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Abstract. Humans often change the geometry of flexible objects during manip-
ulation so that the goal is easier to accomplish with either simple motions or
simple controls. This paper explores how to change the geometry of a knot to al-
low simpler tying or untying. The paper presents algorithms that modify the knot
configuration to allow the knot to be arranged into the correct topological struc-
ture or untangled by moving the tip of the string along a straight line, with only a
few re-grasps. The paper also presents proof-of-concept physical experiments in
which robot arms arrange and untangle several knots.

1 Introduction

Humans stretch clothes while getting dressed, bend string during knitting and weaving,
and change the shape of knots while tying, perhaps using techniques learned from others
or based on their own experience. How can robots automatically determine how to
change the geometry of flexible objects for easy manipulation? This paper explores
algorithms for systematically discovering tricks and shortcuts for tying and untangling
new and different knots.

The wide variety of knots, the diverse and complex geometries, and the flexible na-
ture of string all make tying knots with robots challenging. Researchers have success-
fully tied some simple knots with arms [12, 13, 27, 28, 29, 31]; most attempts explore
motions that trace some particular geometry.

In this paper, we explore how to modify the geometry to make the tying or unty-
ing process simpler, mainly in the perspective of using fewer re-grasps. We present a
general approach to changing knot geometry so as to allow tying and untangling us-
ing simple motions of a robot arm. For tying knots, the geometry is changed virtually
– choosing a more convenient goal geometry than the input geometry. For detangling
(untying loose knots), the re-configuration is physical, re-configuring the knot as a first
step before pulling on a particular end.

We present an algorithm to change the geometry of a knot so that the knot can
be arranged or untied by dragging the tip of the string along a straight line. Another
algorithm shows that for any knot, there is a sufficient number of such straight line
motions that can arrange or untangle the knot. Our algorithm takes the Gauss code, a
text-based description of a knot, as input, and outputs the target geometry of the knot.

We also demonstrate a relation between re-grasps and the layout of the knots, and
show why many re-grasps are usually necessary, unless the knot geometry is chosen
carefully. We show that through manipulation of the knot geometry, we can reduce the
use of re-grasps during knot arrangement. Re-grasping is a common practice in knot
tying, especially when using a finite DOF robot arm mounted on a fixed base, because



(a) Arranging part of the knot without re-
grasping.

(b) Completing the arrangement of a knot 71
with one re-grasp.

Fig. 1: Arranging a 71 knot with a Da Vinci robot arm.

the arm needs to arrange string both over and under other segments of the laid-out
string. However, re-grasping is difficult, since it may require precise information about
and control over the environment and the object being manipulated.

In physical experiments, we have arranged and untangled several different knots,
including the double-coin knot and a knot known as 71 in the standard knot table [10],
using different robot arms to show that the motions needed to tie or untie the knots in
this work are in fact simple.

The paper is organized as follows. We first introduce some fundamental concepts
about knots and show the importance of geometry and topology in knot tying in Sec-
tion 2. Then in Section 3, we show the simple arrangement of knots through the ma-
nipulation of the knot geometry, using few re-grasps by dragging the tip of the string
along a straight line. In Section 4, we show the simple knot untangling approach using
the same knot manipulation scheme. Experiments are conducted to show the success in
the manipulation of the geometry of knots in arrangement and untangling.

1.1 Related work

Even though changes of geometry are quite common when manipulating flexible ob-
jects, large-scale deformation away from the given goal geometry is often considered
an undesirable error, instead of a means to simply the manipulation process to achieve
the goal. One notable study about changing geometry to simplify manipulation is the
work by Demaine et al. [11] on kirigami, in which paper is first folded into a particular
shape, so that a single cut can be made such that when the paper is unfolded, a desired
pattern or scene is created.

As a special case of flexible object manipulation, knot tying has been studied by
roboticists as far back as the early 1980s [13] where a robot arm was used to tie knots
using sensor feedback. More recently, researchers have attempted to use pairs of arms
to tie knots [27, 29, 28]; there is also a rich body of work on machine suturing [15,
16, 14, 18]. Hopcroft et al. developed a graph-based language to design knot-tying
motions and tested the approach using a robot arm [12]. Wakamatsu, Arai, and Hirai’s
tree search planner finds sequences of motions (selected from four primitives) to tie or
untie a knot [31]. Untying knots has also been recently studied as a vision and learning
problem [21].



Recent work on knots also includes the authors’ work on fixture-based knot tying [7,
8, 34, 35, 33] that separates the knot tying process into arrangement and tightening, and
provides the first bounds on the complexity of knot tying [32]. Apart from knot tying,
other examples have been studied as a gateway to understanding string manipulation.
Elastic rods have been used to model wires and string for manipulation [30].

We use many terms from knot theory in this paper. A knot is described by its pro-
jection onto a plane, called its knot diagram [1, 2, 19, 26, 20]. Physical knot theory [17]
studies the geometry of tight knots formed with thick string [3]. The tightness of a knot
has been studied in applied mathematics and physics [24, 6, 22].

Friction plays an important role in tightening a knot, or in untying tight string. Anal-
ysis of the frictional forces is frequently a key component of analysis of rigid-body
systems [5, 23, 9], and as string wraps around other segments of string with a cer-
tain thickness, the friction can be studied by applying the capstan equations [4]. In the
present work, we consider only string that is loose enough that friction can be neglected
from the analysis.

2 Knots and knot geometry

Knots are usually projected onto a plane for simple description and illustration. If no
three points on the knot project to the same point, and no vertex projects to the same
point as any other point on the knot [20], the projection is said to be regular, and the
projected diagram is called a knot diagram.

On the drawing, broken lines are used to indicate where one part of the knot under-
crosses the other part of the knot that is directly above the broken lines; such locations
are called crossings. Each crossing is labeled with a unique number, indicating the
order of appearance when tracing along the diagram. Figure 2a shows a shoelace knot
diagram. In this work, when we say that we “remove” a crossing, we are referring to
the result of manipulating one end of the string so that the projected diagram no longer
contains the crossing.
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(a) A knot diagram of a shoelace knot, with
numbered crossings, and cells labeled with
letters.
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(b) A polygonal shoelace knot diagram.

Fig. 2: Shoelace knot diagrams, with Gauss code 1+, 2−, 3−, 4+, 5−, 6−, 7+, 3+, 2+,
1−, 4−, 5+, 6+, 7−.



We can also use the labels of the crossings to describe the knot. One such description
is the Gauss code: a sequence of labels for crossings indicating a walk along the diagram
from a given starting point. We use numbers to label crossings, and a superscript “+” or
“-” to indicate over- or under-crossing. For example, an overhand knot with Gauss code
G = {1+, 2−, 3+, 1−, 2+, 3−} has 3 crossings, so the length of G is 6 (|G| = 6). The
following paragraphs give definitions of a few terms from [32].

Each crossing appears twice on a Gauss code for any knot. A sequence of one or
more curves connecting two adjacent labels in the Gauss code is called a c-path (cross-
ing path). The projected knot diagram separates the plane into several disconnected
closed cells, labeled by capital letters in Figure 2a. Call the cell that extends to infinity
the exterior cell, and all other cells interior cells.

A c-path is called an exterior c-path if it contacts the exterior cell. For example, Fig-
ure 2b has c-paths (1,2) through a contacting interior cell A, (2,3) through b contacting
interior cell B, (3,7) contacting interior cell D, (7,6) through e contacting interior cell
F , (6,5) through d contacting interior cell G, (5,4) through c contacting interior cell E,
and (4,1) contacting interior cell C. All of these exterior c-paths contacting the exterior
cell that is the complement of the polygonal shape.

Let an exterior crossing be a crossing that is the common endpoint of two adjacent
exterior c-paths; all the other crossings are interior crossings. If a connection between
two crossings is not an exterior c-path, it is called an interior c-path.

Sometimes the number and the order of crossings can be different even for the same
knot; Reidemeister moves [25] can be used to transform the crossings without changing
the topology of the knot. Determining whether two different Gauss codes represent the
same knot is one of the most challenging and fundamental problems in knot theory; we
exclude Reidemeister moves in this work.
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Fig. 3: The resulting configuration of a double-coin knot so that the last five crossings
are on a straight line.

2.1 Knots and weaving

On a weaving loom, the warp is the set of strings that form the basic structure around
which the weft (the string pulled by the shuttle) is woven. The approach we take in this
work to knot tying is to find a simple substructure of the knot in such a way that the
under-crossing always appears before its over-crossing so that this spiral-like structure
is analogous to the warp. The rest of the knot, like the weft, is then arranged with respect
to this warp to construct the more challenging crossings.



(a) Arranging the warp crossings of a double-
coin knot.

(b) Completing the arrangement of a double-
coin knot with one re-grasp.

Fig. 4: Arranging a double-coin with Da Vinci robot arm.

Let us consider the following example. For a double-coin knot with Gauss code
G = {1+, 2−, 3+, 4−, 5+, 6−, 2+, 7−, 4+, 8−, 6+, 1−, 7+, 3−, 8+, 5−}, the last five
crossings counting from the right open end are 5, 8, 3, 7, and 1. These five crossings can
be formed by dragging the right open end along a straight line simulating the motion of a
shuttle on a loom, provided that the other segments of string are arranged appropriately.
An example of the rearranged polygonal configuration of a double-coin knot is shown
in Figure 3. We implemented the knot arrangement using the proposed layout with a Da
Vinci robot arm. Figure 4 shows the results of implementation.

3 Arranging knots

In this section, we introduce how to change the geometry of a knot to allow the division
of knot arrangement into warp and weft stages. Let us refer to all the crossings formed
by the warp stage as warp crossings, and all the crossings formed in the weft stage
as weft crossings. Formally, a crossing i is a weft crossing if and only if after all the
crossings to the right (left) of ia have been removed, and the crossing to the left (right)
of ia has a different sign than a. Remember that each crossing appears twice on a Gauss
code, once with a + superscript (over-crossing), and once with a − superscript (under-
crossing).

We will show that for an arbitrary given knot, we can find patterns on its Gauss code,
so that by arranging m alternating sequence of warp and weft crossings, the knot can
be arranged with a upper bounded m re-grasps. Since re-grasping is not a trivial task,
our approach gives a simpler knot arrangement method compared to knot arrangement
methods where re-grasps have to be performed between the arrangement of over- and
under-crossings. What is more, in our knot arrange method, weft crossings on the same
sequence can be arranged by pulling string to follow a straight line.

3.1 Forming or removing crossings based on weaving sequence

We define a minimal Gauss code as a Gauss code that cannot be simplified by per-
forming Reidemeister moves. Adding or removing of a crossing from a structure with
minimal Gauss code through physical manipulation of the string can only be achieved
if one of the two appearances of the crossing number is at one end of the Gauss code.



What happens if we remove crossings one-by-one from the open ends? Intuitively,
we know that after a certain number of removals, the remaining crossing pattern is
no longer knotted, because eventually the knot is untied if we remove all crossings.
The knotting and unknotting process are symmetric, and it is easier to see the pattern
when removing crossings from an existing sequence of crossings, so we choose the
unknotting process for analysis.

We define a weaving sequence as a sequence of alternating over- and under-crossings
that have to be formed or deleted in the given order indicated by the Gauss code. Con-
sider the example of unknotting a double-coin knot, whose Gauss code is G = {1+,
2−, 3+, 4−, 5+, 6−, 2+, 7−, 4+, 8−, 6+, 1−, 7+, 3−, 8+, 5−}. Starting from the right
end, crossing 5− is adjacent to 8+ in the Gauss code, and the crossings have different
superscript signs. Therefore, we can identify these two crossings as part of a weaving
sequence — a sequence of weft crossings, and remove crossing 5.

We continue to remove crossings that are part of the same weaving sequence from
the right end, including crossings 8, 3, 7, and 1, in order. After we remove the last
five crossings in the Gauss code, we have G = {2−, 4−, 6−, 2+, 4+, 6+}. Now, the
next two crossings from the right have the same superscripts, so they are no longer part
of a weaving sequence. We know that the five deleted crossings can be formed by a
single weft (weaving) motion, dragging the string along a straight line. We continue
searching for weaving sequences from right to left. In this example, there are none, and
the remaining structure consists only of warp crossings.

The following algorithm, which takes the Gauss code of the knot as input, finds
weaving sequences for an arbitrary knot. With a single pass through the Gauss code,
the algorithm outputs a sufficient number of m weaving sequences that can be used to
form the knot; m is also a sufficient number of re-grasps to tie the knot with a fixed-base
arm.

Algorithm 1: WEAVE
1. Select either left or right end of the Gauss code.
2. Delete crossings from the selected end.
3. If the crossing to be removed has a different sign from the next crossing to removed,

then the two crossings belong to the same weaving sequence. Register a new weav-
ing sequence if the current crossing to be removed is not already on a weaving
sequence. If the crossing to be removed has the same sign as the next crossing to
be removed, then terminate the current weaving sequence; if the crossing to be re-
moved has the same label as the next crossing to be removed (for example, i− j− j+

where j− and j+ have the same label), then compare the sign to the first crossing
with a different label (compare j+ with i− in the given example).

4. Repeat steps 2 and 3 until only one crossing is left, attach the last crossing to the
on-going pattern.
For a Gauss code with k crossings where |G| = 2k, we can find O(k2) different

sequence of labels that are the results of removing the crossings at the beginning or
the end of the Gauss code. However, since a weaving sequence can only be formed by
weaving with one end of the string, we only need to check the sequence of labels that
are the results of removing crossings from solely the left or right end. The total length
of such a sequence of labels is 2k.



The algorithm only checks if the current crossing has a different sign from the ad-
jacent one. This approach may overlook some structures that are unknotted but still
contain adjacent crossings that have different signs, such as {1+, 2−, 3+, 4−, 4+, 3−,
2+, 1−}. This structure is unknotted, but still contains one weaving sequence.

Knots such as the overhand knot contains only one weaving sequence associated
with the last two crossings, while the first crossing can be formed by a type I Reide-
meister move. Similarly, the figure eight knot with Gauss code G= {1+, 2−, 3+, 4−, 2+,
1−, 4+, 3−}, also contains only one weaving sequence associated the last three cross-
ings where the first crossing is achieved by a type I Reidemeister move. The double-
coin knot shown earlier contains one weaving sequence, with the crossings 2, 4 and 6
forming the initial unknotted structure.

Lemma 1. If a knot can be arranged by following a single weaving sequence, then a
motion that removes all weft crossings unties the knot.

Proof. If we remove all the crossings on the weaving sequence and there is only one
weaving sequence, the remaining crossings are all warp crossings by definition. Then,
if we continue to remove crossings, every crossing they remove will have the same sign
as the the next crossing to remove. Without loss of generality, let us assume the first
crossing we will remove is an over-crossing. Then, since all remaining crossings are
warp crossings, whenever we are trying to remove a crossing ia, a is + until all crossings
are removed. Then, all these warp crossings can be arranged on two layers. One plane
contains only the over-crossings, while the other plane contains all the under-crossings,
with finitely many vertical line segments connecting two planes. This structure has the
topology of a circle when the ends of the string are connected to each other, an unknot.

The lemma shows that even though there are knots of many crossings, but they are
in fact simple knots. A single motion can untie the knot. We believe that the number of
crossings may not be the best way to illustrate how complex a knot is.

3.2 Aligning crossings on a straight line for simple manipulation

A straight-line motion is easy to achieve even for simple robotic devices. This section
will show that weft crossings can always be aligned on a single straight line, without
changing the knot topology.

Theorem 1. In a weaving sequence, each crossing label appears only once.

Proof. A weaving sequence contains an alternating over- and under-crossing pattern,
and all the crossings on the weaving sequence are adjacent to each other in the Gauss
code. If the same label j appears twice, let crossings i− and k− be the two crossings
in the Gauss code adjacent to j+, and let s+ and t+ be the two crossings adjacent to
j−. The crossings i, k, s and t have the corresponding signs because they are adjacent
crossings to j, and they are on the same weaving sequence. Without loss of generality,
let j− be closer to the open end. After the deletion of the crossing j−, crossings i and k
are now adjacent in the Gauss code, and they have the same sign, so they cannot be on
the same weaving sequence.



Fig. 5: Rotating extreme segments to align all weaving crossings on a straight line.
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(a) A polygonal knot diagram for a double-
coin knot, computed using methods proposed
in [32].
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(b) The rearranged configuration for the
double-coin knot, by rotating extreme seg-
ments using the proposed method indicated in
the Algorithm 2.

Fig. 6: Reconfiguration of a double-coin knot to align weft crossings onto a straight line.

Since no crossing appears twice on a weaving sequence, we can move the crossings
so that they appear on a straight line. Therefore, a single straight line motion of the
string can form multiple crossings at once. Define an extreme segment of the weaving
sequence as the segment between two exterior crossings.

The algorithm below shows how to arrange extreme segments on a straight line if
they are on the the same weaving sequence. The input to the algorithm is the loca-
tions of all the crossings, which may be computed using the technique implied by the
proof of Theorem 10 in [32]. The algorithm computes the geometry of the knot during
arrangement, and computes the placement of the fixtures that are used in our experi-
ments. Because the geometry computed are straight line configurations supported by
the fixtures, no vision feedback is needed in our approach.

Algorithm 2: ALIGN
1. For each given extreme segment, connect a line between the two exterior cross-

ings (or an interior to an exterior crossing), and move each of the crossings on the
extreme segment to its projection on the connected line;

2. Let crossing i ((xi,yi)) and crossing j ((x j,y j)) be the two adjacent exterior cross-
ings on two adjacent extreme segments, with k connections between them; without
loss of generality, let y j < yi; let p be the other end point on the extreme segment
with j as an end point;



3. Rotate all the points above extreme segment between p and j (because y j < yi)
around j then around i in the stated order, so that (x′j,y

′
j) is the new location of

crossing j where y′j = yi, as shown in Figure 5; The angle rotated around crossing i
can be calculated as the acute angle α between the x axis and the vector i j, and the
rotation angle around crossing j is β = π−α− γ , where γ is the angle between p j
and the x axis;

4. Along the line x = (xi+x′i)/2, find k points above (or under) the line y = yi if x′i ≥ xi
(x′i < xi) with equal distance. For the endpoints of the k pairs of connection between
two extreme segments, connect to k points along the line x = (xi + x′i)/2 in order
based on the distance of the end point on segment p j to the exterior crossing j,
such that no additional intersection is introduced;

5. Adjust the z coordinates of all crossings so that the crossings on the rearranged
weaving sequence lie on a straight line in three dimensions;

The result of applying the process to a double-coin knot is shown in Figure 6.
In our previous work [32], we have shown that an arbitrary (polygonal) knot with k

crossings can be laid out based on its Gauss code using no more than 3k− 2 line seg-
ments. We use this projected configuration to compute where each crossing should be
placed so the crossings on a weaving sequence is on a straight line in our experiments.

3.3 Re-grasping and weaving

This section analyzes the number of re-grasps needed to arrange each of the two types
of crossings. If we do not choose the geometry of the final knot configuration carefully,
the number of re-grasps needed to arrange a knot maybe be as large as the number of
weft crossings, plus one re-grasp for each sequence of warp crossings.

We show that the output of Algorithm 1 also gives a sufficient bound for the number
of re-grasps needed to arrange a given knot, if each sequence of weft crossings are
aligned on a straight line following Algorithm 2.

We can use a fixed-base robot arm to lay out the warp crossings without re-grasping:

Lemma 2. No re-grasp is needed to arrange a collection of warp crossings if for each
warp crossing, its under-crossing appears before its over-crossing.

Proof. The structure is unknotted and belongs to two layers. If for each layer, we trace
along the configuration with a robot arm, then the two layers form the corresponding
crossings. Therefore, no re-grasping is needed.

Sometimes, changing the geometry of the knot can reduce the number of degrees
of freedom that a fixed-base arm must have to tie the knot using a particular number
of re-grasps. Notice that an elephant-trunk arm with infinite degrees of freedom can
arrange any knot without re-grasping.

The next lemma shows that changing the geometry of the knot is in fact sometimes
necessary to optimize this tradeoff between degrees of freedom of the arm and the
number of re-grasps required: some knot geometries are quite difficult for any finite-
DOF arm. For example, a sequence of crossings of the form ia, jb,ka, where a and b
have opposite signs. A 4 DOF robot arm needs at least one re-grasp to arrange this



sequence of the crossings, if ja has already been arranged. Such sequence of crossings
are the basic structures of the weaving sequence, so traditional knot tying approach of
complex knot usually involves many re-grasps.

A weaving sequence contains a sequence of consecutive over- and under-crossings.
However, if we imagine the robot end-effector as the shuttle on the loom, it does not
need to re-grasp every time the string switches between over- and under-crossing, if all
the crossings on this weaving sequence is on a straight line. However, for a weaving
sequence, one re-grasp is still needed.

Lemma 3. To arrange a weaving sequence with a fixed-base robot arm grasping the
ends of the string, at least one re-grasp is needed.

Proof. Let the two ends of a knot be S1 and S2, and let S1 be fixed to the ground. Let
the base of the robot arm be B, and the end effector be E. The robot arm needs to grasp
S2 with E during the arrangement of the knot. Let us assume no re-grasp is performed
during the arrangement of a weaving sequence w. At the end of the arrangement of the
weaving sequence, let the configuration of the string be fixed in space. Let curve c1 be
the current configuration of the robot arm, connecting from B to E. Let curve c2 be the
curve of a different robot arm configuration connecting from B to E, where the entire
robot arm is outside the convex hull of the knot. In both configurations, the E is attached
to S2. Then, the two curves belong to two different homotopy classes with respect to
the string. The curve connecting c2 to S2 and then to S1 has the correct knot topology.
Therefore, at least one re-grasp is needed to arrange a weaving sequence.

The number m output by Algorithm 2 gives a sufficient number of re-grasps needed
to tie a given knot. For many knots, including the double-coin knot, the number is 1.
Since these knots are in a different topology class from a topological loop when one of
their end points are grasped by a robot arm and the other end point is attached to the
ground, at least one re-grasp is needed, so this number is also a lower bound.

3.4 Knot weaving with Da Vinci

We conducted experiments with a Da Vinci surgical robot, which has two symmetric
high precision arms. We computed knot layouts and built fixtures to support string ar-
ranged at various heights, allowing weaving to be implemented with a single translation.
Based on the computed knot configuration, such as the example shown in Figure 3, the
robot manipulator follows predefined paths without vision feedback.

In all the experiments conducted, during the layout of the warp crossings, the string
is supported by fixtures. Each fixture is either straight rods or upside down “L” shape
fixtures on top of rods. These fixtures are placed at various locations to support warp
crossings to form the computed geometry, so that the weft crossings are all aligned.
The location of the fixtures are also computed automatically by placing a fixture on
the inside of each turn of the string, so that the string wraps around them follows the
shortest path in the homotopy class [34]. Because the fixtures are simply rods placed at
various computed locations, we consider the approach simple and general.

Figure 4a shows the layout of the warp crossings of a double-coin knot, arranged
without re-grasps. After layout, the effector of the second arm grasps the tip of the



string and uses a pure translation to complete the knot, as shown in Figure 4b and in
the multimedia attachments. In the attached video, the author had to manually intervene
to loosen the string wrap around the fixtures, due to high tension along the string. The
need for human intervention is the combined results of the use of yarn, the manipulator
of Da Vinci robot cannot fully close, and the high friction coefficient between yarn and
the printed “L” shaped fixture. One of the future work is to study how to automatically
use robots to loosen string during manipulation.

(a) Arranging warp crossings of a double-coin
knot at the same height.

(b) Completing the arrangement of a double-
coin knot with a single re-grasp.

Fig. 7: Arranging a double-coin by laying out the warp crossings on the same height.

The preliminary arrangement of the string requires many support structures laid out
in the workspace of the robot. For simplicity, we programmed the robot to just arrange
the warp crossings of the string at the same heights around simple fixtures. Figures 1a
and 1b show the arrangement of a 71 knot. Figures 7a and 7b shows the arrangement of
a double-coin knot.

Our approach is able to arrange a double-coin knot with only a simple re-grasp.
There has not been any other successful attempt to arrange a double-coin knot with
a robot arm. However, by following the manipulation sequence suggested in previous
work such as [28], five re-grasps are needed to arrange the double-coin knot. Even with
state of the art robotic manipulation strategies, a re-grasp takes a long time to execute.
Even though we did not compare the execution time or our approach to other knot tying
approaches, we believe when a robot arm following two paths of similar lengths, the
fewer re-grasps are performed, the shorter the execution time.

Even though weaving sequence can be found in many knots, different knots contain-
ing the same number of crossings can have different number weaving sequences. For
example, the double coin knot contains 8 crossings, and is labeled 818 on the standard
knot table. This knot, as shown above, can be arranged with a single re-grasp. However,
the knot labeled 84 contains two weaving sequences, even though it contains the same
number of 8 crossings. Following our knot arrangement strategy, arranging the double-
coin knot will be simpler compared to knot 84. We are not able to determine how the
number of weaving sequences on a knot is related to the number of crossings.

3.5 Robot-human collaboration

When we arrange the segments of string that are not part of a weaving sequence at the
same height, the robot arm weaves around arranged segments of string. Even though the



(a) Arranging warp crossings of a 810 knot at
the same height.

(b) Completing the arrangement of a 810 knot
by a human weaving the string.

Fig. 8: Arranging a 810 knot by robot and human collaborating together.

(a) Arranging warp crossings of a 931 knot at
the same height.

(b) Completing the arrangement of a 931 knot
by a human weaving the string.

Fig. 9: Arranging a 931 knot by robot and human collaborating together.

locations of the string segments are known, the motion still may not be easy to perform
for a robot. Humans, however, can arrange the weaving sequence easily with re-grasps.

For example, a double-coin knot can be tied using the robot to lay out the structure,
and allowing the human to finish the weft crossings. We used this technique to tie figure-
eight knots, and knots 71, 82, 85, 810, 931, 932 from the standard knot table. Applying
Algorithm 2, all the listed knots can be tied with one re-grasp. Figures 8, 9, and 10 show
the examples of a human collaborating with an Adept Cobra industrial arm to tie knot
810, knot 931 and knot 932.

4 Untangling knots

In the previous approach, we changed geometry of knots to simplify the knot arrange-
ment, based on the identification of wrap and weft crossings on the knots, and we iden-
tify the weft crossings by processing the Gauss code.

The same change of geometry can also be used to untangle knots. In this work,
we will focus on untangling knots from a loose configuration rather than untying knots
from a tight configuration. We untangle the knot by changing the geometry of the knot
and pulling the string several times along straight lines. With each pull of the string,
we remove all consecutive weft crossings that extend to the current end of the string.



(a) Arranging warp crossings of a 932 knot at
the same height.

(b) Completing the arrangement of a 932 knot
by a human weaving the string.

Fig. 10: Arranging a 932 knot by robot and human collaborating together.

However, non-consecutive weft crossings may not be able to be removed in a single
motion.

Given two different sequences of weft crossings, in order for them to be aligned,
other crossings need to be relocated. In order to change the knot configuration of the
knot to align the second consecutive sequence of weft crossings on a straight line, the
crossings on the first consecutive sequence of weft crossings need to be relocated, which
may break the alignment. Therefore, without knowing which specific knot we are trying
to untangle and detailed analysis of the specific knot, the best we can do with each grasp
is to align a sequence of consecutive weft crossings, and remove them by moving the
string along a straight line.

Even when a knot is in a loose configuration, the untangling of knots usually have
to overcome friction. After we have identified all the weft crossings, and attempt to use
a single motion to untangle them, friction may prevent the untangling, such as shown
in Figure 11 where we attempt to remove the last five crossings by pulling the string
direction without changing the geometry. Therefore, a pulling motion of string that
involves least friction is desirable. It appears that pulling string along a straight line can
keep friction relatively low.

Fig. 11: Friction prevents
the untying of a double-
coin knot.

The process of manipulating the geometry can be de-
scribed as follows. We first choose one end of the string to
untangle the knot. Along the chosen end of the string, we
determine a side that is closer to the boundary, left or right.
Starting from the chosen end of the string, we identify all
the cells on the chosen side to the string in sequence, un-
til the last consecutive weft crossing, and then we find the
largest inscribed circle in each cell. Using the same algo-
rithm we presented in the previous section, we will delete
crossings from the chosen end, and record how the cross-
ings change, either from under-crossing to over-crossing,
or from over-crossing to under-crossing.

Given the x-y plane on which the knot diagram is pro-
jected, we place a vector parallel to the z axis at each center of the largest inscribed
circle we have identified. The direction of the vector is positive if the crossings asso-
ciated with the cell change from under-crossing to over-crossing, otherwise negative.



We then use a robot arm manipulating a rod to follow these vectors parallel to the z
axis to the points above and below the z = 0 plane, and connect between these points
by following linear motions with the end effector. After tracing all the vectors, we have
aligned all the weft crossings. Figures 12 and 13 show the change of the geometry.

(a) The initial con-
figuration of double-
coin knot before un-
tangling.

(b) Aligning several
crossings on a straight
line for untangling.

(c) Pulling string
along straight line to
untangle.

(d) Knot is fully un-
tangled after remov-
ing the rod.

Fig. 12: Untangling a double-coin knot.

(a) The initial configu-
ration of knot 71 before
untangling.

(b) Aligning several
crossings on a straight
line for untangling.

(c) Pulling string along
straight line to untan-
gle.

(d) Knot is fully untan-
gled after removing the
rod.

Fig. 13: Untangling knot 71.

We then identify the last weft crossing we have aligned, and the warp crossing
adjacent to it, and let the robot grasp any point between the two crossings. The robot
arm then pulls the string along the direction parallel to the vector point along the rod we
used to align the crossings. After all the consecutive weft crossings are removed and the
rod is removed, the knot will be untangled. Even though we have only demonstrated the
untangling of loose knots, the principle can be applied to tight knots, if we can identify
the crossings and thread a needle through those enclosed cells.

5 Conclusions and future work

This work shows that some knots can be tied or untied with simple motions by changing
the geometry of the knots. We discussed an algorithm for changing the geometry of the



knots, and another algorithm for discovering different knot tying or untying phases
using the Gauss code descriptor for a knot. We also showed practical implementations
using simple robot arms, and also as a collaboration between a robot arm and a human.

For future work, we would like to better understand how motions can be designed
to mechanically simplify tying knots and untying even tightened knots. We are also
interested to know if by changing the geometry of the goal, we can manipulate other
flexible objects, such as cloth, using simple motions.

We are particularly interested in knots like the shoelace and sheepshank; humans tie
these knots by pulling loops through loops. We can identify these structures from the
Gauss code, as Type II Reidemeister moves: for each adjacent appearance, crossings i
and j have the same sign, and the sign is different from the crossings adjacent to the i j
(or ji) sequence.

We would like to thank Dmitry Berenson and Gregory Fisher for letting us use the
Da Vinci robot for some of the experiments. This work is supported by NSF grant IIS-
1217447.
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