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Abstract— This paper presents a fast tight-tolerance thread-
ing technique for string and rope. Instead of relying on
simulations of these deformable objects to plan a path or
compute control actions, we control the movement of the
string with a virtual magnetic vector field emanating from the
narrow openings we wish to thread through. We compute an
approximate Jacobian to move the tip of the string through the
vector field and propose a method to promote alignment of the
head of the string to the opening. We also propose a method
for re-grasping the string based on the relationship between
the string’s configuration, the orientation of the opening, and
direction of gravity. This re-grasping method in conjunction
with our controller can be used to thread the string through a
sequence of openings. We evaluated our method in simulation
(with simulated sensor noise) and on the Da Vinci surgical
robot. Our results suggest that our method is quite robust
to errors in sensing, and is capable of real-world threading
tasks with the da Vinci robot, where the diameter of the string
(3.5mm) and opening (4.9mm) differ by only 1.4 mm.

I. INTRODUCTION

Manipulation of deformable objects is challenging due to
the high dimensionality of these objects’ state spaces, the dif-
ficulty of simulating deformation, and uncertainty in model
parameters. Several approaches attempt to overcome these
challenges through motion planning [9], [17], [22], [24],
[27], but these methods rely on accurate simulations of de-
formation. While suitable for tasks that can be accomplished
without needing high precision, these methods are not well-
suited for tasks that require the object to be precisely aligned
with environment features, such as threading a needle. In
such tight-tolerance tasks, even slight inaccuracies in the
simulation used for planning can lead to failure in execution.

This paper addresses tight-tolerance insertion tasks for
string and rope like those shown in Figure I. Example tasks
include but are not limited to, threading a needle, threading
a belt, knotting knots, knitting, etc.

Rather than planning a path in simulation, we take a
control approach to the problem. Recent work by co-author
Berenson [2] shows that an approximate Jacobian can be
computed that relates the motion of a gripper and control
points on the deformable object using only geodesic distance
information measured along the object. This Jacobian can
then be used to servo the object toward a set of desired
target points.

However, this method is not sufficient for robust tight-
tolerance insertion, as, depending on the initial configuration
of the string, it can easily mis-align the string with respect
to the hole, converging to a local minimum that does not

1 Dartmouth College, weifu.wang@dartmouth.edu
2 Worcester Polytechnic Institute, dberenson@cs.wpi.edu
3 Dartmouth College, devin@cs.dartmouth.edu

-
S

_/

Fig. 1. Two examples of successfully threading deformable objects through
of small openings online, in simulation and using a Da Vinci robot.
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complete the task. The key contribution of this paper is to
use the approximate Jacobian in conjunction with a virtual
magnetic field emanating from the hole. This field can be
used to align the string’s tip to the hole regardless of the
starting configuration. It also allows the controller to “re-
try” insertion without failure checks or switches in the
control strategy: although the controller may miss the hole
several times, we simply execute the same controller until
the insertion is complete. This controller, combined with our
re-grasping strategy allows us to perform tasks which require
multiple tight-tolerance insertions.

Although this work is still in early stages, and represents
only a proof of concept, we have found the approach to
be promising, and to have several advantages. The control
strategy does not require simulation or modeling of the
deformable objects beyond their basic geometry. Unlike in
motion planning methods, computation of desired motion is
fast enough to allow new gripper velocities to be computed
on-the-fly, as new sensor information becomes available.
Finally, the approach explicitly acknowledges and avoids the
difficulty of effectively modeling the dynamic behavior of
twisted string or rope, and is robust enough to allow insertion
even in the presence of noise.

We evaluated our approach on a series of simulation (using
the Bullet physics library [1]) and real-world (using a Da
Vinci medical robot) experiments focusing on the problem
of inserting a piece of string through a small opening.
Figure I shows two examples of the achieved tasks. In the
simulated tasks, significant artificial sensor noise is injected;
preliminary experimental results show that the approach is
quite robust to sensing errors.

II. RELATED WORK

Control for deformable objects has been investigated in
a variety of industrial [12] and surgical [15], [16] contexts.
Work on controlling deformable objects to tie knots dates
back as far as Inoue and Inaba’s 1985 paper [14]. Many of



these approaches to deformable object manipulation require
a fairly detailed model or simulation of the deformable
object [10], [25].

The method for control proposed here is related to work in
visual servoing for deformable objects [13], [21], [30], [33],
though these methods do not use the vector field approach we
propose, or attempt to accomplish tight-tolerance insertion
tasks. Approaches that learn control policies for specific tasks
from demonstration have also been investigated [20], [23],
[28], [29]. Though effective at solving problems similar to
those demonstrated, it is unclear how well these methods
generalize to new tasks and environments.

Manipulation of deformable objects like wire and thread
has also been explored using motion planning [6], [19],
[26], [27]. However, without a controller that can adapt to
errors in sensing and execution, it is unlikely open-loop
execution of planned paths can accomplish tight-tolerance
insertion tasks for deformable objects. The controller we use
is inspired by the magnetic field generated by a current-
carrying wire; Haddadin et. al. have also used magnetic fields
for control [11].

In the simplest case where there is only one ring into
which we insert the string, the insertion task is similar to
a classical problem: peg-in-hole [8], [18]. Our approach
focuses on simple online controllers intended to be robust
to deformation of the string, and relies on a global vector
field that repeatedly drives the endpoint of the string to the
hole if the first attempt is not successful.

Using sequences of controllers to achieve motions of
complex dynamical systems has a rich history. Burridge
et. al. [7] generated sequential motions for robots using
fields. Tedrake et. al. proposed LQR-trees [31], [32] that
construct funnels to generate motions to reach goal regions.
In our work, we use a sequence of virtual magnetic fields to
generate motions for the string.

In some sense, there is a parallel between finding a path
for a point robot within a homotopy class, and our problem
of achieving insertion of string through a small opening.
Bhattacharya et. al. used a magnetic field to identify different
homotopy paths in configuration spaces [3], [4], [5].

III. OUTLINE OF THE APPROACH

The starting point for our method is a geometric model of
an environment and one or a sequence of small openings for
threading. First, we place a small virtual loop inside each of
the small openings; if there are obstacles in the environment,
we may place additional loops to avoid the obstacles. The
objective is to use a sequence of virtual magnetic fields
generated by the loops to drive the string around obstacles
and through the openings. This paper focuses on guiding
the string through the series of loops, not on determining
the poses and radii of the loops, so we specify the loops
manually in our test scenarios.

At a given time, the velocity and rotational velocity control
of the gripper(s) grasping the string is computed as follows.
A single loop is considered active; the desired velocity
of the tip of the string is computed using magnetic field

equations that simulate running a current through the active
loop (Section V).

To ensure insertion, a second reference point on the string
is used to control orientation of the string near the tip. The
selection of this second point and computation of the desired
motion for this point is introduced in Section V-A.

We next compute an approximate Jacobian that encodes
the relationship between motions of the gripper and motions
of the reference points (Section IV). We do not use the
rigid body Jacobian because when the grasping point is far
from the reference points the rigid body Jacobian will over-
estimate the effect the gripper has on reference points’ mo-
tion. Using this approximate Jacobian, we compute velocity
and rotational velocities for the gripper that we expect to
(approximately) give the desired motion of the reference
points on the string. If the desired motion of the gripper
would cause collision, a re-grasping strategy is applied
(Section VI), and a new velocity is computed.

We consider insertion successful once the tip of the
string has successfully penetrated a disc placed coincident
with the active loop, but with larger radius (Section V-B).
After successful insertion through the active loop has been
achieved, the next loop in sequence becomes the new active
loop.

IV. CONTROLLING DEFORMABLE OBJECTS USING AN
APPROXIMATE JACOBIAN

We would like to determine the motion of one or more
grippers grasping a deformable object that will cause certain
reference points along the object to move in desired direc-
tions. Let P be a vector representing the locations (in the
world frame) of the reference points.

We use a quasi-static model, so that the equilibrium
configuration of the flexible object is completely determined
by the configuration(s) of the grippers (represented by a
vector ¢) together with internal spring and external gravity
forces. We have

F(q), ¢))

where F' is the function that computes the locations of the
reference points based on the configuration of the grippers.
(Since the intent is to control the string locally, we will omit
the fact that there might be multiple equilibrium configura-
tions of the string for a given q.)

There is a Jacobian of F' that locally relates changes in the
gripper configuration and changes of locations of reference
points, P:

J(q)g. 2)

If we have sufficiently many grippers relative to the
number of points, then we expect there to be at least one
set of gripper configuration-space velocities for a particular
desired velocity of the reference points; if we knew J for
the configuration, we could compute such a gripper velocity
by solving Equation 7 for ¢. If there are not sufficiently
many grippers, we might hope to find at least a best-possible



motion (in the least-squares sense) using the pseudo inverse
J(q)".

However, modeling string or rope sufficiently well to
find F' or J accurately poses several challenges, and we
expect F' to be quite dependent on the physical structure and
instantaneous configuration of the string. For example, the
motion of wound string in a twisted configuration is perhaps
extremely hard to predict.

Nonetheless, it is possible to approximate the Jacobian
without a detailed model; Berenson [2] shows an approxima-
tion technique. In [2], the key idea is that even deformable
objects behave “more rigidly” near the gripper. Experimen-
tally [2], the amount of motion of a reference point due to a
gripper diminishes exponentially with its distance from the
gripper.

Let us call a Jacobian calculated based on this assumption
a diminishing rigidity Jacobian, which can be denoted by
J (q). We briefly review the key points of a method for cal-
culating this approximation J (¢); more detailed discussion
can be found in [2].

Let us consider two points p;,p; € P, and denote the
geodesic distance between them as d(p;,p;). By geodesic
distance, we mean the distance between these two points
when the string (or other deformable object) is undeformed (a
straight line). Let ¢(i, g) € P be the point on the deformable
object grasped by gripper g that is closest to the ¢th point of
P. Let w(i,g) be the rigidity weight of the ¢th point with
respect to gripper g, which is calculated by:

wli, ) = e~ K(@piclina) 3)

where k is a constant determined experimentally for the
system (for details, see [2]).

We take the translation component of .J (q) for the ith point
with respect to gripper g to be simply

Jerans(4.,9) = w(i, 9)Isxs. )

Let the configuration of the gripper in the world frame be

described by a 3 x 3 rotation matrix RY and a translation

vector v9. We can then define the rotation component of the
approximate Jacobian:

Jrot(q, 1, 9) = w(i, g)[R[1] x r,RI[2] x r, RI[3] x ], (5)
where r = (c(i,g) —v9).
Then J(g,1,g) for point 7 with respect to gripper g is

j(Q7 i g) = w(ia g)[iﬁrans(% i, g)a jrot(qa i, g)} 6)

Combining the Jacobians for all points and all grippers into
a single matrix, we can find J(g). To find ¢ for a desired
motion of the reference points, we multiply by the pseudo-
inverse of the diminishing rigidity Jacobian:

qg=J(@)"P. (7

Additionally, the calculated term of ¢ can be combined
with obstacle avoidance terms, calculated in Equations 11
to 13 in [2]; when multiple grippers are used, a stretch
avoidance term can also be added to automatically correct

excessive stretching. We will omit the details of these terms,
which can be found in [2].
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Fig. 2. An example of magnetic field induced by a current carrying planar
circle loop.

V. CONSTRUCTING VECTOR FIELD

To perform insertion tasks, we construct vector fields in
the workspace, such that the reference points on the string
following these vector fields can lead the string through tight-
tolerance spaces. These motions can then be used to generate
appropriate motion for grippers.

The tip of the string is chosen as a reference point, since
in order to thread the string through a tight opening, the tip
usually needs to go through it first.

The vector field should satisfy certain properties to be
useful. We would like all integral curves of the vector
field to go through the tight opening, so that by following
the vector field, the string can be inserted into the small
opening regardless of the initial configuration. The vector
field should also have a “direction” consistent with the the
desired insertion task, so that all the field lines enter the
opening from one side, and leave from the other. Finally,
we would like to find a vector field that has a closed form
solution everywhere in the workspace such that calculation
of P is fast.

One field that obeys these properties is a magnetic field
induced by a current carrying loop. For simplicity, we let the
wire be a planar circle (referred as a loop in the following
context). An example of an induced vector field is shown in
Figure 2.

For an arbitrary point p in the workspace, and a fixed
current-carrying loop S, the magnetic force at p can be

calculated as follows:
1 (x —p) x dx
F(p) = — / BRI 3

dm Js |z —pl[?

This vector is used as the desired motion for the tip of the
string, which we denote as v;.

It is convenient that the magnetic field shown in Figure 2
describes reasonable motions for the tip of the string globally.
Even if the tip reaches the wrong side of the insertion loop,
the field lines drive the tip of the string back around for
another attempt using the same vector field. In some sense,
the length of the integrated field line (from arbitrary point to
the intersection with the interior of the loop) approximates
the real distance to the goal.

In current work, we manually place these rings that
induces the magnetic field. In future work we will study
how to place these rings automatically.

A. Orientation at the tip of the string

The orientation of the string tip is critical to the success of
insertion. Figure 3 shows examples of two different angles



(a) Example of a bad angle (b) Example of a better
for threading. angle for threading.
Fig. 3. Examples of bad and good angles of threading.
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(a) A configuration where the second point is close to the tip of the
string.

(b) A configuration where the second point is further from the tip of
the string.
Fig. 4.
6 < 07.

Dynamic selection of the second reference point; d; < d2, and

of the string tip. The experiment of string having the angle
in Figure 3(a) did not go through the small opening.

Although the magnetic field gives reasonable motions for
the tip of the string, it is in the workspace rather than
the configuration space. If multiple reference points on the
string follow the same vector field, it may not be possible
to exactly specify motions of the reference points (or the
string) in configuration space. Nonetheless, we have found
that by carefully choosing the location of a second reference
point along the string (in addition to the tip), and computing
a different vector field “on the fly” for this point, the
orientation of the tip can be controlled effectively.

We choose to find this second point dynamically, using a
cylinder centered at the tip with radius S. Let the second
point be the first intersection between the string and this
cylinder. Figure 4 shows an example of dynamically choos-
ing the second reference point.

What is the desired motion for the second reference point
so that the string achieves an orientation consistent with
the insertion direction? Let the two reference points have
locations p1,p2, and the distance between them be d. Let
the calculated motion of the tip be v;, and the normal of the
loop to penetrate be n. We choose the motion for the second
point to be

vy =p1 +v1 —d-n—pa, 9

so that if the tip moves exactly v; in one time step, and the
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Fig. 5. A loop used for guiding the string, and a disk for detecting
successful insertion.

second reference point moves v, then the orientation of the
line segment between the references will be parallel to the
insertion direction. Together, v; and vy forms P.

B. Radii of loops

There are many sources of error in the insertion process.
The expected motion is calculated using a Jacobian that is
only approximate, and we expect errors in sensing and con-
trol. Following the designed vector field, even with error, the
controller will keep inserting the string. So, given sufficient
time, we expect the process to succeed eventually. However,
to minimize the number of misses, certain principles apply
in the design of the virtual loops.

A reasonable approach is to make the loops to be some
fraction of the size of the small opening. A smaller loop
ensures that the the induced magnetic field lines pass very
close to the center of the opening; a larger loop allows more
gradually-bending field lines.

Notice that in the presence of error, it is easily possible for
the string to pass outside of the target loop (miss the target),
since some of the field lines pass very close to the boundary
of the loop. In order to ensure that the controller does not
repeatedly “re-try” the insertion task near the boundary of
the loop, we test if the string passes through a larger disk.
As long as the small opening is larger than this larger disk,
we may in this case consider the insertion to have succeeded.
Figure 5 shows such an example; the smaller loop induces
the vector field the string follows, while the larger disk is
used to detect penetration.

VI. RE-GRASPING

There are two reasons that release and re-grasping of the
string may be needed during the insertion task. First, one of
the primary sources of error in the insertion task is due to
the approximate Jacobian. The further the gripper is from
the reference points, the greater we expect this error to be.

We compare the expected motion and the actual motion
of the reference points at each time step, and let the user
select a tolerance, such that if the error of the motion for
any reference point exceeds the tolerance, the gripper should
then re-grasp closer to the reference points to reduce the error
produced by approximate Jacobian.

The second reason for re-grasping is that the gripper
cannot itself pass through the small opening, and must
release the string and reposition to either push or pull the
string completely through the opening after initial contact.

For this task, we choose to consider a simple version of the
re-grasping problem. Given a string modeled as a sequence
of n links, a gripper may grasp the center of any link.



Fig. 6. Re-grasping strategy that considers gravity. Left: The configuration
before re-grasp. Right: the configuration after re-grasp.

Since we are only controlling two reference points during
the execution in this work, more than one gripper could result
in stretching the string, thus violating the constraints; for
simplicity, we use a single gripper for the insertion task.

We tried two approaches to find the placement of the
gripper and times for re-grasping. First, at each time step,
starting from the reference points, find the first link of the
string that is accessible and after all of the reference points,
and place the gripper there. This strategy results in frequent
re-grasping near the obstacle when inserting the string.

The second approach we tried attempts to take advantage
of the fact that the string tends to “droop” in the direction
of gravity. If the target loop is lying more flat with respect
to the direction of gravity, we expect the insertion task to be
easier, and can grasp the string farther away, leading to fewer
re-grasps. We used the following heuristic to compute the
grasp location. We compute the angle between the normal to
the target loop and the direction of gravity, §. We choose
the grasp point to be a distance of [/6 beyond the final
reference point, where [ is a constant that might be chosen
experimentally.

We expect the walls of a physical small opening to have
some depth. When should we decide that the string has
penetrated the opening? Once the tip of the string has
penetrated the target disk, then either the tip may be re-
grasped on the other side of the opening, or it may not be
(due to occlusion). If the tip is re-graspable, then we do the
re-grasp, and declare success. Otherwise, we choose a new
first reference point at the intersection of the target disk with
the string, and continue pushing the string.

We present the entire online control strategy in Proce-
dure Insertion strategy, which may be used to guide string
through one or more small openings. The loop and disk
configurations are inputs. We denote the actual motion of
the rope as P.

VII. EXPERIMENTS

We first conducted experiments in simulation using the
Bullet Physics library [1] and constructed the string using a
sequence of capsules (hinged short links). The simulator is
used as a black box for our evaluation; no simulation model
or parameters were known to our method.

We will first describe several experiments in simulation
that we used to test the ability of this method to thread
one or more small openings in sequence, with various loop

Procedure Insertion strategy

Find gripper location using the normal of first target
loop and gravity;

while last loop not penetrated do

Compare the actual motion P of the reference
points and the expected motion P;

if [P — P| > tolerance then
L Re-grasp closer to reference points;

if string penetrates a target disk then
Calculate the gripper location g using the

normal of next loop and gravity;
if location g is available then
Re-grasp at g;
Activate next loop;
Set the first reference point to be the tip;

else if Gripper is too close to the obstacle then
Set the first reference point to be the first

point on the string that has not yet
penetrated current target disk;

Find gripper location ¢’ using new normal
of active loop;

Re-grasp ¢’ away from the reference point;

Recalculate second reference point’s location;
Find the expected motion of reference points P;
Compute the approximate Jacobian J;

Compute desired motion of string P;

Calculate the motion of gripper ¢; apply for At ;

orientations. We also tested our method’s ability to deal with
noise (added zero-mean Gaussian noise in sensing) and a
changing environment (a large move of the target opening
during execution) in simulation. Finally, we conducted phys-
ical experiments with a Da Vinci surgical robot, to insert
yarn into washers of various sizes, with arbitrary initial
configuration.

A. Simulations

Figure 6 shows a close-up of a simulation experiment;
white dotted lines show the loops. Figure 7 shows an example
of threading string through several openings in sequence,
with penetration normals parallel to the x-y plane. Figure 8
shows an example with normals that are not parallel to the
X-y plane.

During simulation experiments, we observed that the grip-
per tends to grasp near the tip during most of execution,
leading the tip of the string to behave almost like a rigid body.
Even though this strategy is effective for threading purposes,
it does not demonstrate the advantage of our approach for
deformable objects.

We then enforced that the grasping location be further
from the tip during insertion. In such experiments, the string
demonstrates clear deformation. The controller was still able
to accomplish the insertion task consistently, even though
sometimes it missed the opening on several times, perhaps
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Simulation results of threading a sequence of loops, Figures 7(a) to 7(d) show several snapshots from the simulation.

Fig. 8. Simulation results of threading a sequence loops with various ring orientations. Figures 8(b) to 8(d) show the frequent switches near the first loop,
due to gravity. The rest of the figures show re-grasping at further and further locations.

Fig. 9. Simulation results of threading while enforced grasping far from
reference points, showing the deformation of string during execution.

Fig. 10.
further from reference points, showing more deformation of string during
the execution.

Simulation results of threading while enforcing grasping even

due to un-modeled un-simulated string deformation. Some
configurations of the string during experiments are shown in
Figures 9 and 10.

To test robustness to error, we conducted simulation ex-
periments adding zero-mean Gaussian noise, observed the
execution of the task, and time-to-completion for successful
insertion with different given noise variances. Average times
to completion acquired over 40 trials are shown in Table I.
The number of misses was counted by the author watching
the simulation. (A failure is reported after 180 seconds with-
out penetrating the target; this only occurs in the presence
of extreme noise.) Step size used was 0.05 unit.

Even with sensor noise with 0.3 unit variance applied to
every coordinate of the reference points at each time step, our

noise Mean completion Mean # # Trials
(variance) Completion time | time std. dev. | of misses Failed
0.01 7.82 0.39 0 0/40
0.03 8.03 0.41 0 0/40
0.05 8.92 0.44 0 0/40
0.1 10.24 0.37 0 0/40
0.3 12.47 4.36 0.025 0/40
0.5 14.659 5.57 0.05 0/40
1 29.12 16.07 0.3 0/40
1.5 55.42 39.33 0.57 0/40
2 N/A N/A N/A 40/40
TABLE I

STATISTICS EVALUATING THE EFFECT OF NOISE ON A SIMULATED
INSERTION TASK.

method still succeeded in a mean time of 12.47 seconds. (For
comparison, recall that the opening has radius 0.3, and the
string has radius 0.2 in our simulation experiments.) As we
increased the noise variance, the number of misses increased
slowly, but the time to completion increased rapidly. When
we added noise with variance 2, the gripper essentially
moved randomly and did not penetrate the target.

We also experimented with moving the hole during the
execution of the task to study robustness of the approach with
respect to unexpected major changes in the environment.
Figure 12 shows an example of how the controller followed
the vector field after the target was moved.

B. Experiments with Da Vinci robot

We also conducted physical experiments with one arm of a
Da Vinci robot, with seven degrees of freedom. We used two
HD webcams to track the location of the string. One webcam
was placed over the workspace, while the other was placed
facing the x — z plane of the workspace. In the experiments,



Fig. 11.

Experiment using Da Vinci robot with the smallest washer. Washer diameter was 4.9 mm, and the yarn diameter was 3.5 mm. The first three

frames show how the controller rotates the gripper to align the yarn with the insertion direction, but the first pass missed the washer, as shown in the
fourth frame. Then, the controller made a second attempt (with no intervention) and successfully threaded the washer in the last frame.

Fig. 12. Example of threading the needle after the target moved during
execution (second frame). Gripper trajectory is shown in yellow.

we simply tested the performance of the insertion, without
the re-grasping which was shown in previous simulation
experiments. The Da Vinci robot is controlled by giving the
locations of the end-effector at every time step, and Inverse
Kinematics was used to calculate the joint angles.

We used three different washers with different sizes
(shown in Figure 13), and attempted to thread a segment
of yarn through the washers using the Da Vinci robot. The
washer was placed on a stand that is not rigidly attached to
the ground; thus, any aggressive motion towards the washer
would knock the target over.

The Da Vinci robot successfully threaded all three wash-
ers. The inner diameter of the smallest washer was 4.9 mm,
while the yarn had diameter 3.5 mm. Images from one of the
experiments are shown in Figure 11. The robot successfully
threaded even the smallest washer with no more than 4 passes
on average.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a method to insert string
through tight workspace openings online. We used an ap-
proximate Jacobian to estimate the motion of the string and
control it. We constructed vector fields based on magnetic
fields induced by current-carrying loops, which in some
sense encode a measure of distance for insertion tasks.

Empirically, we found that the method has high tolerance
to errors and noise. Both simulation and real robot exper-
iments show good results. We also established a baseline
criterion for grasping, so the controller can decide to re-grasp
during the execution.

As part of this preliminary study, we placed the current-
carrying loop used to compute desired velocities of reference
points on the string manually. However, such loops could
easily be placed automatically.

We hope to extend this approach beyond string. For exam-
ple, we would like to thread belt-like deformable objects or
ribbons through sequences of small openings next. We would
also like to tie knots, where the loops formed by strings can

Fig. 13. The three washers used in experiments, the yarn next to a nickel
for scale reference.

be thought as the target rings. A primary goal of our future
work will be to conduct more thorough experiments with the
Da Vinci robot, as well as other robots.

IX. ACKNOWLEDGMENTS

We would like to thank Calder Phillips-Grafflin, Nirav
Patel and Adnan Munawar for help with the initial setup
of the experiments. We would also like to thank Professor
Gregory Fischer for letting us use the Da Vinci robot. This
work was supported by NSF grants IIS-1217447 and IIS-
1317462, and by the Office of Naval Research under Grant
N00014-13-1-0735.

REFERENCES

[1] Bullet Physics
wordpress/.

[2] Dmitry Berenson. Manipulation of deformable objects without mod-
eling and simulating deformation. In Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on, pages 4525-
4532, Nov 2013.

[3] Subhrajit Bhattacharya, Maxim Likhachev, and V. Kumar. Topological

constraints in search-based robot path planning. Auton. Robots,

33(3):273-290, 2012.

Subhrajit Bhattacharya, Maxim Likhachev, and Vijay Kumar. Iden-

tification and representation of homotopy classes of trajectories for

search-based path planning in 3d. In Hugh F. Durrant-Whyte, Nicholas

Roy, and Pieter Abbeel, editors, Robotics: Science and Systems VII,

University of Southern California, Los Angeles, CA, USA, June 27-30,

2011, 2011.

[5] Subhrajit Bhattacharya, David Lipsky, Robert Ghrist, and Vijay Ku-
mar. Invariants for homology classes with application to optimal search
and planning problem in robotics. Ann. Math. Artif. Intell., 67(3-
4):251-281, 2013.

[6] T. Bretl and Z. McCarthy. Quasi-static manipulation of a Kirchhoff
elastic rod based on a geometric analysis of equilibrium configurations.
The International Journal of Robotics Research, 33(1):48-68, June
2013.

[7]1 Robert R. Burridge, Alfred A. Rizzi, and Daniel E. Koditschek.
Sequential composition of dynamically dexterous robot behaviors. I.
J. Robotic Res., 18(6):534-555, 1999.

[8] Bruce Randall Donald. Planning multi-step error detection and
recovery strategies. 1. J. Robotic Res., 9(1):3-60, 1990.

library. http://bulletphysics.org/

[4

[l



[9]

[10]

[11]

[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19]

[20]

[21]

[22]

[23

[24]

[25

[26]

[27]

(28]

[29]

Barbara Frank, Cyrill Stachniss, Nichola Abdo, and Wolfram Burgard.
Efficient motion planning for manipulation robots in environments
with deformable objects. In Proc. IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages 2180-2185,
September 2011.

Barbara Frank, Cyrill Stachniss, Nichola Abdo, and Wolfram Burgard.
Efficient motion planning for manipulation robots in environments
with deformable objects. In 2011 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2011, San Francisco, CA,
USA, September 25-30, 2011, pages 2180-2185. IEEE, 2011.

Sami Haddadin, Bico Belder, and Alin Albu-Schaeffer. Reactive mo-
tion generation for robots in dynamic environments. In Proceedings.
IFAC 2011, World Congress, 28. Aug. - 02. Sep. 2011, Milano, Italy,
2011.

Dominik Henrich and Heinz Worn. Robot manipulation of deformable
objects. Springer, 2000.

S. Hirai and T. Wada. Indirect simultaneous positioning of deformable
objects with multi-pinching fingers based on an uncertain model.
Robotica, 18(1):3-11, January 2000.

Masayuki Inaba and Hirochika Inoue. Hand eye coordination in rope
handling. Journal of the Robotics Society of Japan, 3(6):538-547,
1985.

Hyosig Kang and J.T. Wen. Robotic assistants aid surgeons during
minimally invasive procedures. Engineering in Medicine and Biology
Magazine, IEEE, 20(1):94-104, Jan 2001.

F Khalil and P Payeur. Dexterous robotic manipulation of deformable
objects with multi-sensory feedback — a review. In In-Teh, editor,
Robot Manipulators, Trends and Development, chapter 28, pages 587—
621. 2010.

F. Lamiraux and Lydia E. Kavraki. Planning Paths for Elastic Objects
under Manipulation Constraints. The International Journal of Robotics
Research, 20(3):188-208, March 2001.

Tomas Lozano-Perez, Matthew Mason, and Russell H. Taylor. Au-
tomatic synthesis of fine-motion strategies for robots. International
Journal of Robotics Research, 3(1), 1984.

Mark Moll and Lydia E Kavraki. Path Planning for Deformable Linear
Objects. IEEE Transactions on Robotics, 22(4):625-636, 2006.

T. Morita, J. Takamatsu, K. Ogawara, H. Kimura, and K. Ikeuchi.
Knot planning from observation. In IEEE International Conference
on Robotics and Automation (ICRA), 2003.

D. Navarro-Alarcon, Y. Liu, J.G. Romero, and P. Li. Visually Servoed
Deformation Control by Robot Manipulators. In IEEE International
Conference on Robotics and Automation (ICRA), 2013.

Sachin Patil, J van den Berg, and Ron Alterovitz. Motion planning
under uncertainty in highly deformable environments. In Robotics:
Science and Systems, 2011.

Matthias Rambow, Thomas Schauf3, Martin Buss, and Sandra Hirche.
Autonomous Manipulation of Deformable Objects based on Teleop-
erated Demonstrations. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2012.

S. Rodriguez and N.M. Amato. An obstacle-based rapidly-exploring
random tree. In [EEE International Conference on Robotics and
Automation (ICRA), 2006.

Samuel Rodriguez, Jyh-Ming Lien, and Nancy M. Amato. Planning
motion in completely deformable environments. In Proceedings of
the 2006 IEEE International Conference on Robotics and Automation,
ICRA 2006, May 15-19, 2006, Orlando, Florida, USA, pages 2466—
2471. IEEE, 2006.

M. Saha, P. Isto, and J.-C. Latombe. Motion planning for robotic
manipulation of deformable linear objects. In Proc. International
Symposium On Experimental Robotics (ISER), 2006.

Mitul Saha, Pekka Isto, and Jean-Claude Latombe. Motion planning
for robotic manipulation of deformable linear objects. In Oussama
Khatib, Vijay Kumar, and Daniela Rus, editors, Experimental Robotics,
The 10th International Symposium on Experimental Robotics [ISER
’06, July 6-10, 2006, Rio de Janeiro, Brazil], volume 39 of Springer
Tracts in Advanced Robotics, pages 23-32. Springer, 2006.

John Schulman, Ankush Gupta, Sibi Venkatesan, Mallory Tayson-
Frederick, and Pieter Abbeel. A case study of trajectory transfer
through non-rigid registration for a simplified suturing scenario. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), November 2013.

John Schulman, Jonathan Ho, Cameron Lee, and Pieter Abbeel. Learn-
ing from Demonstrations Through the Use of Non-Rigid Registration.
In International Symposium on Robotics Research (ISRR), 2013.

[30]

[31]

[32]

[33]

Jerzy Smolen and Alexandru Patriciu. Deformation Planning for
Robotic Soft Tissue Manipulation. In 2009 Second International
Conferences on Advances in Computer-Human Interactions, pages
199-204, February 2009.

Russ Tedrake. LQR-trees: Feedback motion planning on sparse
randomized trees. In Jeff Trinkle, Yoky Matsuoka, and José A.
Castellanos, editors, Robotics: Science and Systems V, University of
Washington, Seattle, USA, June 28 - July 1, 2009. The MIT Press,
2009.

Russ Tedrake, Ian R. Manchester, Mark M. Tobenkin, and John W.
Roberts. LQR-trees: Feedback Motion Planning via Sums-of-Squares
Verification. I J. Robotic Res., 29(8):1038-1052, 2010.

T Wada, S Hirai, S Kawarnura, and N Kamiji. Robust manipulation
of deformable objects by a simple PID feedback. In Proc. IEEE
International Conference on Robotics and Automation (ICRA), 2001.



