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Abstract— We show that using a fixture-based approach,
knots can be tightened satisfying fairly precise geometric con-
straints; for example, we might like the loops of tied shoelaces
or a decorative cloverleaf knot to each be some precise length.
A robot arm and specially designed gripper are used first
to arrange knots on the fixture, comprised of a collection of
straight rods. Some of the rods can move; precise tightening
is achieved by pulling of the open ends of the string, while
rods guide and delay friction locks appropriately. We show an
algorithm for designing a fixture based on an arbitrary input
knot diagram. Some example knots, including the cloverleaf
knot, are tied as a proof of concept.

I. INTRODUCTION

In this work, we present an approach to tying knots
precisely without simulation or sensing. By precisely, we
mean that when a knot is tight, specified distances will be
achieved between selected pairs of contact points. These
distance constraints are enforced by controlling the locations
where friction locks are formed during tightening of the knot.

Knot-tying is worthy of study as a fundamental manipula-
tion process. How do you manipulate flexible materials into
configurations with certain qualitative or geometric proper-
ties? Although our current focus is on fundamental processes,
there may ultimately be some practical use for systems that
tie decorative or practical knots precisely, in areas ranging
from automated manufacturing to surgical robotics.

Historically, sailors measured water depth using a sound-
ing line with knots tied at six foot (one fathom) intervals
along the line; sounding lines are one example where knots
need to be placed precisely. Other example include decora-
tive knots, such as the cloverleaf knot shown in Figure 2,
tied by one of our fixtures (Figure 1).

Mathematical knot diagrams are typically used to describe
the structure of a knot. A knot diagram is a regular projection
of a loose knot (or unknot) onto a plane, where broken lines
indicate one segment of the string under-crosses some other
segment. Knot diagrams do not themselves indicate the pre-
cise geometry of the tightened knot; additional information
about the distances along the string where points of contact
between different parts of the string occur is needed.

One of our central ideas is to manipulate the string while it
is tautly held by a fixture, so that deformation of the string is
limited, allowing easy modeling and control. The first step of
our approach is to arrange the knot on the fixture that will
be used to tighten the knot. Although we have previously
designed nearly passive arrangement fixtures [34], requiring
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(a) After arrangement, the
cloverleaf knot is spanned on
the fixture.

(b) After pulling the ends for
a small amount, some pins
moves.

(c) The string are taut around
the rods, cannot be pulled fur-
ther.

(d) The cloverleaf knot is tight
around the tightening fixture.

Fig. 1: Tightening a cloverleaf knot.

Fig. 2: Machine-tied cloverleaf knot.

only the application of pressurized air, the larger size and
complexity of knots considered in this paper makes insertion
of the string difficult using that method. Therefore, we use a
robot arm with a special-purpose gripper to arrange the knot
around the fixture.

The knot is then tightened on the fixture by pulling on the
ends of the string, as shown in Figure 1. The fixture uses
rods to span the knot during arrangement, and to delay the
friction locks from happening prematurely. Some rods are
removed during tightening, and others are allowed to move,
leading corresponding friction locks to appropriate locations
to satisfy the distance constraints. The majority of the paper
introduces fixtures with rods that move passively due to the
tension along the string during tightening. In Section VII,
a motor is used to actively move these rods on the same
fixture, allowing better control over the location of the rods.



To our knowledge, this is the first work on tying knots
precisely with fixtures. The paper focus on the mechanical
designs for this approach. The design of the fixture, however,
can be automated using simple optimization techniques,
and will be presented in Section V. Although this work is
preliminary, and exhaustive experiments have not yet been
performed, we show that a simple version of the sounding
line and a decorative cloverleaf knot can be tightened pre-
cisely.

A. Related work

We are not aware of work that explores tying complex
knots precisely in a general way. The use of fixtures to tie
knots has been explored in our previous work [10], [34], both
for arrangement and for tightening. Recently, fixtures have
been used in cancer treatment [27] with paths designed to
guide ribbon cable to a desired location without excessive
bending or twisting. The rest of this section provides a short
survey on knot tying; a lengthier survey can be found in [9].

Knot theory has long been studied in mathematical com-
munity [1], [2], [22], [30], including work on knot invariants
which study different drawings of the same knot.

When is a knot tight? This question has been studied in the
applied mathematics and physics [28], [8], [24] communities.
It is useful to measure distances along the string in units of
string thickness; such a measure is referred to as rope length
in [5].

Special machines that can tie specific knots have been
invented [13], [14], [31], [32], but the approaches are quite
specific to the particular knots being tied.

Various approaches have been used to achieve particular
string manipulation tasks. For example, wires are modeled as
elastic rods for manipulation [33], and flexible needles can
be used to navigate string [4], [3]. String manipulation has
also been used as a challenge problem to study single- and
multi-arm coordination [20], [21] .

One critical observations is that when pulled taut around
rods on tightening fixture, the string can be modeled and
controlled much more easily. The taut configuration of string
among rods has been studied in computational geometry
community as the shortest curves in a particular homotopy
class among point obstacles [12], [15], [17], [18], [19].

Friction exists between the contacts of string and the
fixture, and even between the contacts of string and string.
Rather than relying on analysis of these frictional forces
(as in, for example, [7], [25], [11]) we mitigate friction by
mounting all rods on low friction ball bearings, following
the direction explored by Furst and Goldberg [16]. Motion
planning studies of flexible bodies’ minimum energy config-
urations [26], [29] are another source of inspiration leading
us to manipulate the string when it is taut.

Manipulation of cartons by Lu and Akella [23] also
inspired our current work, as has work on robotic folding
of origami [35], [6].
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(a) Loose sounding line.
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(b) Tight sounding line.
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(c) Loose Cloverleaf knot.
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(d) Tight cloverleaf knot.

Fig. 3: Contact diagrams on loose knot diagrams and
machine-tightened sounding line and cloverleaf knot. The
range between the brackets indicates the knot units, and the
black circles indicates the crossings and their corresponding
locations along the string.



II. BACKGROUND: PRECISE TIGHTENING

We consider the sounding line (top of Figure 3b) to be
a compound knot in the sense that it is a collection of knot
units. Here, a knot unit is defined as a segment of string
[si,s j] that it is not in contact with any other piece of string.

To describe the distance constraints on a knot, we intro-
duce the contact diagram, which is shown on the bottom
of every subfigure in Figure 3. A contact diagram marks
the distances of all crossings along the string, with matching
square brackets indicating a knot unit. Precise tightening can
then be described as the transformation of a knot from a loose
state such as that in Figure 3a or 3c to a goal state: Figure 3b
or 3d.

It is difficult to control friction locks once they have
happened, so our goal is to prevent the friction locks from
happening until they are all “in position”. Straight rods are
used to delay the friction locks. These rods on the tightening
fixture are inserted into different cells defined by the knot
diagram. A cell is an open bounded connected region of
R2 enclosed by the knot diagram, which is a subset of the
complement of the knot diagram [34].

We control the knot by controlling the motion of the rods
during tightening. When the appropriate cells reduce in size,
the crossings along the boundaries of cells move closer. At
the goal state, the cells are reduced to minimum sizes at
specified locations, causing selected crossings to be located
at appropriate distances from each other.

III. ARRANGEMENT

In previous work [10], [34], we showed that theoretically,
fixtures can be used to arrange any knot. However, fixtures
designed in this way for the knots we consider in this work
are too large to allow easy threading of string of string
through the fixture. In this work, we use a robot arm to
arrange knots on tightening fixtures of a different design.

Arranging a knot on the tightening fixture presents several
challenges, including how to achieve the under crossings, and
how to overcome the friction of dragging the string through
the rods on the tightening fixture.

To overcome the friction, we used a spool to lay out the
knot instead of dragging the string through the rods on the
fixture. The spool is mounted on a ball bearing, so the string
can be laid out during arrangement with minimum friction as
the robot arm moves the spool around the tightening fixture.
The tension along the string keeps the string wrapped around
the rods at certain height.

To arrange under-crossings, we used a specially designed
gripper that can re-grasp without dropping the spool. Figure 4
shows the gripper configurations for performing re-grasping.
The gripper uses two linear motors, with an electromagnet
attached to the tip of each linear motor. The spool is attached
to a slider. There are two metal plates on top of the slider,
allowing the gripper to release or grasp the slider using the
electromagnets.

Fig. 4: Two different configurations of the gripper grasping
the spool used to arrange the knots.

Fig. 5: The slider used for moving rods. The base has four
wheels that are made of small ball bearings, while the rod
is also on a ball bearing.

Using this gripper, sliders can be passed under segments of
string with only one motor attached and be picked up by the
other motor. The robot arm simply follows the knot diagram
to lay out the knot on the fixture, performing re-grasps as
needed. An example arrangement of the sounding line can
be seen in Figure 8.

IV. TIGHTENING

The tightening fixture contains a collection of straight
rods, some of which can move along certain line segments,
which guide the rods to predefined locations where selected
cells will reach their minimum sizes.

In order for the rods to move, they are mounted onto
sliders, as shown in Figure 5. Each slider is mounted on four
small ball bearings that allow it to ride along a track inset in
the fixture; an algorithm for automatic design of placement
of these tracks will be described in Section V. The rod is
also mounted onto a ball bearing, so that the rod can rotate
to reduce friction during tightening when pulled.

We will first consider a simple tightening fixture, in which
the rods are moved by the tension along the string. During
tightening, two motors pull the open ends of the knot,
tightening the string and causing sliders to move along tracks.

Certain stationary rods are used to keep the size of certain
cells. In cloverleaf knot, for example, the distance constraint



between crossing pairs are enforced by three stationary rods
to maintain the perimeters of selected cells.

After the rods stops moving, the knot is almost tight and
lifted away the moving rods to be tightened further, forming
tight friction locks. This last step, however, is not controlled,
and this is a source of error in the tightening process.

The tightening process of a cloverleaf knot is shown in
Figure 1. The motors each pull the string by predefined
length to lead the moving rods to their desired locations.
These lengths are calculated using the difference in rope
length between loose and tight configurations of the knot.

V. FIXTURE DESIGNS

In this section, we will show that the tightening fixture
can be designed nearly automatically for a given input
knot diagram, based on some sequential design process.
Although we have implemented code for each of the steps
in Procedures 1 through 3, some of the steps are heuristic in
nature, and must be manually checked by the designer; we
will point out such steps in the discussion below.

The tightening fixture serves two purposes. First, it spans
the knot during the arrangement, allowing the sequence of
over and under crossings to be arranged. Second, after the
arrangement, the fixture is used to guide the knot to a nearly
tight configuration.

We use a knot diagram as a starting point to enforce the
correct topology of the knot.

In previous work [34], which did not focus on precise
tightening and only considered smaller scale knots, we sim-
ply inserted one rod per cell of the knot diagram. However,
for simplicity of mechanical design, we would like to avoid
using the implied number of 16 rods for the cloverleaf knot.

One key observation is that when the string is pulled tight
around all inserted rods, many rods are not in contact with
the string. Procedure RodPlacement first identifies the cells,
putting a rod in each cell. We then find the shortest curve
among these rods, using algorithm for finding the shortest
curve of a particular homotopy class among points [12].
(We sample points along the boundaries of discs representing
rods, as in [34].) We finally remove rods not involved in this
curve. For the cloverleaf knot, this reduced the number of
rods on the tightening fixture to 10.

We also would like to avoid letting multiple strands of
string contact the same rod, which would lead to undesired
motion during tightening due to friction as two strands of
string apply different torques to the rod, preventing free
rotation. We separate the contacting strands of string by
doubling any such rods; an example is shown in Figure 6.
Although we have implemented code for placement of the
double rods, our method is heuristic, and must be manually
checked to see if it introduces topological or geometric
issues.

The current fixture can be used to span the knot during
arrangement, but some places might be too small for the

Fig. 6: When multiple strands of string contact the same rod,
double the rod.
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cause cell degeneration.
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(e) Reduce the rope
length. Result after
Procedure ReduceRopeLength.

5 0 5

5

0

5

(f) Design the tracks by con-
necting corresponding rods us-
ing a line segment.

Fig. 7: Automated design of the fixture for the cloverleaf knot
using Procedures RodPlacement to ReduceRopeLength.

gripper designed to perform the re-grasp task. We can add
certain size constraints to each cell where a re-grasp might
happen. This step (Procedure IncreaseCellSizes) happens
after Procedure RodPlacement.

After all the rods are placed, we find a set of line
segments (tracks) that guide the moving rods to a nearly
tight configuration using Procedure ReduceRopeLength.

Finally, it is important to control the distance between con-
tact points, for precise tightening. The distance is calculated
between two nearest crossings. If the distance is not correct
on the calculated curve wrapped around the rods, then we
move the corresponding static rod parallel to the direction
of the normal formed with the string to meet the distance



Procedure RodPlacement
Input: polygonal drawing D ; cells of D : Ci;
for each cell Ci do

Find the largest containing disc with center di and
radius ri;

r←min∀i ri;
Place a disc of radius r at each di;
Find the shortest homotopy curve among these discs;
for disc centered at di do

remove the disc, detect if any cell degenerates;
if cell degenerates then

place disc with radius r centered at di;

while ∃ disc at di contacting two stands of string do
double the disc so each disc only contacts one
strand of string;

Procedure IncreaseCellSizes
Input: Crossing sequence: S= {s1,s2, . . . ,sn}, mapping

f (si) : N→ R2

for undercrossing si and next overcrossing s j do
if distance between f (si) and f (s j) too small then

Find the nearest rod, double the rod to increase
the distance between f (si) and f (s j);
set si to be the under crossing after s j;

constraint.
We applied the algorithm to design the tightening fixture

for a cloverleaf knot. Figure 7 shows the important steps of
the fixture design. We printed the fixture using the result of
the design, after some work with a 3D modeling package,
Solidworks, to model tracks and create sockets for static rods.

VI. PHYSICAL DEMONSTRATION OF PRECISE
KNOT-TYING

We will use the examples of tying a sounding line and
the cloverleaf knot to show the approach. An Adept Cobra
Robot Arm was used for arrangement, and all tightening
fixtures were prototyped using OBJET Eden 3D prototyping
machine.

A. Sounding line

We first tied a simple sounding line with three knot units.
In Figure 8, we show the arrangement, focusing on the re-
grasping task during the arrangement of the first knot unit.
We fixed one end of the sounding line for arrangement and
tightening.

After arrangement, the open end is attached to a servo-
motor, and the robot arm is used to remove the spanning
pins. The knot then is tightened around the third pin. Since
the knot unit is very simple, it was not necessary to use any

Procedure ReduceRopeLength
Input: rope thickness Thi(γ); small clearance a,

geometric center of all rods c; a set of stationary
rods D

Output: Tight ropelength Lp; disc locations D
for disc di 6∈ D do

connect di and c;
k← number of intersections between ~did j with the
knot drawing;
move di along ~dic to d′i such that
d(d′i ,c) = k ·Thi(γ)+a;
di← d′i ;

Calculate distance between contact points;
Move rods if distance constraint is not met;
Calculate ropelength Rop(γ);
Lp← Rop(γ);

moving rods. Figure 10 shows the first knot unit tightened
around the stationary pin after the two spanning pins are
pulled out.

The distances between the static rods (78 mm each) were
intended to match the distances along the string when tied,
and when the string is taut, this is the case. However, the yarn
we use in the experiment is quite stretchy, so the problem of
precisely specifying the knot geometry is not entirely well-
defined. When removed from the fixture, lengths measured
along the loose string were 72 and 77 mm. We believe the
difference in these two distances to be largely caused by
different tensions on the section of the string introduced
during tightening. A major goal of future work is to gain
a better understanding of the relationship between lengths in
loose and tight string, and to conduct rigorous experiments
determining the precision that can be achieved.

B. Cloverleaf knot

The arrangement for cloverleaf knot, though more com-
plex, also relies on the success of the re-grasp tasks. The
arrangement sequence is omitted in the paper, but can be
seen in the video attachment.

After the arrangement, the knot is tightened by pulling
the open ends. The moving pins approach desired locations.
The sequence is shown in Figure 1. A machine-tightened
cloverleaf knot is shown in Figure 2. Lengths of the three
large loops in the knot measured along the fixture were 205
mm. The lengths of the sections of loose string after removal
were 189 mm, 190 mm, and 191 mm.

VII. ACTIVE TIGHTENING FIXTURE

In the demonstration of tightening the cloverleaf knot, we
observed that some rods did not reach the desired locations,
perhaps due to the inconsistent direction between the string
contact normals (along which we expect force to be applied



(a) Before re-grasp task in the
first unit.

(b) After the re-grasp task in the
first unit.

(c) About to finish arranging for
the first unit.

(d) Finished arranging three units
of sounding line.

Fig. 8: sounding line arrangement process.

(a) Start of tightening with active
fixture.

(b) During tightening with active
fixture. (c) Tight around active fixture.

(d) Tightening with active fixture;
top view.

Fig. 9: Tightening cloverleaf knot using active fixture.

Fig. 10: The first knot unit along the sounding line is
tightened around the stationary pin.

to the moving pin) and the directions of the tracks. We
therefore attached all sliders to a single motor, using a bar-
linkage system; an example for the cloverleaf knot is shown
in Figure 11.

We conducted the tightening task again for the cloverleaf
knot using this active fixture, allowing all rods to reach their
desired locations, as shown in Figure 9.

VIII. CONCLUSIONS, FUTURE WORK AND
ACKNOWLEDGMENTS

In this work, we demonstrated some fixtures designed for
tying knots precisely. The main idea is to delay the friction

(a) Top view of tracks for a
cloverleaf knot.

(b) Side view of the bar-linkage
system. There are two different
link lengths, to move different
rods with different speeds.

Fig. 11: Model of the track and bar-linkage system for a
cloverleaf knot.

lock, while moving all desired contact points into position.
Before tightening, a robot arm is used to arrange the knot
using a specially designed gripper. This approach is quite
general; we presented a design procedure that can be used
for essentially arbitrary planar knot geometries.

Using the fixtures, we tied a sounding line and cloverleaf
knot fairly precisely. Obvious sources of error include the
stretch of the string and the fact that the final tightening
motion (once desired contacts have nearly been reached) is
not precisely controlled.

Our next aspirational goal is to tie a Ruyi knot precisely.
The compound Ruyi knot contains four cloverleaf knots,
three of them embedded into the fourth knot unit; see
Figure 12. A major challenge for this work will that pulling



Fig. 12: A hand tied Ruyi knot.

only from the ends does not appear to pull string through the
fixture, even with ball bearings allowing rods to spin freely.

Most directly related to the current work, we intend to
move from simple proofs of concept to rigorous experimental
work on a wide variety of knot types.

This work was supported by NSF grant IIS-1217447.
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