment is a desktop system with an Intel Xeon W3550
3.07 GHz CPU.

For the costly-switch model, we used three test cases. First,
we used the bench mover’s problem proposed in [18] as
one test case. We compared our program’s result with the
results of the analytical solver. Except for some cases in
which the Hamiltonian value is close to the upper bound

u1

Start

u2

u3 Goal

Fig. 10. An approximately optimal trajectory derived using the
described approximation algorithm for a refrigerator robot starting
at (-2, 0, 0), with unit cost for switching between any pair of con-
trols. The green line is the control line, and the ui labels show the
sequence of rotation centers.

(for which numerical instability becomes a problem), the
results coincide with the results from the exact solver.

We used the refrigerator-mover’s problem as the second
test case. The refrigerator-mover’s problem is an extension
of bench mover’s problem, inspired by a problem from [19]:
a mover wants to move a refrigerator from one location
and orientation to another. The refrigerator is too heavy to
move by lifting or pushing, but it can be lifted onto any of
the four legs at the corners of the square base and rotated.
One approximately optimal trajectory is shown in Figure 10.
Third, we used omni-directional vehicle as a test case; one
approximately optimal trajectory is show in Figure 2b.

The solver described can also be used as a general-purpose
solver for time-optimal trajectories of rigid bodies in the
plane in the special cost-free-switch case. In this case, we
additionally constrain the structure of the trajectories using
the maximization condition of PMP, and apply the Lipschitz
optimizer to find best trajectories for each possible structure.
We applied this approach to the problem of finding optimal
trajectories for the omnidirectional robot described in [33],
and found that the approach was only about one order of
magnitude slower (on the order of 0.03 seconds per config-
uration) than the special-purpose analytical solver derived
in [33]. One approximately optimal trajectory is show in
Figure 2a.
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12. Conclusion and Future Work

By adding a cost for switching between controls, we ensure
existence of solutions for optimal control problems, and
evade the problem of chattering. By applying Blatt’s Indif-
ference Principle and Lipschitzian optimization approach,
we can find approximately optimal trajectories, and the error
can be forced to be arbitrarily small.

The implemented approach does have some limitations,
and these limitations do suggest rich problems for future
study. One of the limitations is that when applying Lips-
chitzian optimization techniques, the algorithm reduces the
search domain by a user controlled parameter in order to
make the optimization problem behave smoothly. Although
the controlled parameter can set to any arbitrarily small
number, this algorithm may not find optimal trajectories
for some scenarios if the controlled parameter is not small
enough. We believe this that issue can be resolved by refor-
mulating the Lipschitzian optimization problem with other
parametrization.

Moreover, the potential number of optimal trajectory
structures can be very very large in the costly-switch model.
For the costly-switch model, an algorithm might potentially
need to explore a number of structures that is exponential in
the number of controls in order to find solutions. For exam-
ple, in order to find approximately optimal trajectories for
omni-directional vehicle, whose control set contains four-
teen controls, it takes about an hour to find an high-precision
approximately optimal trajectory for an initial configura-
tion and goal configuration. We believe that better Lipschitz
constants, use of the derivative of the objective function
together with more sophisticated approaches to Lipschitzian
optimization([16]), and a more directed A* search could
dramatically reduce these costs.

Finally, in this paper, we assume that there are no obstacles.
For the cost-free-switch model, Pontryagin’s Maximum
Principle can be extended to systems with state constraints.
However, to the best of our knowledge, extending Blatt’s
Indifference Principle to systems with state constraints is
still an unsolved task. Extending Blatt’s Indifference Prin-
ciple to systems with state constraints (or making use of
the KKT approach) will be an interesting future direction of
research.
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Appendix
Note to reviewers: We have included this appendix to simplify the review process, but because the appendix is quite

long and detailed, we intend for the final version of the paper to submit a technical report to the arXiv, and reference that
report in the journal paper.

A. Properties of Control Line Trajectories

In this section, we show several properties of control line trajectories. Remember that a trajectory (u, t) is called extremal,
if there exist four constants H > 0, kx, ky , and kθ, such that Equation 2 is satisfied. When the initial configuration qs, the
first control us, the final configuration qf , the last control uf , and the Hamiltonian value H are given, the control line can
be constructed explicitly. Furthermore, when a control line L is fixed, we can show that the trajectory along the control line
has only finite number of possibilities.

A.1. Notation

For a given configuration q = (x, y, θ), there is a corresponding transformation matrix representation:

T (q) =

cos θ − sin θ x

sin θ cos θ y

0 0 1


For a given configuration q, if we apply a control (vx, vy, ω), we define the homogeneous representation of the rotation
center of u at q is T (q)u.

For a given control lineL = (kx, ky, kθ), there is a corresponding transformation matrixTL that transform a configuration
in the world frame to the control line frame:

TL =

kx ky 0

ky kx kθ

0 0 1


For a configuration q in the world frame, we use qL = TLq to denote its representation in the control line frame whenever
the control line L is clear from the text.

A nice property of the control line frame is that, for a given control line L, a given configuration q in the world frame,
and a control u, we can compute the corresponding Hamiltonian value of applying u at q along the control line L as
H = (TLT (q)u)

T · (0, 1, 0). Note that we will show how to construct the control line for a given Hamiltonian value in the
next section. The Hamiltonian value of applying u at q along the control lineLmay be different from the Hamiltonian value
used to construct the control line. If so, this shows that applying u at q will not satisfy necessary conditions for optimal
trajectories.

In order to determine the duration of applying a control u before switch to another control u′, it is convenient to
define switch point. For two controls u = (vx, vy, ω) and u′ = (v′x, v

′
y, ω
′), we define the switch point from u to u′ be

p(u, u′) = (vy − v′y, v′x − vx, ω′ − ω).

A.2. Parametrization of the Control Lines

In this section, we show that when the initial configuration qs, the first control us, the final configuration qf , the last control
uf , where one of us and uf is a rotation, we can construct at most two mappings from the Hamiltonian values to control
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L(H)

L(H ′)Rs

Rf

C

Fig. 11. Illustration of proof of Theorem 6 in the case that g 6= 0. The rotation centers at qs and qf are denoted byRs andRf respectively.
The construction of the control line is only based on algebra. The geometrical meaning is that the control line will pass through a point
C = (a′, b′) and for any rotation with angular velocity ω, the distance from the rotation center to the control line is H/ω.

lines: L1(H) and L2(H). When both us and uf are translations, the control line trajectories are TGT trajectories. Since
we treat TGT trajectories separately, we do not deal with TGT trajectories in this section.

Theorem 6. For a given initial configuration qs, given goal configuration qf , first control us, and the last control uf , we

can determine an interval of Hamiltonian values I = (0, Hu), such that there exists mappings, L1(H) and L2(H), from

Hamiltonian values in I to control lines.

Proof. Since k2x+k
2
y = 1, we can represent the control line as (kx, ky, kθ) = (cosϕ, sinϕ, kθ). LetRs = (as, bs, gs) be the

homogeneous representation of the rotation center of us at qs. Let Rf = (af , bf , gf ) be the homogeneous representation
of the rotation center of uf at qf . Let a = as − af , b = bs − bf , and g = gs − gf . By Equation 2, we have:

−kyas + kxbs + kθgs = H (9)

−kyaf + kxbf + kθgf = H (10)

−kya+ kxb+ kθg = 0 (11)

There are two cases: us,ω 6= uf,ω and us,ω = uf,ω.

The case of us,ω 6= uf,ω (g 6= 0). By Equation 11, we have kθ = (kya− kxb)/g. By substitute back in Equation 10, we
have

−kyaf + kxbf + (kya− kxb)gf/g = H (12)

Combing with Equation 9, we have,

−ky(af − (agf )/g) + kx(bf − (bgf )/g) = H (13)

By setting a′ = af − (agf )/g and b′ = bf − (bgf )/g, we express Equation 13 differently as follows.

−a′ sinϕ+ b′ cosϕ = H (14)

The geometrical meaning is that the control line will pass through a point C = (a′, b′) and for any rotation with angular
velocity ω, the distance from the rotation center to the control line is H/ω.

Let r2 = a′2 + b′2, α = atan(a′, b′). We have a′ = r sinα and b′ = r cosα. By trigonometric identities, we have

r cos(ϕ+ α) = H
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Since cos(ϕ+ α) = H/r, sin(ϕ+ α) = ±
√
1−H2/r2 = ±

√
r2 −H2/r.

kx = cosϕ = cos(ϕ+ α− α) = cos(ϕ+ α) cos(α) + sin(ϕ+ α) sinα =
b′H ± a′

√
r2 −H2

r2

ky = sinϕ = sin(ϕ+ α− α) = sin(ϕ+ α) cos(α)− cos(ϕ+ α) sinα =
±b′
√
r2 −H2 − a′H

r2

kθ =
H + afky − bfkx

gf
=
aky − bkx

g

Thus, we have two control lines:

L1(H) = (
b′H + a′

√
r2 −H2

r2
,
b′
√
r2 −H2 − a′H

r2
,
aky − bkx

g
) and

L2(H) = (
b′H − a′

√
r2 −H2

r2
,
−b′
√
r2 −H2 − a′H

r2
,
aky − bkx

g
).

The case of us,ω = uf,ω (g = 0). Let r = a2 + b2, α = atan(a, b). We have

r cos(ϕ+ α) = 0

Since cos(ϕ+ α) = 0, then sin(ϕ+ α) = ±1.

kx = cosϕ = cos(ϕ+ α− α) = cos(ϕ+ α) cos(α) + sin(ϕ+ α) sinα = ±a/r

ky = sinϕ = sin(ϕ+ α− α) = sin(ϕ+ α) cos(α)− cos(ϕ+ α) sinα = ±b/r

kθ =
H + afky − bfkx

gf

Thus, we have two control lines

L1(H) = (a/r, b/r,
H + afky − bfkx

gf
) and L2(H) = (−a/r,−b/r, H + afky − bfkx

gf
).

For a given control set, there exists an upper bound Hu of the Hamiltonian values that will correspond to non-trivial
control line trajectories. Thus, we limit the range of L1(H) and L2(H) to be smaller than Hu.

The parametrization we present here has different form from [13], which is based on trigonometric functions. Our
parametrization is easier to analyze, but Furtuna’s parametrization is more numerically stable, and hence we use Furtuna’s
parametrization in the implementation.

A.3. Durations of Control

In this section, we show that given a control line L, a configuration q, and two different controls u and u′, the duration of
applying u at a configuration q until switching to control u′ can have at most two possibilities.

Theorem 7. Given a control lineL and a non-singular interval, the duration of applying a control u from a configuration q

until switching to another control u′ has at most two possibilities such that the resulting motion can be a subtrajectory of a

control line trajectory corresponding to the control lineL. Moreover, these two possibilities can be determined analytically.
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Proof. Suppose that a control line trajectory applies u at qL = TLq and then switches to control u′ at a configuration q̂L in
the control line frame. By BIP, at the moment of switching control at configuration q̂L, the Hamiltonian values for u and
u′ must be the same. Based on the analysis in [13], this implies (T (q̂L)p(u, u′))T · [0, 1, 0] = 0. That is, when we attach
p(u, u′) to the robot, p(u, u′) will lie on the control line when the robot is at q̂L. Hence, we can solve for q̂L as follows:

Let pL = TLT (q)p(u, u
′) = (xp, yp, wp) be the switching point in the control line frame when the robot is at q in the

world frame. Let rL = TLT (q)u = (xr, yr, ω) be the homogeneous representation of the rotation center of u at qL in the
control line frame. If u is a translation and wp 6= 0, then the duration t = yp/xr. If u is a rotation, then t must satisfy

b1 sin(ωt) + b2 cos(ωt) + b3 = 0

where

b1 = xp − wpxr/ω

b2 = yp − wpyr/ω

b3 = wpyr/ω

The solution of Equation A.3 is

ωt = atan(b1 ±
√
b21 + b22 − b23, b2 − b3) + 2πn,∀n ∈ Z

Since we are only interested in the solution with t > 0 and |ωt| < 2π, there are at most two solutions.

A.4. Durations for a Sequence of Controls

By the method described above, for a sequence of controls u, |u| = n, we can determine all possible durations t, each ti,
1 ≤ i < n, has at most two solutions, but the duration of the last control is still undetermined. When we are given the last
configuration qf , we can determine the duration of the last control as follows: If uf is a rotation, we apply uf until the
configuration has the same orientation as qf . If uf is a translation, then we consider the control un−1. There are only two
possible configuration of switch from un−1 to uf , such that applying uf will reach qf , and each configuration has different
durations for uf . Thus, there are two possible durations of uf and we can choose the one which is closer to qf .

Consequently, given a control line L and a sequence of control u, |u| = n, there are at most 2n−1 possible durations
t so that the trajectory (u, t) corresponds to the control line L. Furthermore, if we fix the way to determine the duration
according to selectors b1, . . . , bn−1, bi ∈ {1, 2} so that the duration ti is the bi-th solution, then the duration is fully
determined by the control line L. Thus, we have the following theorem.

Theorem 9. Let u ∈ Un be a sequence of controls. Let b ∈ {1, 2}n−1 be a sequence of selectors. For a given control

line L with a non-critical Hamiltonian value H , initial configuration qs, and final configuration qf , the duration of each

control is fully determined by u and b.

A.5. Finiteness of Trajectories Corresponding to a Control Line L

Since we have an upper bound for B for any optimal trajectories, we can limit ourselves to at most |U |B possible control
sequences for optimal trajectories. When a control line L and a fixed control sequence u are given, since the duration for
each control can be determined with at most two possibilities, there are at most 2B possible corresponding durations for
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this control sequence with respect to the control line L. Thus, we can limit ourselves to these at most (2|U |)B possible
trajectories corresponding to the control line L.

B. Lipschitz Continuity

Fix a pair of controls (us, uf ), an interval of Hamiltonian values I constructed in Theorem 10, and a mapping L(H)

from the Hamiltonian values to control lines, we show that the distance function computed in Section 10.3 is Lipschitz
continuous with respect to the change of the Hamiltonian value H .

First consider the cost function c, which is the summation of the switch cost and the time cost of the trajectory. Consider a
fixed sequence of controlsu and we analyze the dependency of its duration t on the Hamiltonian value. By Theorem 9, when
we fix a sequence of controls and selectors, the duration is fully determined by L(H). Since Lipschitz continuity is closed
under the minimum operation, it suffices to prove that for any sequence of controls u and selectors, the cost is Lipschitz
continuous with respect to the change of the Hamiltonian value H ∈ I . Since the sequence is unchanged, the switch cost
stays the same for any Hamiltonian valueH ∈ I . Thus, it suffices to prove that for any sequence of controls u and selectors,
the durations t is Lipschitz continuous with respect to the change of the Hamiltonian value H ∈ I . Similarly, we prove
that for any sequence of controls u and selectors, the distance from the trajectory to the goal is Lipschitz continuous with
respect to the change of the Hamiltonian value H ∈ I .

In order to simplify the analysis, in the remaining part of this section, we consider fixed selectors so that t is a function
of the Hamiltonian value H directly without ambiguity.

B.1. Lipschitz Continuity of d(L(H),u, t) and c(L(H),u, t)

Let (u, s), |u| = n be a regular trajectory corresponding to the control line L(H). We first consider the cost function
c(L(H),u, t), which depends on the durations of each control and switch cost. Since the sequence is unchanged, the
switch cost will not change and hence we focus on durations. Let ti(H) be the duration for the i-th control ui with respect
to H . Since c(L(H),u, t) is the summation of all ti, it suffices to prove that each ti(H) is Lipschitz continuous.

Second, we consider the distance function d(L(H),u, t). For control ui and its corresponding sub-trajectory, we use
di to denote the length of the sub-trajectory projection onto the control line. The distance function d(L(H),u, t) can be
rewritten as |qLs,x +

∑n
i=1 di − qLf,x|. It suffices to show that each di(H) and the mapping TL is Lipschitz continuous.

Durations ti(H) and projections di(H), 1 < i < n are easier to analyze, since they depend on H directly. However,
durations t1(H) and tn(H) depend on H , initial configuration qLs , and final configuration qLf in the control line frame,
which depends on H . Hence, t1(H) and tn(H) depend on H not only directly but also indirectly through qLs and qLf .
Similarly, d1(H) and dn(H) also depend on H directly and indirectly. The analysis of t1(H), tn(H), d1(H), and dn(H)

should be separated from the analysis of ti(H) and di(H), 1 < i < n. Thus, we analyze ti(H) and di(H), 1 < i < n first
and then show the mapping TL is Lipschitz continuous. Finally, we give the analysis of t1(H), tn(H), d1(H), and dn(H).

B.2. Analysis of ti(H) and di(H), 1 < i < n

Theorem 12. Let I = (a, b) be an open interval of the partition of the Hamiltonian values. Let u be a fixed sequence of

n controls. Let ti(H) be the duration for the ui and di(H) be the length of projection of the sub-trajectory corresponding

to ui onto the control line. For any δ > 0, both functions ti(H) and di(H) are Lipschitz continuous with respect to the

Hamiltonian values H ∈ (a, b− δ) for all 1 < i < n.

Proof. The duration ti(H) and length di(H) are fully determined by ui−1, ui, ui+1, and H . Let qLi be the configuration in
the control line frame at which the trajectory switches control from ui−1 to ui. Let qLi+1 be the configuration in the control
line frame at which the trajectory switches control from ui to ui+1. Here, we use a result from [13] that there exists a point
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Fig. 12. Illustration of proof of Theorem 11 in the case that ui is a translation. Initially, the switch point is located at SL. A control line
trajectory must apply ui until the switch point collides with the control line at ŜL.

pi = p(ui−1, ui) rigidly attached to the robot, such that pi will lie on the control line when the robot is at qLi . Similarly,
when the robot is at qLi+1 and switches from ui to ui+1, there exists a point pi+1 = p(ui, ui+1) attached to the robot such
that pi+1 is on the control line.

We introduce some notation for the remainder of the proof. Let ZL = (ZLx , 0) be the location of pi attached to the robot
at qLi , which is on the control line. Let SL = (SLx , S

L
y ) be the location of pi+1 attached to the robot at qLi . Let ŜL = (ŜLx , 0)

be the location of pi+1 attached to the robot at qLi+1. By considering the position of SL we can determine the ti(H) and
di(H).

Depending on whether ui is a translation or not, there are two cases:

The case in which ui is a translation. Let vi be the velocity of ui. By Theorem 1, the magnitude of the projection of the
velocity onto the control line is H . Consequently, the magnitude of velocity in the y-coordinate in the control line frame
is vLy =

√
v2i −H2. The duration of ti can be computed as SLy /v

L
y . Consequently, the length of the projection of the

trajectory onto the control line, di(H), can be computed as tiH . Hence, it suffices to prove ti is Lipschitz continuous.
The control ui−1 must be a rotation, since if ui−1 is a translation, then ui and ui−1 have the same Hamiltonian value

along the sub-trajectory corresponding to ui and the trajectory is a singular trajectory. Let RL = (RLx , R
L
y ) be the location

of the rotation center of control ui−1. Let lSZ be the distance between SL and ZL. Let lRZ be the distance between RL

and ZL. Let θ be the angle rotating from vector ZLSL to vector ZLRL counterclockwise. Since the the mutual distance
among SL, RL and ZL is independent from H , lRZ and θ are independent from H .

Let θ1 be the angle between segment SLŜL and the control line; the value of θ1 is acos(H/vi). Furthermore, [13] shows
that the line ZLRL is perpendicular to the line SLŜL. By geometric reasoning, SLy can be computed as lSZ cos(θ −
acos(H/vi)) = (lSZ/vi)(H cos θ+

√
v2i −H2 sin θ). Remember all the durations is capped by M , the cost of a feasible

trajectory. Hence, we have

ti(H) = min(M,
SLy
vLy

=
lSZ
vi

(
sin θ +

H cos θ√
v2i −H2

)
).

Since the second term is monotonically increasing in H , there exists a threshold γ that for all H ≥ γ, ti = M . Thus,
within the interval [γ, b), ti(H) is a constant. Hence, we only focus on the part (a, γ) that the minimum is taken from the
second term.

A differentiable function is Lipschitz continuous if this function has a bounded first derivative.

∂ti(H)

∂H
=

(
vilSZ cos θ

(v2i −H2)1.5

)
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Fig. 13. Illustration of proof of Theorem 11 in the case that ui is a rotation, ωi−1 > ωi, and ωi+1 > ωi. Initially, the switch point is
located at SL. A control line trajectory must apply ui, a rotation around RL counterclockwisely, until the switch point collides with the
control line at ŜL.

Since di = tiH , we have

∂di(H)

∂H
= H

∂ti
∂H

+ ti =

(
vilSZ cos θ

(v2i −H2)1.5

)
+
lSZ
vi

(
sin θ +

H cos θ√
v2i −H2

)
.

For all H ∈ (a, γ) and H < vi, the derivatives of ti(H) and di(H) are bounded.

The case in which ui is a rotation. Let RL = (RLx , R
L
y ) be the location of the rotation center of control ui and let

RL⊥ = (RLx , 0) be the projection of RL on the control line. We want to compute the angle, ϕ0, between the control
line to the vector RLSL, and the angle ϕ1, between the control line to the vector RLŜL; these angles are measured in
counterclockwise direction. The duration ti(H) can be computed as (ϕ1−ϕ0)/ωi, where the subtraction wrapping around
2π and the result has the same sign as ωi. Let r be the distance between the reference point of the robot and RL when
robot is at qLi . The projection of the trajectory on the control line, di(H), can be computed as r(cosϕ1 − cosϕ0). Thus, it
suffices to show that ϕ0 and ϕ1 are Lipschitz continuous with respect to H .

Let lRZ be the distance between RL and ZL and let lRS be the distance between RL and SL. Let θ be the angle rotating
from vector RLZL to RLSL counterclockwise. Note that θ, lRZ , and lRS are independent from H .

Let θ1 be the angle between the segment RLZL and RLRL⊥, which equals acos(H/(lRZωi)). Let θ2 be the
angle between the segment RLŜL and RLRL⊥, which equals acos(H/(lRSωi)). Let ωi−1 and ωi+1 be the angu-
lar velocity of ui−1 and ui+1 respectively. Based on θ1 and θ2, we can compute ϕ0 and ϕ1 as follows:

ϕ0 ϕ1

ωi > 0 ZL
x ≤ RL

x 3π/2− θ1 + θ ŜL
x ≥ RL

x 3π/2 + θ2

ωi > 0 ZL
x > RL

x 3π/2 + θ1 + θ ŜL
x < RL

x 3π/2− θ2
ωi < 0 ZL

x > RL
x π/2− θ1 + θ ŜL

x < RL
x π/2 + θ2

ωi < 0 ZL
x ≤ RL

x π/2 + θ1 + θ ŜL
x ≥ RL

x π/2− θ2
Thus, we have ∣∣∣∣∂ϕ0(H)

∂H

∣∣∣∣ ≤ ((lRZωi)
2 −H2)−0.5 and

∣∣∣∣∂ϕ1(H)

∂H

∣∣∣∣ ≤ ((lRSωi)
2 −H2)−0.5.

Consequently, ∣∣∣∣∂ti(H)

∂H

∣∣∣∣ ≤ ((lRZωi)
2 −H2)−0.5 + ((lRSωi)

2 −H2)−0.5

|ωi|
.

∣∣∣∣∂di(H)

∂H

∣∣∣∣ ≤ r

lRZ |ωi|

(
| sin θ1|+

∣∣∣∣∣ H cos θ1√
(lRZωi)2 −H2

∣∣∣∣∣
)

+
r

lRS |ωi|

(
| sin θ2|+

∣∣∣∣∣ H cos θ2√
(lRSωi)2 −H2

∣∣∣∣∣
)
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By the construction of the partition of the Hamiltonian values, b ≤ |lRZωi| and b ≤ |lRSωi| so that the switch of controls
is feasible. For any δ > 0, when H ∈ (a, b− δ), H is smaller than |lRZωi| and |lRSωi|, and the derivatives of ti(H) and
di(H) are bounded.

During the analysis, we also fully analyze the duration for three consecutive controls u, u′, and u′′ in a control line
trajectory with respect to a given H value.

Theorem 8. Let u, u′, and u′′ be three consecutive controls in a control line trajectory. Given kx, ky , and a non-critical

Hamiltonian value H , the duration of u′ has at most two possibilities and can be determined analytically without knowing

the configuration.

Before we analyze d1, t1, dn, and tn, since they depend on the mapping TL(q) = qL, they indirectly depend on kx, ky ,
and kθ. Hence, we show the analysis of kx, ky , kθ first and then analyze qL before we analyze d1, t1, dn, and tn.

B.3. Analysis of kx, ky, kθ, and atan(ky, kx)

Since the mapping TL depends on kx, ky , and kθ, we analyze the dependency of kx, ky , and kθ on the Hamiltonian value
H . Furthermore, we also analyze atan(ky, kx), since we will need it in the following sections.

Theorem 13. For a mappingL(H) = (kx(H), ky(H), kθ(H)) from the Hamiltonian values to control lines with a domain

(0, Hu). The mapping L(H) and atan(ky(H), kx(H)) are Lipschitz continuous with respect to the Hamiltonian values in

(0, Hu − δ) for any δ > 0.

Proof. Since kθ(H) =
H+afky−bfkx

gf
, we have

∂kθ(H)

∂H
=

1 + af
∂ky(H)
∂H − bf ∂kx(H)

∂H

gf

By using the notation in Section A.2, there are two cases.

The case of us,ω = uf,ω (g = 0) In this case, kx and ky will not change with respect to H . Hence, ∂kx(H)
∂H =

∂ky(H)
∂H =

∂atan(ky,kx)
∂H = 0 and ∂kθ(H)

∂H = 1/gf .

The case of us,ω 6= uf,ω (g 6= 0)

∂kx(H)

∂H
≤
|b′|+ | a′H√

r2−H2
|

r2

∂ky(H)

∂H
≤
|a′|+ | b′H√

r2−H2
|

r2



27

∂atan(ky(H), kx(H))

∂H
=

1

1 + k2y/k
2
x

∂
ky(H)
kx(H)

∂H

= k2x

∂kx(H)
∂H ky − kx ∂ky(H)

∂H

k2x

=
∂kx(H)

∂H
ky − kx

∂ky(H)

∂H

=
b′ + a′H√

r2−H2

r2
b′
√
r2 −H2 − a′H

r2
− b′H + a′

√
r2 −H2

r2

−a′ + b′H√
r2−H2

r2

=
1

r4

(
(b′ +

a′H√
r2 −H2

)(b′
√
r2 −H2 − a′H)− (b′H + a′

√
r2 −H2)(−a′ + b′H√

r2 −H2
))

)
=

1

r4

(
b′2
√
r2 −H2 − a′b′H + a′b′H − a′2H2

√
r2 −H2

+ a′b′H − b′2H2

√
r2 −H2

+ a′2
√
r2 −H2 − a′b′H

)
=

1

r4

(
(a′2 + b′2)(

√
r2 −H2)− (a′2 + b′2)H2

√
r2 −H2

)
=

1

r4
(a′2 + b′2)(

√
r2 −H2 − H2

√
r2 −H2

)

=
r2 − 2H2

r2
√
r2 −H2

≤ 1√
r2 −H2

For any δ > 0, since r ≥ Hu, when H ∈ (0, Hu − δ), we have H < r. Thus, for any δ > 0, kx(H), ky(H), kθ(H), and
atan(ky(H), kx(H)) are Lipschitz continuous with respect to the Hamiltonian value H ∈ (0, Hu − δ).

B.4. Analysis of qL

For different Hamiltonian values, the mapping from qs and qf to the control line frame may be different. However, we can
show that qL is Lipschitz continuous with respect to the Hamiltonian value H .

Theorem 14. For a mappingL(H) = (kx(H), ky(H), kθ(H)) from the Hamiltonian values to control lines with a domain

(0, Hu). The control line transformation TL(q) is Lipschitz continuous with respect to the Hamiltonian values in (0, Hu−δ)
for any δ > 0.

Proof. For a configuration q = (x, y, cos θ, sin θ) and a control line parametrized by H , (kx(H), ky(H), kθ(H)), the
mapping from q to the control line frame is

qL(H) =


kx(H)x+ ky(H)y

−ky(H)x+ kx(H)y + kθ

kx(H) cos θ − ky(H) sin θ

kx(H) sin θ + ky(H) cos θ


Hence,

∂qL(H)

∂H
=


∂kx(H)
∂H x+

∂ky(H)
∂H y

−∂ky(H)
∂H x+ ∂kx(H)

∂H y + ∂kθ(H)
∂H

∂kx(H)
∂H cos θ − ∂ky(H)

∂H sin θ
∂kx(H)
∂H sin θ +

∂ky(H)
∂H cos θ


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Fig. 14. Illustration of proof of Theorem 15 in the case that ui is a translation. The reference point of the robot is at q and the switch
point is at p in the world frame. When the Hamiltonian value H changes, the control line changes from L(H) to L(H ′). Hence, the
endpoint of the translation changes from ŜL(H) to ŜL(H ′) accordingly.

For any δ > 0, since kx(H), ky(H), and kθ(H) are Lipschitz continuous with respect to the Hamiltonian value H ∈
(0, Hu − δ), qL is Lipschitz continuous with respect to the Hamiltonian value H ∈ (0, Hu − δ) as well.

B.5. Analysis of d1, t1, dn, and tn

In this section, we show that d1, t1, dn, and tn is Lipschitz continuous with respect to the change of the Hamiltonian value
H .

Theorem 15. Let I = (a, b) be an open interval of the partition of the Hamiltonian values. Let u be a fixed sequence of n

controls. Let ti(H) be the duration for the ui and di(H) be the length of projection of the sub-trajectory corresponding to

ui onto the control line. For any δ > 0, d1, t1, dn, and tn are Lipschitz continuous with respect to the Hamiltonian values

H ∈ (a, b− δ).

Proof. Let (0, Hu) be the domain of the mapping L(H) = (kx(H), ky(H), kθ(H)). For any δ > 0, since b ≤ Hu, kx, ky ,
kθ, atan(ky, kx), and qL are Lipschitz continuous with respect to the Hamiltonian values in (a, b− δ) by Theorems 13 and
14

Since the cases for t1 and tn are symmetric, we only analyze t1 and similarly we only analyze d1. Let the initial
configuration be q = (x, y, cos θ, sin θ) in the world frame. Fix a pair of controls (u, u′). Let t(H) be the duration of
applying u until switching to u′. Let q̂L(H) be the configuration of the robot when the control switch from u to u′. Let
d(H) = q̂Lx − qLx be the projection of the motion on to the control line. There are two cases depending on whether u is a
translation or a rotation.

The case in which u is a translation. Let S = (px, py) be the switch point of between u and u′ in the world frame. Let
v = (vx, vy, 0) be the velocity in the world frame.

The representation of S in the control line frame SL is

SL(H) =

(
kx(H)px + ky(H)py

−ky(H)px + kx(H)py + kθ(H)

)

We have
∂SLy (H)

∂H
= −∂ky(H)

∂H
px +

∂kx(H)

∂H
py +

∂kθ(H)

∂H

The velocity vL in the control line frame is

vL(H) =

 kx ky 0

−ky kx 0

0 0 1


 cos θ sin θ x

− sin θ cos θ y

0 0 1


vxvy
0

 =

 kx(cos θvx + sin θvy) + ky(− sin θvx + cos θvy)

−ky(cos θvx + sin θvy) + kx(− sin θvx + cos θvy)

0


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Fig. 15. Illustration of proof of Theorem 15 in the case that ui is a rotation. The reference point of the robot is at q and the switch point
is at p in the world frame. When the Hamiltonian value H changes, the control line changes from L(H) to L(H ′). Hence, the endpoint
of the rotation changes from p̂(H) to p̂(H ′) accordingly.

Let v′ = (v′x, v
′
y) = (cos θvx + sin θvy,− sin θvx + cos θvy). We have

∂vLx (H)

∂H
=
∂kx(H)

∂H
v′x +

∂ky(H)

∂H
v′y and

∂vLy
∂H

= −∂ky(H)

∂H
v′x +

∂kx(H)

∂H
v′y

The time is
t(H) = −SLy /vLy =

−ky(H)px + kx(H)py + kθ(H)

−ky(H)(cos θvx + sin θvy) + kx(H)(− sin θvx + cos θvy)

Since q̂Lx (H) = qLx (H) + vLx t(H), d(H) = qLx (H) + vLx t(H)− qLx (H) = vLx t(H). Consequently,

∂d(H)

∂H
=
∂vLx (H)

∂H
t(H) + vLx (H)

∂t(H)

∂H

For any δ > 0, since vLy and SLy are Lipschitz continuous with respect to the Hamiltonian values in (a, b − δ), d(H) and
t(H) are Lipschitz continuous with respect to the Hamiltonian values in (a, b− δ) as well.

The case in which u is a rotation. Let S = (px, py) be the switch point of between u and u′ in the world frame. Let R be
the rotation center of u in the world frame. Let r be the radius of rotation. Let dpc be the distance between p and c. Let ϕ
be the angle between the vector from c to p and the vector from c to q. Note that S, R, r, dpc, q, and ϕ are independent
from the change of the Hamiltonian value.

Let ŜL(H) be the position of the switch point when the robot is at q̂L(H), where ŜL(H) should be on the control line.
Let α(H) be the angle between the vector from R to ŜL(H) and the control line.

sinα =
H

ωdpc
, cosα = ±

√
ω2d2pc −H2

ωdpc

The time t(H) = (ϕ(H)− α(H))/ω. Thus,

|∂t(H)

∂H
| ≤

(
|∂atan(ky, kx)(H)

∂H
|+ 1√

1− (H2)/(ωdpc)2

)
/|ω| =

(
|∂atan(ky, kx)(H)

∂H
|+ |ω|dpc√

(ωdpc)2 −H2

)
/|ω|

By the construction of the partition of Hamiltonian values, b ≤ ωdpc so that the switch of controls is feasible. For any δ > 0,
when H ∈ (a, b− δ), H is smaller than ωdpc. Since atan(ky, kx) is Lipschitz continuous with respect to the Hamiltonian
values in (a, b− δ), d(H) is Lipschitz continuous with respect to the Hamiltonian values in (a, b− δ) as well.



30 Journal name ()

Remember that d(H) = qLx − q̂Lx . We analyze q̂Lx first.

q̂Lx −RLx = r cos(ϕ+ α)

= r(cosϕ cosα− sinϕ sinα)

= r

cosϕ

√
ω2d2pc −H2

ωdpc
− sinϕ

H

ωdpc


=

r

ωdpc
(cosϕ

√
ω2d2pc −H2 − sinϕH)

Thus,

|∂q̂
L
x (H)

∂H
| ≤ |∂R

L
x (H)

∂H
|+ r

|ω|dpc
(| sinϕ|+ | cosϕ| H√

(ωdpc)2 −H2
)

Hence,

|∂d(H)

∂H
| ≤ |∂q

L
x

∂H
|+ |∂R

L
x

∂H
|+ r

|ω|dpc
(| sinϕ|+ | cosϕ| H√

ω2d2pc −H2
)

For any δ > 0, since qLx (H) and RLx (H) are Lipschitz continuous with respect to the Hamiltonian values in (a, b − δ),
d(H) is Lipschitz continuous with respect to the Hamiltonian values in (a, b− δ) as well.

By Theorem 12 and 15, we have the following theorem.

Theorem 11. Let I = (a, b) be an open interval of the partition of the Hamiltonian values. Let u be a fixed sequence of

n controls. Let ti(H) be the duration for the ui and di(H) be the length of projection of the sub-trajectory corresponding

to ui onto the control line. For any δ > 0, both functions ti(H) and di(H) are Lipschitz continuous with respect to the

Hamiltonian values H ∈ (a, b− δ) for all 1 ≤ i ≤ n.


