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Towards arranging and tightening knots and unknots
with fixtures

Weifu Wang, Matthew P. Bell, Devin Balkcom

Abstract—This paper presents a controlled tying approach for
knots using fixtures and simple pulling motions applied to the
ends of string. Each fixture is specific to a particular knot; the
paper gives a design process that allows a suitable fixture to be
designed for an input knot. Knot tying is separated into two
phases. In the first phase, a fixture is used to loosely arrange the
string around a set of rods, with the required topology of the
given knot. In the second phase, the string is pulled taut around
the tightening fixtures. Two sets of tightening fixture designs are
presented. The first design is a fixture with no moving parts;
tilted rods whose cross-sections get closer near the tips, guiding
string in a controlled fashion as string slides up the rods during
tightening. The second design is a collection of straight rods that
can move passively along predefined paths during tightening.
Successful tying is shown for three interesting cases: a “cloverleaf
knot” design, a “double coin” knot design, and the top of a
shoelace knot.

Note to practitioners: This paper shows how simple mech-
anisms, requiring only very limited actuation, and no sensing,
can be designed that allow knots to be tied automatically in
string or rope in two steps. In the first phase of knot tying,
the string is loosely arranged into the shape of the knot using
pressurized air. In the second phase, the ends of the string
are pulled to tighten the knot in a controlled fashion, guided
by the geometric structure of the mechanism. Although these
devices are intended as a proof of concept, the automatic
design process can design these mechanisms for a broad family
of knots, and experimental work shows that simple knots can
be arranged and tightened in a few seconds.

I. INTRODUCTION

Knots are used for practical binding tasks (shoelaces, climb-
ing knots, surgical suturing) and decoration (ties and bow ties,
gift wraps, pendants). This paper shows an approach to tying
a variety of knots automatically using simple control (pulling
the open ends of string) without sensing. This paper expands
on a paper originally presented at the 2014 Workshop on the
Algorithmic Foundations of Robotics [47]. We do not focus
on a particular application of knot tying, but rather on the
underlying manipulation problem.

In the presented approach, a fixture first constrains the string
so that simple actuation can be used to loosely arrange the
string into a shape with the desired topology around a set of
parallel rods. This outer arrangement fixture is then disassem-
bled to expose the string and the rods. These parallel rods
form part of a tightening fixture that passively leads the string
(in a controlled fashion) to a desired tightened configuration
when the ends of the string are pulled. Figure 1 shows how
the six pieces of the arrangement fixture (transparent yellow)
may be disassembled to expose the string and the tightening

(a) Fully assembled shoelace tying fixture.

(b) The fixture being disassembled, exposing the string
and rods. The orange tube shows the shape of the string.

Fig. 1: Models of assembled and disassembled arrangement
and tightening fixtures for the shoelace unknot.

fixture (gray rods). Figure 3 shows a physical implementation
of a knot-tying fixture.

Simply pulling the open endpoints of string after arrange-
ment of a knot can lead to incorrect tightening of complex
knots for which friction locks are intended to occur at partic-
ular locations along the string; Figure 2b) shows an example
of what can happen to a cloverleaf knot (Figure 2a) during
simple pulling. Humans appear to ensure correct tightening
using a complex sequence of maneuvers and placement of
extra fingers. Our approach is motivated by the idea that a
fixture can take the place of extra fingers and control, allowing
correct tightening simply through pulling on the ends of the
string. In Section IV-D, a cloverleaf knot is shown to be tied
using the fixture designed.

We have explored two methods of tightening. The first
tightening fixture design (Figure 11) is composed of stationary
sloped rods that guide the string during tightening. The second
fixture design (shown in Figure 17) allows the rods to slide
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closer together during a controlled tightening process. The
tying of different knots is shown in the video attachment,
which will demonstrate the general process of our knot tying
process with the assistance of the fixtures.

The basic idea of the arrangement fixture (without any
capability for tightening) was presented first in the thesis of
coauthor Bell [11], and is explored experimentally in [12].
The primary contribution of the current paper is the significant
extension of this work to show a complete system for tighten-
ing as well as arrangement, and proof-of-concept application
to knots that are more complicated than those previously
explored.

The fixture-based approach admits reliable knot tying, and
the paper will make some arguments as to why the approach
can be applied to a broad family of knots. In fact, the approach
can even be applied to “unknots” such as the top of a shoelace
knot, for which pulling on the ends of un-fixtured string would
actually untie the (un)knot. The paper will present a process
that allows a fixture to be designed for a given knot, and will
show examples of fixtures for the double-coin decorative knot,
a shoelace unknot, and a cloverleaf knot.

In manipulation, we sometimes have the luxury of designing
a mechanical process so that simple models are sufficient to
describe the behavior we care about. This principle drives the
fixture design. We avoid modeling the string as a general (and
unpredictable) continuous 3D curve by first ensuring that the
configuration of the string achieves the desired topology using
the arrangement fixture. Then the string is pulled tight around
the tightening fixture, and takes on an essentially polygonal
shape; this polygon may be computed by considering the
shortest curve for the string in a homotopy class enforced by
the rods.

Undesired friction between strings might cause premature
friction lock—high friction at certain contacts that prevents
further tightening of the knot. Our strategy to avoid the neces-
sity of modeling unpredictable string-string friction contacts
is to tighten knots in a controlled fashion using the fixture,
so that string-string contacts are delayed until they become
necessary (and desired) in the tied configuration.

Although a new fixture needs to be designed for every new
knot, we describe an automated design process in Section V
which outputs the layout of the fixture. A human then uses
basic 3D extrude and cut operations in a 3D modeling package
to transform the layout to a physical model suitable for
printing. In our experience, this process takes about 10 minutes
of work by a human. Fixtures of the size discussed in this
paper are typically printed in a few hours on the Objet Eden
250 printer we used.

Although we expect that the approach would be effective
for string of various thicknesses, current work has focused on
tying yarn of only two thicknesses.

Even thought the proposed approach is the first we are
aware of that can tie (and eventually tighten) different kinds of
knots, it has various limitations. Due to the size of the fixture,
the proposed method is not capable in constrained spaces. In
Section III-B, we will show that our fixture is able to arrange
and tie knots around objects, but only around simple objects
which contains parts that can be bounded by a cylinder, such

(a) A manually tied cloverleaf knot.

(b) A cloverleaf knot tightened (incorrectly) by pulling
the ends of the string without fixturing.

Fig. 2: Two cloverleaf knots tied by hand.

as rods or rings. In addition, the knot tying process is not as
fast as we would like to see in a factory. Even though this
approach can be used to tie many common knots, even the
ones that consists of multiple strands of string, the approach
depends on the delay of the string-string contact. For many
knots where the contacts is part of knot formation, such as
the knots shown in Figure 13, they cannot be tied using this
approach.

Section I-A will show the overall approach using the ex-
ample of a shoelace unknot using the first tightening fixture
design. Section II briefly examines mathematical models of
knots and unknots; these models are the basis for discussion
of both arrangement and tightening fixture designs.

Section III discusses separable arrangement fixtures. Al-
though the knots studied in this paper are more complex, the
arrangement process is essentially the same as that presented in
our previous work on knot arrangement [12]. For this reason,
our description of knot arrangement with fixtures in Section III
is brief. Rather, we focus on showing how arrangement fixtures
may be designed to embed objects that the knot is intended to
tie around, such as tightening fixture as well as the string. Sec-
tion IV describes the design and improvements of tightening
fixtures. The complete fixture system and the unified design
process are presented in Section V using a double coin knot
as an example.
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(a) The tightening fixture system along with motors and arm
grippers.

(b) The starting configuration of the knot around the tightening
system.

(c) The knot is pulled tight around the rods, and the sliding rods
cannot move any further.

(d) The final configuration of the knot tightened using the passive
tightening system.

(e) A shoelace unknot tightened by the fixture.

Fig. 4: Tying the shoelace (un)knot. For clarity, in Figure 4b, the rods are colored blue.

Fig. 3: Assembled knot-tying fixture for shoelace (un)knot.

A. Example: tightening the shoelace unknot

Figure 4d and 4e show the result of arranging and tightening
the top of a shoelace knot (which we will call a shoelace
unknot) using a fixture designed for the purpose using the
general design principles that will be presented later in the
paper.

The tightening is accomplished in four stages. First, the
fixture is assembled, as shown in Figure 1a; pressurized air
pushes the string through the fixture to obtain the desired

topology. The configuration of the string around the rods is
bounded by the (orange) tube shown in Figure 1b. The second
step is to separate the arrangement fixture (yellow transparent
pieces in Figure 1a) to expose the string around the rods in a
loose configuration, which is shown in Figure 1b. In Figure 1b,
the thin straight gray rods can move along the designed track,
while the thick straight gray rods remain stationary.

The third step is to pull the string as the string slides along
the rods, and the thin rods slides towards the center of the
tightening fixture, until the knot is nearly tight (Figure 4c).
The last step is to lift the string up from the thin rods, and
pull to finish tightening (Figure 4d).

The basic geometry of the fixture was found using the
design process which will be described in section V; further
work by a human engineer using Solidworks thickened the
various tubes and rods to create the complete 3D model of
the fixture. The fixture shown in Figure 3 was then printed
using an OBJET Eden 3D prototyping machine.

We used two Dynamixel MX-28 servo motors to pull the
ends of the string. Figure 4a shows the placement of motors.
The last step of lifting the string off the think rods was
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achieved by using an Adept Cobra Robot Arm, though a
simpler system that provides one translation degree of freedom
could replace the arm.

When the knot is lifted from the thin rods, the “center” part
of the shoelace unknot is free while the two “ears” are still
spanned by rods. When pulled, the “center” of the shoelace
can then be fully tightened. We repeated the procedure ten
times, and all trials successfully tightened a shoelace unknot.

B. Related work
To our knowledge, this is the first work on unified principles

that allow the design of fixtures for tying and tightening a
broad family of knots. However, the work builds strongly on
work on knot-tying from a broad set of background areas.
This section provides only a brief survey; studies related to
string manipulation and knot tying are discussed in more detail
in [11].

Even though we only study how to tie knots with physical
string in this work, other material can be folded (or tied) into
knot like structures, such as folding proteins [21].

A brief introduction to mathematical knot theory may be
found in [1], [2], [34], [43]. In particular, one central aspect
of mathematical knot theory is the study of knot invariants:
properties that hold across a set of geometric curves that we
might consider to all represent the same knot. This study is
particularly relevant to the design of knot fixtures: controlling
the geometric configuration of the string exactly is usually
hard, but achieving the correct knot topology may not be so
difficult.

Work in the knot theory community also studies how to un-
tie unknots [27], [28], [29], [30] such as the top of a shoelace
knot. (Unknots will be discussed in more detail below.) If
we would like to achieve a particular geometric configuration
of an unknot, we must specifically prevent untying motions
during reconfiguration of the string.

The study of tightness of a knot is also a very interesting
area of applied mathematics and physics [40], [10], [36].
Recently, a rope length parameter has been used to study the
tightness of a knot in rope of a given thickness [6].

Engineers have designed many different machines to
tie [18], [19], [44] and tighten [45] different knots, but designs
are typically complex, and are specific to particular knots.

Recently, elastic rods have been used as a model for
manipulation of wire [17]. Flexible needles have been applied
to manipulate string [4], [3]. String manipulation has also been
explored as a challenge problem for single- and multi-arm
coordination [32], [33] .

The configuration of string wrapped around rods in our
tightening fixtures may be modeled as the shortest curve
among point obstacles; algorithms to find such curves have
been studied in the computational geometry community [14],
[20], [25], [26], [31]. In previous work, we optimized the lay-
out of the string in arrangement fixtures using graph drawing
algorithms [46], [23]. To find the tension along the string after
wrapping around frictional rods, the capstan equation [7], [24]
may be of some use.

Although we are only beginning to understand approaches
to tying knots with fixtures, our approach to this problem

(a) Shoelace unknot.
(b) Culprit unknot, redrawn
from [30].

Fig. 5: Knot diagrams of unknots.

draws inspiration from problems previously studied in the con-
text of manipulation and motion planning. Both the arrange-
ment fixture and the tightening fixture are used to cage [16],
[41] the string (although in different ways), since exact control
may not be possible. One could study the frictional contact
modes [9], [37], [13] between the string and the rods, or
between string and string. Or perhaps avoiding friction al-
together would be wiser; adding low-friction ball-bearings to
areas inside the arrangement fixture and at locations along the
tightening fixtures can simplify tightening, using ideas like
those explored by Furst and Goldberg [22]. Restricting paths
to certain homotopy classes becomes critical in the fixture
design, since precise control may not be possible; recent
work by Bhattacharya et. al. [15] explores algorithms for
generating such paths in the context of motion planning. The
focus on tight string recalls work on using minimum energy
configurations of flexible bodies for the purpose of motion
planning [38], [42].

Early work in manipulating cartons by Lu and Akella [35]
served as one inspiration for current work, as did work on
robotic folding of origami [48], [8]. Fixtures have also recently
been used to manipulate ribbons used in cancer treatment [39].

II. MATHEMATICAL KNOTS AND KNOT DIAGRAMS

What is a knot? What types of knots can be arranged
or tightened by fixtures? Our general approach to designing
fixtures is based on the idea of “knot diagrams”, represen-
tations of knots developed in the mathematical knot theory
community. Conveniently, knot diagrams are planar, and show
knots in loose, rather than tight, configurations. We therefore
use knot diagrams with the desired geometry as a starting
point to design arrangement fixtures, and to place the rods
in the tightening fixtures. This section describes mathematical
models of knots, and the relationship between knot diagrams
and our fixtures.

A mathematical knot is an embedding of a circle in R3

with no open ends. A mathematical knot cannot be untied
(the topology of the string cannot be changed) without cutting
the circle. Figure 6 shows a trefoil mathematical knot, which
is an overhand knot for which the open ends have been glued
together.

If we glue together the open ends of the shoelace tied in
the previous section, we get what is referred to as an unknot.
Technically, an unknot is a circle or any of its ambient isotopes
in R3; informally, some moves can be applied to the unknot
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Fig. 6: A trefoil knot (on the left) is a mathematical knot.
When the edge is cut, the knot becomes an overhand knot (on
the right) that we can physically tie.

Fig. 7: An example of a type II Reidemeister move.

that “untie” the unknot without causing self-intersection of the
string and without cutting the string.

A knot diagram is the regular projection of a knot (or
unknot) to a plane with broken lines indicating where one part
of the knot under-crosses the other part. We refer the points
indicated by the broken lines as crossings. Figure 5 shows
knot diagrams for the simple shoelace unknot, and for a more
complicated unknot, the culprit unknot studied in [30].

Although knot diagrams for a particular knot are not unique,
Reidemeister moves [5], corresponding to specific manipula-
tions of string near the crossings, can be used to transform
between any pair of knot diagrams for a given knot type. For
an unknot, there always exists a sequence of Reidemeister
moves that transforms the knot diagram into a simple loop.
For example, Figure 7 shows a type II Reidemeister move,
which removes two consecutive over-crossings.

In contrast to mathematical knots, physical knots have open
ends, but by immobilizing the ends of string (in this paper,
using the motors that tighten the string), a given topology
consistent with that of a mathematical knot can be maintained.
Arrangement fixtures, by arranging the string into a geometric
configuration with a desired sequence of crossings given by
a knot diagram, therefore provide a good starting point for
forming a tightened knot.

The situation with unknots is more complicated. When you
pull to untie your shoelaces (Figure 5a), two Reidemeister
moves are in some sense physically performed to remove some
crossings. However, if you hold the two loops (“ears”) of
the shoelace knot in place with your fingers (thus preventing
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Fig. 8: An example of a four-piece arrangement fixture for an
overhand knot, from [11].

Reidemeister moves from happening) while pulling the open
ends, you will prevent the shoelace from being untied, and in
fact, perhaps further tighten the central part of the knot. The
embedded rods serve the purpose of preventing Reidemeister
moves for unknots; the rods allow a particular desired topology
of the string (around the rods) to be guaranteed even for
unknots.

III. KNOT ARRANGEMENT WITH FIXTURES

This section describes the approach to designing fixtures
that arrange string into the desired knot topology.

A. Arranging knots: separable four-piece fixtures

Bell’s thesis [11] proved that any knot can be arranged in
such a way that a fixture can be designed so that fixture may
be disassembled in a very simple way to extract the knot:

Theorem 1. [11] Given any (mathematical) knot consisting of
one or more strands of string, and described by a Gauss code,
a fixture can be constructed that loosely arranges string into
a (physical) knot with the same Gauss code, provided that the
endpoints of the string are connected together outside of the
fixture. Furthermore, this fixture can be cut into four pieces
in such a way that all four pieces can be removed by pure
translation without colliding with the string.

Figure 8 shows an example of a constructed fixture. Al-
though we omit the proof of the theorem, we summarize
the approach, since we will need it to describe how to build
easily disassemble-able arrangement fixtures around rods. We
assume that the string has some non-zero thickness. The Gauss
code is the sequence of junctions, each of which is denoted
as an over-crossing (o) or an under-crossing (u), as we walk
along the string [12].. First, make a cut in the knot diagram
between each pair of crossings, dividing the curve into sections
that each contain a single crossing, either “over” or “under”.
Call the set of sections with over crossings the top layer, and
call the collection of sections with under crossings the bottom
layer. Lift the top layer vertically out of the page, in the z
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(a) Six piece fixture to arrange an overhand knot around a ring.

(b) Model of arranging an overhand knot around a ring.

(c) Disassembled arrangement fixture, exposing the
string (orange tube) around the ring. The cut surfaces
are colored blue and red for different layers, while the
surrounding cylinder is green.

(d) Overhand knot tied around a ring by fixture.

Fig. 9: Arranging an overhand knot around a ring.

direction. Now connect the two layers using additional vertical
sections of string; call the layer containing these vertical
sections the middle layer.

Building an easily-separable fixture around this new curve
is now straightforward. Build a top piece that covers the top
layer, a bottom piece under the bottom layer, and surround
the vertical sections by fixture material as well. The top
and bottom pieces may be removed from the string using
pure translations (up and down respectively), and the middle
layer can be cut into two pieces and removed using sideways
translations.

Even though we can always separate the top piece and the
bottom piece, the middle layer cannot always be immediately
cut into two pieces and separated using sideways translations.
Some rearrangement of the vertical sections of curve may
necessary to ensure that only two pieces are needed to extract
the middle layer of string.

For example, imagine that we look at the arrangement of
string from the side. If all vertical sections of string in the
middle layer are visible from the view direction, then two
separable pieces of fixture can be used to cover the vertical
sections: one covering the visible front sides of the string,
and one covering the back sides. If some sections are not
visible (obstructed by other vertical sections), then two pieces
of fixture may not be sufficient. Therefore, we sometimes need
to rearrange these vertical sections to ensure the separability
of the middle layer.

B. Arranging knots around objects

In this section, we show how to extend the four piece
fixture design to support tying knots around different objects.
Topologically, perhaps the most interesting object to tie string
around is a ring, since the top and bottom pieces of the fixture
cannot be extracted from the ring without cutting the fixture.

For simplicity, we find a vertical bounding cylinder (colored
green in Figure 9c) around the ring (or other object), and
embed the bounding cylinder into the fixture. The middle
layer of the four-piece fixture is cut into two pieces to allow
the fixture to be separated from vertical sections of string
without interference. If vertical cylinders are placed along this
cut surface (colored as blue or red in Figure 9c for different
layers), the middle section of the fixture will be separable
without interfering with the cylinders. However, the cylinders
are longer than the vertical sections of string, and extend into
the top and bottom layers of the fixture. To allow separation
of these sections, the cut in the middle layer may be extended
into the top and bottom layers; the fixture now has six pieces.

Figure 9d shows a successful tightening of an overhand knot
around a ring, using our six-piece fixture design.

C. Russian dolls: embedding a tightening fixture in an ar-
rangement fixture

In the first phase, the arrangement fixture guides the string
into a loose knotted configuration. In the second phase, the
tightening fixture guides tightening of the loosely knotted
string. How can we transfer string between the two fixtures?
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Just as tiny Russian dolls can be stored inside of larger
hollow Russian dolls, we can embed the tightening fixture
inside of the arrangement fixture with careful design. Then,
during arrangement, the string is arranged around the embed-
ded tightening fixture; the arrangement fixture can then be
removed, leaving the string in position for tightening.

A side view of a six piece fixture used to arrange string
around a tightening fixture is shown in Figure 10. The separa-
tion sequence is similar to that of the four-piece fixture, except
that the top and bottom sections require some sideways trans-
lation (to be removed from the rods) after the initial upwards
and downwards translations (which are used to separate from
the string).

If there is a direction from which all rods and vertical
string are visible, then a cut surface can be computed to allow
separation from both rods and vertical string. The direction
from which all vertical elements (rods and vertical string) can
be seen allows translation of a “front” piece of the fixture
encasing the vertical elements towards the viewer, and a
“back” piece can be translated directly away from the viewer;
the union of these front and back pieces is the complement of
the vertical elements.

Let there be some desired visibility direction in the x-y
plane; we can detect if rods or string are visible by projecting
their locations onto a line orthogonal to this visibility direction,
as shown in Figure 20b. Based on this approach, we can
successfully design and embed a tightening fixture into the
arrangement fixture, such as the one for shoelace unknot
shown in Figure 11.

In Figure 11, conical tips on some of the tightening rods
are designed to let the string escape the fixture and reach a
final tight configuration, since the rods cannot be arbitrarily
thin or be arbitrarily close. The video attachment shows the
usage of this tightening fixture, with the string escaping the
conical tips.

What if there is no direction from which all vertical el-
ements (rods and vertical string sections) are visible? Since
we are only concerned with attaining a desired topology of
the string around rods, we may slide the vertical elements in
directions parallel to the projection line until visibility from
the projection line is achieved, as shown in Figure 20c.

IV. CONTROLLED TIGHTENING USING FIXTURES

We usually consider a knot “physically tied” only when
the knot has been tightened to the point that application of
certain (perhaps bounded magnitude or constrained direction)
forces does not further change the location of any string-string
contacts, as measured along the string. Typically, we expect
some friction lock to appear at the end of the tightening
process; such friction lock prevents further motion of the
contacts. The main idea we make use of is to build tightening
fixtures that delay string-string contact during tightening until
the knot is “tight enough” to achieve the desired friction lock
by simply pulling on the endpoints.

We present two approaches to designing tightening fixtures.
The first approach has no moving parts, and the string simply
slides along some rods, each with a particular slope designed

(a) Assembled fixture.

(b) Disassembled fixture.

Fig. 11: Assembled and disassembled arrangement and tight-
ening fixtures for the shoelace unknot. The orange tube in
subfigure (b) shows the shape of the string after arrangement
but before tightening; the gray rods are the tightening fixture,
and the yellow transparent parts are separated arrangement
fixture.

to guide the knot to tighter configurations. This approach has
the strength of simplicity, and such fixtures can be printed
using a rapid prototyper with no additional work. However,
friction between string and fixture can become a problem for
more complex knots. The second approach uses rods that slide
closer together during tightening, and spin to reduce the effect
of friction. This more-complicated mechanical design does pay
off in faster, more reliable tightening.

Both styles of tightening fixtures include a set of carefully
arranged rods. Let us define a cell of a knot diagram as an
open bounded connected region of R2 enclosed by the knot
diagram; it is a subset of the complement of the knot diagram.
For simplicity, we typically place one rod in every cell; this
is sufficient to prevent Reidemeister moves and thus preserve
the intended crossings, even for unknots.

A. Single-piece tightening fixtures

We first discuss tightening fixtures with no moving parts.
The straight sections of the rods embedded in the arrange-

ment fixture ensure desired crossings. The tilted sections of
rods allows controlled tightening, for the subset of knots for
which the desired final configuration is close to planar. We give
no formal definition of “close to planar”, but as an example,
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(a) Side view of arrangement fixture assembled around
tightening fixture.

(b) Disassembly of top and bottom of arrangement fixture
by vertical translation.

(c) Disassembled arrangement fixture and exposed string.

Fig. 10: Disassembly sequence for arrangement fixture.

(a) Input to the design process, the desired geometry of
a double coin knot.

(b) Rod placement in cells.

Fig. 12: Double coin knot.

(a) A padlock knot. (b) A door knocker knot.

Fig. 13: Non-planar knots, such as those shown here, cannot
be tightened using our fixtures.

Figure 12a shows a decorative double coin knot that is nearly
planar.

Figure 13 shows a few non-planar knots that cannot be tied
using our fixtures. These knots contains wrapping around a
segment of string, which is difficult to achieve using a planar
fixture.

How should these tilted rods be designed? Let the final

(a) Loose string around disc ob-
stacles. (b) Tight around disc obstacles.

(c) Reconfiguration of discs. (d) Fixture to tie star shape.

Fig. 14: String tightening around set of rods.

configuration of the knot lie (approximately) in an x-y plane.
Imagine also that the initial, looser configuration of the string
lies in the same x-y plane. Now let us consider how the string
would need to move for tightening within this single plane.

Between the initial and the final time, choose a continuous
(w.r.t. time) family of configurations of the string in the x-y
plane. For our purposes, we choose the initial configuration
to be a linearly-scaled version of the final configuration, and
choose intermediate configurations based on linear interpola-
tion. Place small disc-shaped obstacles around the string so
as to constrain the shape of the string to a polygon with
approximately the correct shape (we will discuss this detail
in subsection IV-B below). Figure 14b shows such an initial
configuration, and Figure 14c shows a final configuration, both
constrained by disc obstacles. If we move the discs between
initial and final configuration while tightening the string, the
string will be constrained to move to the final configuration
as well.

The motion of the string can now be described as a surface
in (x,y, t) space-time; the t = 0 and t = 1 slices of this surface
correspond to initial and final configurations of the string.
Based on our previous assumption, each later slice can be
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achieved by moving obstacles inwards (using the same linear
transformation applied to the string) while pulling on the ends
of the string to tighten, assuming no friction between string
and obstacles.

In space-time, the motion of the disc obstacles generates a
set of tilted rods (“space-time obstacles”), and we can build a
physical model of these rods, by substituting the z dimension
for the time dimension. We can use the rods to tighten knots
by wrapping the string around the base of the rods (physically
z = 0, corresponding to t = 0 in space-time), and pulling on
the ends while moving the rods in the z direction. Figure 14d
shows an example of such fixture to tighten the star shape.

B. Shortest curves around point obstacles

How should the rods be placed to guarantee the intended
polygonal shape of the string, with sufficient clearance be-
tween rods and string so that the arrangement fixture can be
assembled around both?

A simplified version of finding how string wraps around
obstacles in the plane has been studied in computational
geometry—finding the shortest curve within a homotopy class
described by a set of point obstacles [14], [20], [25], [26], [31],
given the coordinates of the point obstacles and the polygonal
curve that describes the initial “loose” configuration of the
curve in certain homotopy class. This section uses shortest
curves in a homotopy class to model the shape of the string
as the string is pulled around the tightening fixture.

Cross sections of rods are discs rather than point obstacles,
and the radii of the rods matters as the string approaches
its tightest configuration. Therefore, we used a set of point
obstacles on a circle to approximate the shape of the disc cross-
section to compute how we expect string to wrap around the
tightening fixture, and to inform the design of the tightening
fixture.

To compute shortest paths in a homotopy class around
points, we used the algorithm presented in [14]; because this
algorithm was unfamiliar to us, and may be unfamiliar to
others in the robotics community, we outline it briefly below.

The input to the algorithm is a (presumably loose) polygonal
path around the point obstacles. First, divide the polygonal
curve into a set of x monotone paths where each path has either
non-decreasing x coordinates or non-increasing x coordinates,
such as segments ap1, p1 p2, p2 p3, p3b in Figure 15a.

The first significant task of the algorithm is to find a canon-
ical representation of each x monotone path, describing the
relationship of each path to the point obstacles. We describe
each x-monotone path using its relative position to all point
obstacles. For example, the canonical representation of path
ap1 and p2 p3 are 1+,2+,3+,4+,5+,6+ and 1−,2+,3+,4+,5−,
6+ respectively, assuming each point obstacle is labeled with
k ∈ {1,2, . . . ,n}, with a + sign if it is above (otherwise −) the
corresponding monotone path.

Using the canonical representation, we can represent the
entire polygonal path by patching up the representation for
each x-monotone path in sequence. We can then simplify such
representation by deleting the relative information about a
point obstacle if the same point obstacle appears with same

a

b
1

2 3

4
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1

6

(a) Polygonal input of a curve,
obstacles and x-monotone paths. (b) The case of p not updated.

(c) Case of p gets updated.

!

"
#
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%
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(d) Shortest homotopy curve of
example in Figure 15a.

Fig. 15: The illustration of the search for shortest homotopy
curve.

sign twice consecutively in the representation. For example,
between p1 p2 and p2 p3, obstacle 1 is under both x-monotone
paths, labeled as 1− at the end of p1 p2 and at the beginning of
p2 p3. Therefore, we can simplify the description by deleting
the two adjacent 1− symbols in the representation. The
canonical representation of the curve described in Figure 15a is
1+,2+,3+,4+,5+,6+,6−,5−,4−,3−,2−,2+,3+,3− after sim-
plification.

For each monotone path π starting at p, we want to find
the shortest admissible curve from p to the end of π between
U and L (let BU denote the points (obstacles) above π , and
BL the points under π; let U be the lower envelope of BU and
L be the upper envelope of BL) such that the shortest curve
is within the same homotopy class as π . By lower (upper)
envelope of BU (BL), we mean a subset of points in BU (BL)
with different x coordinates such that by connecting every two
points in the subset with adjacent x coordinates with a straight
line segment, the rest of points of BU (BL) are all above (under)
the connected polygonal path.

The basic idea is based on visibility, and we refer the area
with apex at p and between U and L as a funnel. Let ui and
l j be the ith and jth points on BU and BL. If there exists a
straight line between p and ui+1 (or l j+1) in the funnel, then
the shortest curve up to ui+1 (l j+1) will be a straight line, as
in Figure 15b.

If pl j+1 (or pui+1) intersects with U or L, consider the
funnel apex at p shown in Figure 15c. Find q1 ∈U and q2 ∈ L
such that all uk,k≤ i are above or on pq1 and all lk,k≤ j are
below or on pq2, as the example shown in Figure 15c. If pl j+1
is above pq2 (as shown in Figure 15c), then q1 (q2 if pui+1 is
below pq1) becomes the new apex p, and the shortest curve
up to q1 (q2) is recorded. Figure 15c shows the case when q1
becomes the new apex. Repeat until the end of π , and apply
the previous procedure to all monotone paths. We have then
found the shortest curve in the given homotopy class.
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(a) Slanted rod bases have different y coordinates.

(b) Slanted rod bases have the same y coordinates.

Fig. 16: Cases for proof of Proposition 1.

C. Non-intersection of slanted rods

There is a slight technical problem that we might be
concerned about, however. The apices of the parallel portions
of the rods are the bases of the slanted portions of the rods.
Arbitrary placements of the parallel rods might lead to slanted
sections that intersect each other.

Fortunately, by careful design of the slanted sections, we
can avoid this potential problem. Consider the top, slanted-rod
section of the fixture. Before taking into account the need to
move the parallel rods to eliminate occlusion, we might design
this top section such that the fixture enforces a radial scaling
of the goal configuration of the knot outwards to some less
tight configuration. Since rays from a common point (formed
by the scaling of the knot down to size zero) do not intersect
unless they are coincident, there are no intersections between
slanted rods using this approach. In fact, perturbations of these
rays to avoid occlusion between their bases can also avoid
intersection:

Proposition 1. Given a set of points pi, i = 1,2, . . . ,n in R3

with the same z coordinates, there exist a set of points p′i,
i = 1,2, . . . ,n on the x-y plane where x(p′i) 6= x(p′j) for i 6= j
such that the n line segments connecting each pi to p′i do not
intersect each other.

Proof. The set of points p′i can be found in the following way.
Let z(pi) = c for all i, where z(∗) represents the z coordinates
of a point and c is a positive constant. Choose a value h > 0
representing the desired height of a radial projection center
point above all pi. Let this center point O have coordinates
( 1

n ∑
n
i=1 x(pi),

1
n ∑

n
i=1 y(pi),c+h). Then for any i, the point p′′i

is on the ray Opi with z(p′′i ) = 0.
If y(p′′i ) 6= y(p′′j ) for i 6= j, choose any p′i and p′j such that

y(p′i) = y(p′′i ) and y(p′j) = y(p′′j ) (Figure 16a). Denote the
plane Pk as the plane that contains the line y = y(p′′k ) and
ray Op′′k for any k. Plane Pi and plane P j intersect at the
line that passes through O parallel to the x axis. We know
z(pk) < z(O),k ∈ {1,2, . . . ,n}. Choose p′i and p′j to have the
same y coordinates as p′′i and p′′j respectively, they belong to
two different planes. Therefore, line segments pi p′i and p j p′j
do not intersect.

If y(p′′i ) = y(p′′j ), choose p′i and p′j such that sign(x(p′i)−
x(p′j)) = sign(x(pi)−x(p j)) (Figure 16b), pi p′i will not inter-
sect p j p′j.

Overall, we can easily enforce x(p′i) 6= x(p′j) for i 6= j;
therefore we have found p′i.

Therefore, if we first radially scale all rods outwards from
p′′i , then move to p′i to guarantee visibility, the slanted rods
connecting p′i to pi for all i will not intersect each other.

The proof assumes the rods are of zero radius, but if the
cross sections of rods are circles with radius r, and |y(p′i)−
y(p′j)|< r, the rods can still intersect. In this case, we can find
O′ where z(pi) < z(O′) < z(O), such that the new p′′′i on the
ray O′pi satisfying |y(p′′′i )− y(p′′j )| > r. Using p′′′i to replace
p′′i and finding new p′i resolves the problem.

With the assurance that there always exists a design such
that the slanted rods do not intersect, we designed such
tightening system for shoelace unknot and double coin knot.
The complete setup for tightening the shoelace unknot is
shown in Figure 17.

Figure 21 shows the fixture designed for tightening a double
coin knot, and the result of a tightening.

D. Tightening fixtures with moving rods

During tightening of the previously mentioned shoelace un-
knot in Section I-A and double coin knots, we observed several
violations of our assumptions, even though the tightening was
successful cross several repeated trials.

The string was not always taut around the rods during
tightening, since friction between some rods and the string
can prevent equal distribution of tension between segments of
string. Friction also prevented the string from sliding vertically
along rods at the same speeds, resulting in the situation shown
in Figure 18. Since the design is based on the idea that the z
axis may substitute for the time axis in space-time, we would
like the string to always wrap around the rods at the same z
coordinate throughout the tightening process. The difference
in z coordinates was large in the experiments.

Different tilting angles of the rods can cause string to
slide along the rods vertically with different speeds. Friction
between string and rods can also cause string to catch during
sliding.
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(a) The fixture system along with motors and arm grippers.

(b) The starting configuration of the knot around the tightening
system.

(c) The final configuration of the knot tightened using the
system.

Fig. 17: The automation system for tightening, and the starting
point for shoelace knot.

The capstan equation [7] tells us that when string wraps
around rods in the presence of friction, the tension before
contact with rods and after may be different. To reduce this
type of friction, we considered an alternate design. In this
design, the rods are on ball bearings, such that when the string
is taut, the rods rotate with the string, leading to low effective
friction in the horizontal plane containing the string.

Vertical friction along the rods is also a problem. Rather
than using tilted rods, in the second fixture design, we placed
a collection of straight rods on sliders that can move along
tracks in the x-y plane passively when pulled on by string. The
shape of the tracks is the projection of the tilted rods used in
the first design. The straight rods move along the tracks with
low friction.

The passive motion of the rods, powered by the string itself,
is not perfect, since different forces may be applied to different
rods, leading to non-uniform scaling of the knot shape during

Fig. 18: During tightening shoelace unknot, the z coordinates
are clearly different at different locations on the string.

(a) Different rods move at different speeds during tightening.

(b) The knot eventually reaches the desired geometry at the end of
tightening process.

Fig. 19: A fully passive tightening fixture using tracks. The
rods slide along the tracks when the string contacts the rods
to provide force.

tightening. However, the simplicity of the passive design is
attractive, and was sufficient to ensure correct tightening for
the knots we tried (Figure 19). Among the knots we have
experimented on, the non-uniform scaling appears not to be a
problem. However, we expect for a larger and more complex
knots, the non-uniform scaling will lead to premature friction-
lock, preventing the knot from being tightened correctly.

V. AUTOMATED DESIGN PROCESS

Previous sections explored aspects of the design of fixtures;
this section describes the complete design process, first using
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(a) Finding the shortest curve around points guaranteeing
a minimum clearance from rods. Dashed lines show the
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(c) Remove occlusions.

(d) Simplified layout of string around rod positions, using computed vertical segment positions from (c).

Fig. 20: The fixture design process.

the double coin knot as an example, and then considering
a more complex example, the cloverleaf knot. The design
process is the reverse of the tying process: from the final
desired configuration of the knot, arrange rods, scale up the
knot, and embed knot and rods in an arrangement fixture,
enforcing that all the vertical string segments and rods are
visible from a chosen direction.

We start with a photograph of the knot in its desired con-
figuration along with corresponding crossing sequence (knot
diagram), such as the double coin knot in Figure 12a. By hand,
we mark the outline of the knot shape in the photograph,
roughly identifying the geometric configuration of the knot
and the centers of the cells. The centers of the cells then
form the top of the tightening fixture, as shown in Figure 12b.
Admittedly, the digitalization process can be automated by
identifying string from background using computer vision.

However, this is not the focus of this paper, so we will not
discuss the digitalization in more details.

The next step is to choose an arbitrary direction along
which to enforce the visibility property on all rods and vertical
string elements. In Figure 20, we chose the original y = x line
to be the axis onto which vertical elements are projected to
determine visibility. For convenience, we then transform the
coordinate system so that the projection axis is the x-axis.

In the transformed coordinate system, find the shortest
homotopy curve of the string among given rods. We chose to
use eight points to approximate each disc, with some clearance
to allow for the arrangement fixture to surround the rods. An
example is shown in Figure 20a.

Along the shortest homotopy curve, based on the knot
crossing information, identify all the vertical string segments
(denoted as segment nodes in [11] [12]), as shown in Fig-
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(a) The tightening fixture for a double coin knot.

(b) A double coin knot tightened using the fixture in Figure 21a.

Fig. 21: The tightening fixture for the double coin knot and a
knot tightened using this fixture.

ure 20b. (For convenience of the human designer, we may
also orthogonalize the tubes for the string.)

Finally, remove occlusions using the procedure proposed in
the proof of Proposition 1. Figure 20c shows the occlusion-
removal procedure and Figure 20d shows the resulting layout
of the tubes. Based on this layout, a human designer can
model the arrangement and tightening fixture in 3D modeling
software. (This step is required because the layout, although
it contains all of the most interesting required information, is
two-dimensional and not formatted for 3D printing.)

The resulting tightening fixture for a double coin knot is
shown in Figure 21a. We applied our tightening approach
using the printed fixture, and tied the double coin knot shown
in Figure 21b, which is similar to the configuration shown in
Figure 12a.

A. Tightening the cloverleaf knot

This section discusses an example of tightening the clover-
leaf knot shown in Figure 22. This given knot is quite complex
compared to previously presented knots. The knot has open
‘ears’ that need to be maintained, like the shoelace unknot. At
the same time, the structure of the tightened knot is hard to
maintain by simple pulling without any assistance. An example
of what can go wrong when pulling on just the endpoints of
the string by hand without any fixture is shown in Figure 2b.
(The hand-tightened cloverleaf shown in Figure 2a required
a complex and, in our case, ad-hoc, sequence of maneuvers
to keep the loops open and correctly sized, and to keep the
center well-structured.)

Fig. 22: Knot diagram of the cloverleaf knot.

(a) The tightening fixture with moving rods for cloverleaf
knot.

(b) A cloverleaf knot tightened by our fixture.

Fig. 23: The designed tightening fixture for cloverleaf knot,
and a tightened cloverleaf knot using the fixture.

The designed fixture for tightening cloverleaf knot is shown
in Figure 23a. We conducted experiments tightening the
cloverleaf knot with consistent success over tens of trials; an
example tightened knot is shown in Figure 23b.

We recorded the tightening time for different knots using
fixture (after arrangement), and compared to tightening by
hand (Table I). The tightening by hand was slow because
of the need to carefully maintain the geometry of the knot
by hand during tightening. Of course, we do not claim that
our inexpert hand-tightening should be considered the gold
standard for human knot-tying – these experiments were only



14

XXXXXXXXXXMethod
Knot type

Shoelace Cloverleaf

Fixture 4.46 (0.23) 7.98 (0.94)
(moving rods)

Fixture 35.7 (1.23) N/A
(slanted rods)

Hand 2.01 (0.23) 15.23 (0.80)

TABLE I: Time (in seconds) used during tightening for differ-
ent knots, both using fixture or tightening by hand. Reported
time is the average over 10 runs. The numbers in parentheses
are the standard deviation.

intended to give a general idea of the speed of the current
fixtures.

VI. CONCLUSIONS AND FUTURE WORK

This paper showed a process to design fixtures to arrange
and tighten knots and unknots. Examples included the double
coin knot and shoelace unknot.

The mechanical implementation of the fixtures could be
improved: less flexible rods with smoother surfaces for better
sliding, a device for automatically disassembling the arrange-
ment fixture, friction reduction inside the arrangement fixture
using ball bearings, and better control of the geometry of
the string during tightening. Actively controlled movable parts
in the tightening fixture may allow an even more controlled
tightening.

We would like to expand the set of knots that can be tied.
Any knot that can be described by a knot diagram can be
arranged by a sufficiently large arrangement fixture together
with a feeding mechanism capable of inserting the string fully,
but only flat knots can be tightened using the tightening fixture.
How can more general knots be tightened? Can knots be
tied around large structures, such as gift-wrap boxes, or tied
quickly enough to be used in medical applications?
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