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Abstract— We present the first analytical solution method
for finding a time-optimal trajectory between any given pair of
configurations for a three-wheeled omni-directional vehicle in
an obstacle-free plane. The mathematical model of the vehicle
bounds the velocities of the wheels independently. The time-
optimal trajectories can be divided into two categories: singular
and generic. An analytical solution method has previously been
presented for singular trajectories; this paper completes the
work and presents the solution for generic trajectories. The
speed and precision of the algorithm allow dense sampling of the
configuration space, to determine how the time and structure
of time-optimal trajectories change across configurations. Sim-
ulation results show that time-optimal trajectories tend to be
ten to twenty percent faster than a simple but practical driving
strategy: turn until the fastest translation direction faces the
goal, drive to the goal, and turn to the current angle.

I. INTRODUCTION

This paper presents the first analytical method to find a
time-optimal trajectory between any pair of configurations
of a particular symmetric three-wheeled model of an omni-
directional vehicle, without obstacles in the workspace. The
vehicle, which is shown in figure ??, can move in any
direction instantaneously. Its wheels are omniwheels – the
wheels are powered in the directions that they are driven
(v1, v2 and v3 in figure ??), but can slide freely in the
perpendicular directions. We assume that the speeds of the
wheels can be controlled, and that these wheel speeds are
each bounded to fall in the range [−1, 1] for some choice of
units of distance.

The configuration of the robot is given by q = (x, y, θ), the
location and orientation of a frame attached to the center of
the robot. Although the wheel speeds are directly controlled
by the motors, there is a one-to-one-mapping between wheel
speeds and the generalized velocity of the robot in its own
frame; we choose the generalized velocity as the control. The
motion of the robot is given by

q(t) = q(0) +

∫ t

0

R(θ(τ))u(τ)dτ, (1)

where u = (Rẋ,Rẏ,Rθ̇) is the generalized velocity in the
robot frame, and R is the matrix that transforms the velocity
into the world frame (formed by replacing the upper left
block of a 3x3 identity matrix with a 2x2 rotation matrix).

The current paper builds heavily on previous work. The
recent Ph.D. thesis of Andrei Furtuna [?] attacked a more-
general problem: solving the time-optimal trajectories for a
rigid body in the plane with polyhedral bounds on gener-
alized velocity controls; the omni-directional robot problem
is a special case. The thesis uses Pontryagin’s Maximum
Principle (PMP) to derive strong necessary conditions on op-
timal trajectories, and proves further geometric and algebraic
results.

There is a geometric interpretation of trajectories satis-
fying the Maximum Principle, which we will call extremal
trajectories. For each extremal trajectory, there is a directed
line in the plane (called the control line), such that the
velocity of a point on the line, pushed by the robot, is
maximized at almost every time. There are two types of
trajectories – generic, for which the motion of the robot is
completely characterized by the control line, and singular,
for which it is not.
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Fig. 1: The shape and the notation of the model

Fig. 2: A sample time-optimal trajectory

In [?], a complete analytical method is presented for
solving for the time-optimal singular trajectory between any
pair of configurations. However, until now, the problem
of determining the precise generic trajectory that connects
any two particular configurations has evaded solution. This
solution is the primary contribution of the current paper.

We have studied this model in previous work [?], and
in that work, derived a complete geometric description of
the types of trajectories that might be optimal. We will use
several results from [?]:

1) Although time and control space are continuous, most
controls do not appear in optimal trajectories. In fact,
trajectories with piecewise constant controls chosen
from a set of 14 discrete controls are sufficient to
achieve optimality for the bounded wheel speed model.
The control set includes clockwise and counterclock-
wise spins in place about robot center Cs, forward
or backward translation in three directions, and clock-
wise or counter-clockwise rotations (turns) about three
points (C1, C2, C3 in figure ??) placed in an equilateral
triangle about the robot.

2) Generic trajectories are periodic, in the sense that for
each trajectory there exists a duration Tp such that
any two configurations along a trajectory separated by
Tp represent effectively a pure translation parallel to a
fixed line in the plane, the control line.

In this work, the basic approach is to compare all the
extremal trajectories connecting given start and goal config-
urations to find a time-optimal one.

A. Related Work
Time-optimal trajectories for several other kinematic mod-

els have been found. A car that can only drive forwards with
bounded forward velocity and steering angle was studied
by Dubins [?]. Reeds and Shepp [?] found the shortest
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paths for a steered car that can drive both forwards and
backwards. Sussmann and Tang [?] further refined the results
by developing a general methodology for solving this type
of problem. Souères, Boissonnat and Laumound [?], [?]
mapped the pairs of configurations to optimal trajectories for
the Reeds-Shepp car. Balkcom and Maon [?] discovered the
time-optimal trajectories for a differential-drive robot with
bounds on the wheel speeds; Chitsaz et al. [?] determined
the trajectories for a differential-drive that minimizes the sum
of the rotation of the two wheels.

Dynamic models of omni-directional vehicle with or with-
out slip have been developed by Jung and Kim [?], and
Williams et al. [?]. Optimal trajectories for omni-directional
vehicle using a dynamic model have been studied by Choi
et al. [?] and Kalmár-Nagy et al. [?]. However, because of
the complexity of the model, the resulting algorithms have
been numerical rather than analytical, and assume certain
restrictions on the structure of trajectories considered. The
kinematic model we study is less sophisticated, but does ad-
mit complete analytical solution. Optimal motion of dynamic
models for an underwater vehicle were studied by Chyba and
Haberkorn [?]. A new distance function using nonholonomic
constraints were used to find the minimum-time distance
between a Dubins’ car and polygonal obstacles [?], [?].

II. NECESSARY CONDITIONS FOR OPTIMALITY

We have shown in [?] that a necessary condition for time-
optimal motion of a rigid-body with polyhedral bounds on
generalized velocity controls (such as our omni-directional
robot model), derived by application of Pontryagin’s Princi-
ple [?] (PMP), is that for any time-optimal trajectory of the
robot, there must exist constants k1, k2, and k3, not all zero,
such that at any time along the trajectory, the generalized
velocity of the robot (ẋ, ẏ, θ̇) must maximize the quantity

H , called the Hamiltonian, given by:

H = k1ẋ+ k2ẏ + θ̇ (k1y − k2x+ k3) . (2)

Furthermore, H must be constant and positive over the
trajectory.

Without loss of generality, assume k21 + k22 = 1. (For this
vehicle, we have shown optimality may be achieved without
use of the k1 = k2 = 0 case, and non-zero scaling of the
constants does not affect the maximization condition.) Let
there be a line in the plane with direction given by the vector
(k1, k2); let the signed distance of the line from the origin
be k3. Call this line the control line.

For trajectories containing no translations (generic tra-
jectories for the omni-directional robot model do not), the
Hamiltonian equation can also be given by:

H = Lycθ̇, (3)

where Lyc is the distance of the current rotation center from
the control line. The choice of constants determines the
placement of the control line in the plane. Geometrically,
we can say that for any optimal trajectory, we must be able
to draw a particular line in the plane, such that at every time
during the trajectory, the current rotation center, scaled by
the angular velocity, is, among all possible rotation centers
used to control the robot, as far as possible from the line.

Initial conditions of the robot relative the line determine
the evolution of a generic extremal trajectory. There are two
types, called roll and shuffle trajectories. Shuffle trajectories
occur when the robot starts very close to the control line,
with particular orientations. In this case, the trajectory period
contains 4 rotations, and one of them has opposite direction
compared to the others. Roll trajectories tend to occur when
the robot starts far from the control line; in this case, all
rotations are in the same direction.

In this paper, we choose the units such that the distance
between each wheel and the center of the robot is 1, and the
angular velocity of spin has magnitude 1. Then, each rotation
center has distance 4 to the center of the robot. We describe
each generic extremal with some notation indicating rotation
center and sign of angular velocity. For example, one period
of a shuffle trajectory might be of the form C+

s C
+
1 C
−
2 C

+
3 C

+
s

in figure ??.

A. Time-optimal trajectories never exceed one period
A switch is a time during a trajectory at which the control

changes. A segment of trajectory is the subsection of the
trajectory between two switches.

Theorem 1: No time-optimal roll or shuffle trajectory for
the omni-directional vehicle can be longer than one period.
(One period of shuffle may contain at most four switches,
and one period of roll may contain at most six switches.)

Proof: The result for shuffle trajectories has been pre-
viously proven in [?]. The proof for rolls can be divided into
three cases. In each case, the method is, given a trajectory
longer than one period, to construct a new trajectory that
takes the same time, but does not satisfy the Pontryagin
Principle. Since the new trajectory does not satisfy necessary
conditions and cannot be optimal, the original equal-time
trajectory also cannot be optimal.

Case 1: A period of a roll that starts and ends with spin,
and the turn is longer than 60◦. Construct a new trajectory
by reflecting the 60◦ segments of each turn across the line
passing P1 and P2. This is trajectory CsC1C

′
1C1Cs · · · in

figure ??. Denote C1A = d1, and C ′1A = d2. In this
case, H = 1

3d1 6=
1
3d2. So the new trajectory violates the

necessary condition for optimality, because in this trajectory
the Hamiltonian is not constant.
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Fig. 5: Figure for proof that roll trajectory cannot be longer
than one period.

Case 2: A period of a roll that starts and ends with
spin or turns, in which the maximum turn is shorter than
60◦. Reverse all the spins and replace turn controls with
symmetric controls following the original path. Denote the
distance from Cs to control line as d. Then the original
H = d = 1

3d1, while the Hamiltonian for the reversed spin
is −d. This new trajectory violates the necessary condition
for optimality because the Hamiltonian is not constant during
the trajectory.

Case 3: A period of roll that starts and ends with a turn
longer than 60◦. The initial point is either on the original
curve between P1P2 or it is on P2Cs. If it is on P1P2,
follow the rest of period by C1C

′
1C
′
sC
′
2C2C

′
2C
′
s · · · till the

end of the period. The arc length of P3P4 and P4P5 are
60◦. Because the signed distance from C

′

s to the control line
is −d, the Hamiltonian is not constant during the trajectory,
violating the necessary conditions for optimality. If the initial
point is on P2Cs, reflect the 60◦ part PiPi+1, i = 3, 5, 7
across the line passing Sis. This new trajectory also violates
the necessary condition of optimality for the same reason as
in Case 1.

III. ALGORITHM

Algorithm 1: Main algorithm flow
Input: tmin = tsingular
for control i at initial do

for control j at goal do
if i is spin && j is spin then

Compute H (eq. ??), time tr (eq. ??, ??)
Compute H (eq. ??), time ts (eq. ??, ??)

if one of i and j is spin and the other is turn
then

Compute H (eq. ??), time tr (eq. ??, ??, ??)
Compute H (eq. ??), time ts
(eq. ??, ?? or ??, ??) (2 cases)

if i is turn && j is turn then
Compute H (eq. ??), time tr (eq. ??, ??)
Compute H (eq. ??, ??), time ts
(eq. ??, ?? or ??, ??, ??) (2 cases)

tmin = min(tmin, tr, ts)

The Hamiltonian is a constant over a time-optimal tra-
jectory. We will see that for roll and shuffle trajectories,
knowing the first and last control, as well as the start and goal
configurations of the robot, this value of the Hamiltonian can
be computed. Once the Hamiltonian has been computed, the
complete evolution and time cost of the trajectory can be
computed exactly.

Our algorithm loops over possible control choices for the
first and last control of the trajectory, and for each choice
computes a candidate Hamiltonian value and time cost.
Equations for the computation of the Hamiltonian depend
on whether the trajectory is a roll or shuffle, and whether
the first and last controls are spins or turns; we will now
consider each case.
A. Calculating time for each trajectory

Each trajectory that takes the robot from initial configura-
tion to the goal configuration contains n segments. All the
segments except the first and the last segments are complete,
in the sense that the duration between control switches can
be directly computed from the necessary conditions and the
value of the Hamiltonian.

Denote the angular velocity and time for each segment by
ωi and ti, i = 1, 2, . . . , n. Assume initial and goal orientation
are θs and θg . We have:

n∑
i=1

tiωi + θs = θg (4)

ttotal =

n∑
i=1

ti.

In equation ??, the equal sign means the same arc length
on the circle. Since both initial and goal orientation are in
[−π, π], we can construct a function Sθ(θs, θg) that calcu-
lates the total change of orientation through the trajectory;
denote

∑n−1
i=2 tiωi by θinner,

∑n−1
i=2 ti as tinner. Then,

t1ω1 + θinner + tnωn = Sθ(θs, θg)

t1ω1 + tnωn = Sθ(θs, θg)− θinner (5)
ttotal = t1 + tinner + tn. (6)

B. Algorithm for each case
1) Roll: spin-spin: Assume a trajectory is a roll, and the

first and last controls are both spins (take figure ?? as an
example). In this case, the control line should be parallel to
the line passing all the spin centers Cs, in which one is the
first and the other is the last (order is not important). Denote
the distance between first and last rotation centers by ∆x.

Denote the segment length by ∆l; the orientation change
for each segment by ∆α. ∆l and ∆α of roll in the control
line can be calculated as follows:

∆lspin = 0

∆lturn = 2
√
r2 − 4H2

∆αspin = 2π/3− 2acos(2H/r)

∆αturn = 2acos(2H/r),

since the distances from C1 and Cs to the control line are
3H and H , which can easily be derived from the fact that
Pontryagin’s Principle indicates that H must be constant over
a trajectory.

Recall that there are n segments, and let k = bn/2c be the
number of turns between the first and last control. Therefore,

∆x = k ×∆lturn = 2k
√
r2 − 4H2

H = (1/2)
√
r2 −∆x2/4k2. (7)

The Hamiltonian value H can be calculated by looping over
integer values of k, which is less or equal to 3, since optimal
roll trajectory cannot contain more than six switches. If
H ∈

(
2/
√

3, 2
]
, we can then calculate the time for this roll

trajectory by using equation ??, with ω1 = ω2 in this case.

θinner = k ∗∆αturn + (k − 1) ∗∆αspin (8)
tinner = 3k ∗∆αturn + (k − 1) ∗∆αspin. (9)
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Fig. 6: A simplified case of a roll trajectory with different
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2) Roll: turn-turn: Assume the trajectory is roll, and both
first and last control are turns (take figure ?? as an example).
For this case, we consider rotation centers C1 and C3. Denote
‖C1−C3‖ = ∆c. Also, ω1 = ωn, using equation ?? to solve
for the time.

∆c = k ×∆lturn = 2k
√
r2 − 4H2

H = (1/2)
√
r2 −∆x2/4k2 (10)

θinner = k∆αspin + (k − 1)∆αturn

tinner = k∆αspin + 3(k − 1)∆αturn (11)
t1 + tn = (Sθ(θi, θg)− θinner)/ω1. (12)

3) Roll: turn-spin: Assume the trajectory is a roll, and
the first and last controls are different; one is a turn and the
other is a spin. Take figure ?? as an example, with start at
A and goal at the rightmost Cs. (The geometry also works
if the positions are reversed, with A the goal.)

Define d = ‖C1 − Cs‖, and define dw = ‖A − Cs‖. For
n total segments, there are k = bn/2c−1 spins between the
first and last control. In figure ??, ‖C1 − C2‖ = ∆lturn =
2‖C3 −B‖.

√
d2 − 4H2 = k ×∆lturn = (2k + 1)

√
r2 − 4H2

H =
√

((2k + 1)2r2 − d2)/(2(2k + 1)2 − 4) (13)

θinner = k∆αspin + k∆αturn = 2kπ/3

tinner = k∆αspin + 3k∆αturn (14)
t1ω1 + tnωn = Sθ(θi, θg)− θinner.

To calculate the time, since ω1 6= ωn, we need to calculate
the time for the turn. Denote the angle ∠ACsC1 by β,
the angle ∠CsCsC1 by α, the angle ∠AC1D by γ. If
the projection of dw onto the control line is longer than
‖C1 − B‖, then the first control is longer than half of a
complete turn and vice versa. Therefore, the angle for the
first control is ∆αratate/2 ± γ. Use equation ?? to find the
total time.

α = asin(2H/d)

β = acos((d2w + d2 − r2)/(2× dw × d))

∆x = dw cos(β − α)− (k + 1/2)∆lturn
sign = ∆x/|∆x|
γ = acos((2H + dw sin(β − α))/r)

t1 =
1

2
αturn + sign× γ (15)

tn = (Sθ(θi, θg)− θinner − t1ω1)/ωn. (16)

4) Shuffle: spin-spin: Calculating the value of Hamilto-
nian for a shuffle trajectory is almost the same as for the
roll, except the segment lengths are different. Consider an
example shuffle trajectory in figure ?? that starts with a
spin at Cs on the left and ends with spin at Cs on the
right. At P1, the control switches directly from C1 to C2,
so ‖C1 − C2‖ =

√
3R and ‖C1 − A‖ = 6H . Denote the

distance between start and goal by dw. We know from the
structure of the shuffle trajectory that ω1 = ωn, and the sign
of ω3 (the angular velocity corresponding to the turn around
C2) is different from all the other angular velocities. Then,
we have:

∆αspin = 2π/3− 2acos(2H/r)

∆αturn1 = acos(2H/r)− π/6− acos(6H/
√

3r)

∆αturn2 = 2(π/6− acos(6H
√

3r))
dw = 2

√
r2 − 4H2 − 2

√
3r2 − 36H2 (17)

θinner = 2× 3∆αturn1ω2 + 3∆αturn2ω3

tinner = 3× 2∆αturn1 + 3∆αturn2 (18)
t1 + tn = (Sθ(θi, θg)− θinner)/ω1. (19)

5) Shuffle: turn-turn: Assume the trajectory is shuffle and
both the first and last controls are turns (take figure ?? as an
example). There are two cases in this type of trajectory.
Case 1: The first and last turns have the same sign of angular
velocity. Consider the case where the first control is C1
and the last control is C3 (the geometry also works with
the reverse order, and gives the same time cost). Denote
the distance between the first and last rotation center by
∆c. Then ‖C1 − C3‖ = ∆c, ω1 = ωn, and the sign of
ω2 is different from all the other angular velocities. Use
equation ?? to calculate the total time:

cw = 2
√

3r2 − 36H2

H = (1/6)
√

3r2 − c2/4 (20)
θinner = 3∆αturn2ω2

tinner = 3∆αturn2 (21)
t1 + tn = (Sθ(θi, θg))/ω1. (22)

Case 2: The first and last turns have different signs of angular
velocity. First, consider the case where the control sequence
is from C1 to C2 (the control sequence from C2 to C3 is
symmetric). Denote the distance between the two rotation
centers by cw. For the sequence from C1 to C2, ∆c =

√
3r.

Assume the start is on the arc CsP1, denoted by P , let ‖C3−
P‖ = d1, and use equations ?? to calculate total time.

∆c =
√

3r (23)
t1ω1 + t2ω2 = Sθ(θi, θg) (24)

t1 = acos
(
(r2 + 3r2 − d21)/(2× r ×

√
3r)
)

. (25)

(In this case, the Hamiltonian value is not needed.)
Now consider the control sequence from C2 to C4. Define

∆c = ‖C2 − C4‖, d2 = ‖C2 − Cs‖. Assume the goal is on
arc CsS3 and denoted by B. Define d3 = ‖C2 − B‖, use
equations ?? to calculate total time.√

∆c2 − 36H2 = 2
√
r2 − 4H2 −

√
3r2 − 36H2 (26)

√
d2 − 16H2 =

√
r2 − 4H2 −

√
3r2 − 36H2

θinner = 3αturn1ω2 + αspinω3

tinner = 3αturn1 + αspin (27)
t1ω1 + tnωn = Sθ(θi, θg)− θinner

t1 = [acos
(
(r2 + ∆c2 − d22)/(2× r ×∆c)

)
−acos

(
(r2 + ∆c2 − d23)/(2× r ×∆c)

)
]/ω1 . (28)
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Fig. 9: Trajectories for θs = π

6) Shuffle: turn-spin: Case 1: Initial and final turn and
spin have same sign of angular velocity. Take figure ??
as example. Consider the control sequence from C1 to C3,
denote the distance between them by ∆c. Assume initial A
is on arc CsP1, Define d1 = ‖A−C2‖. Use equations ?? to
calculate total time.√

∆2c− 4H2 = 2
√

3r2 − 36H2 −
√
r2 − 4H2 (29)

θinner = 3∆αturn1ω2 + 3∆αturn2ω3

tinner = 3∆αturn1 + 3∆αturn2 (30)
t1ω1 + tnωn = Sθ(θi, θg)

t1 = (acos
(
r2+3r2−d21
2×r×

√
3r

)
− (π/6))/ω1 . (31)

Case 2: Initial and final turn and spin have different sign
of angular velocity. Take figure ?? as example, consider the
case that control sequence from C2 to Cs. Define ∆c =
‖C2 − Cs‖, assume initial in on arc P1P2 denoted by A,
define d1 = ‖Cs − A‖. Use equations ?? to calculate total
time.√

∆c2 − 16H2 =
√
r2 − 4H2 −

√
3r2 − 36H2 (32)

θinner = 3∆αturn1ω2

tinner = 3∆αturn1 (33)
d2 = 2r sin(∆α/2)

t1 = [acos
(
(r2 + ∆c2 − d21)/(2× r ×∆c)

)
−acos

(
(r2 + ∆c2 − d22)/(2× r ×∆c)

)
]/ω1 . (34)

IV. SIMULATION, EXPERIMENTS, AND COMPARISON

We implemented this algorithm in C. The algorithm is suf-
ficiently fast (about 70 trajectories per second on a standard
desktop), to allow dense sampling of the configuration space
to explore how the control sequences differ for different
initial configurations of the robot.

Figures ?? to ?? show the results for three different start-
ing orientations of the robot, with the goal at the origin. For
each configuration, we generate the best singular trajectory
if it exists, and the best generic trajectory, and compare
the two to find the optimal. In each figure, each different
color represents a different control sequence (identified by
the type: singular, roll or shuffle, and different first and last
control). The time contour plots shows isocost curves for



TABLE I: comparison of time optimal trajectory and turn -
drive - turn

distance to origin better in percentage
0 - 1 10.1697%
1 - 2 17.9340%
2 - 3 22.5781%
3 - 4 23.6106%
4 - 5 22.9535%
5 - 6 21.8520%
6 - 7 20.7536%
7 - 8 19.7472%
8 - 9 18.5558%

9 - 10 17.1047%

time costs in increments of 0.5 seconds for the corresponding
slice.

The result shows that the time-optimal trajectories for an
omni-directional vehicle are mostly roll and shuffle for initial
configurations not far (combine the distance and the angle
difference) from the goal, and singulars otherwise. For initial
angle close to the goal angle, three of six fastest translation
directions that may be close to starting angle may be used
by time-optimal trajectories depending on starting location
(figure ??). When the starting angle is very close to the
goal orientation, all six fastest translation directions may
be used (figure ??). And if the angle difference between
start and goal are big enough, the angular cost dominates
(figure ??). Figure ?? and ?? also show that there are
equivalent trajectories for some configurations, because the
goal orientation can be attained by rotating either in the
positive or negative direction with the same time cost. An
example is shown in figure ??.

For configurations that are far away from the goal, we
observe that a simple control strategy, which is a special
case of singular, sometimes turns out to be time-optimal: turn
the fastest translation direction to face the goal; drive to the
goal; turn to the correct angle. Under these circumstances, is
it worthwhile to implement the complete algorithm described
here? We compared the time-optimal trajectory with the
simple turn-drive-turn strategy for some configurations close
to the origin, as shown for different distances from the start
to the goal in table ??. The time-optimal trajectories turn out
to be faster by 10% to 20%.

At a high level, we classify trajectories as “roll”, “shuffle”,
or “singular”, but we might also simply describe a trajectory
type based on the sequence of controls that occur in the
trajectory. Using this counting method, we found 459 types
of trajectory that are optimal for at least some configura-
tions. This number compares to 40 trajectory types for the
differential- drive and 46 for Reed-Shepp car.

We may explicitly enumerate all 134 different types for
trajectories with only one or two segments. For rolls and
shuffles with more segments, because of the strong con-
straints on the control sequences, the exact number of types
can be enumerated; the results are listed in table ??. The
situation is more complicated for singulars. We sampled the
space of starting configurations in an area near the origin and
found 193 different types of singular trajectories occurred;
this is only a lower bound.

V. CONCLUSION

We developed an analytical method to efficiently find the
time-optimal trajectory between configurations of an omni-
directional vehicle. We sampled the space of starting config-
urations and used the algorithm to explore the distribution
of the trajectory structures over the configuration space. We
also explicitly counted the trajectory types for rolls and

TABLE II: all types of trajectory for three or more segments

segment length number of number of number of
singular types roll types shuffle types

3 24 12 24
4 33 12 24
5 47 12 24
6 51 12 0
7 20 12 0
8 18 0 0

shuffles, and used the sampling to find a lower bound on
the singular trajectory types. We also compared the time-
optimal trajectories with other driving methods, and it turns
out the the time optimal trajectories are somewhat faster for
start configurations that are not too close or too far away
from the goal.
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