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Abstract. This paper presents a generic numerical approach to find the kine-
matic time-optimal trajectories for 3D rigid bodies with a finite set of translation,
rotation, and screw controls, in an obstacle-free space. First, geometric neces-
sary conditions for time-optimality are derived. Second, a method is presented
for sampling trajectories satisfying the necessary conditions sufficiently densely
to guarantee that for any start configuration and goal location, a trajectory can be
found that provably approximately reaches the goal, approximately optimally.

1 Introduction

This paper studies time-optimal motion of 3D rigid bodies that are permitted actions
from a finite set of constant-velocity rotations, translations, and screws; we call these
rigid bodies spatial Dubins systems, as the known optimal motion of the planar Dubins
car follows from the 3D geometry derived. We admit that spatial Dubins systems are not
quite a direct generalization, since the set of controls is finite; however, for the planar
Dubins car, a finite number of controls does turn out to be sufficient for optimality.

We have recently presented the derivation of basic necessary conditions in [3]; the
current paper summarizes these results briefly. The paper then presents the new analysis
of the geometry of these conditions applied to spatial rigid bodies. This geometry is used
to further analyze a few interesting systems. The paper also presents an algorithm that
searches for approximately optimal trajectories across all points in a bounded region of
the space. Figure 1 shows a few trajectories for each system found using this algorithm.

Optimal trajectories may be used directly for robot control or as components for
planning in more complex environments, such as the steering methods and local plan-
ners used in sampling-based planning algorithms [20, 19, 4]. Geometric understanding
of the optimal trajectories may also influence the design of mechanical systems or plan-
ning algorithms, such as work on steerable medical needles [2] that uses planar Dubins
curves as motion primitives.

Trajectory time is an obvious quantity to minimize, and for a bounded-velocity sys-
tem, the time-optimal trajectories are a simple generalization of shortest paths for points
on the robot. A typical approach to discovering the structure of time-optimal trajectories
for a system or class of systems is the use of Pontryagin’s Maximum Principle. System
equations are manipulated to write certain adjoint differential equations; if those equa-
tions may be integrated, they yield geometric conditions that optimal trajectories must
satisfy. Further work with the geometry may eliminate some trajectory structures, or al-
low a mapping from the configuration space to trajectory structure – the optimal control
synthesis.



2 Weifu Wang1 and Devin Balkcom2

(a) Trajectory found to reach
(−0.4,−0.3,−0.7) using Dubins airplane
following controls yaw(left)-pitch(down)-
yaw(left). Euclidean distance 0.86, and the
duration of the trajectory is 5.47.

(b) Trajectory found to reach
(−0.4,−0.3,−0.7) using 3D Reeds-Shepp
system following controls pitch(forward-
up)-yaw(back-right)-pitch(back-down).
Euclidean distance 0.86, and the duration
of the trajectory is 1.64.

Fig. 1: Sample trajectories found by the proposed algorithm, one for Dubins airplane,
and one for 3D Reeds-Shepp model.

Generalizing time-optimal motion beyond the plane has proven challenging. Our
own prior approaches to discovering optimal trajectories for 3D rigid bodies were halted
by our inability to integrate the adjoint equations; representations of rotations in 3D as
matrices, quaternions, or Euler angles each caused some difficulty. Work by Chitsaz et
al. [9] presents some partial results and necessary conditions for a 3D Dubins airplane
that includes bounded velocity altitude changes; optimal motion primitives are derived,
but the configuration space is not that of a true 6DOF rigid body, as the plane effectively
remains flat, sidestepping the issue of rotation representation.

We avoid the issue of finding analytical solutions to complicated differential equa-
tions in a different manner in this paper, by choosing a finite set of control actions for
the 3D rigid body. These actions are taken to be rigidly attached to the local frame of
the robot. For example, for an airplane, one might take an action to be a pitch up cor-
responding to rotating the airplane about a rotation axis directly above the robot and
perpendicular the direction of travel. We further assume that the optimal trajectory will
be a finite sequence of such actions – potentially, a very problematic assumption, which
we will discuss shortly.

Restricting the search to finding durations and a sequence of actions from a finite set
allows the problem to be phrased as a constrained optimization problem. Karush-Kuhn-
Tucker (KKT) conditions allow simple necessary conditions to be written directly, with-
out the need for integration of the adjoint. Analysis in [3] reveals an interesting result
quite parallel to those known for the planar systems: time optimal trajectories can be
viewed as virtual robot arms in special configurations that balance some external force
described by a vector λ ; revolute arm joints correspond to rotation actions, and pris-
matic joints correspond to translation actions. Choosing different λ vectors gives differ-
ent trajectory structures, including different sequences of actions and action durations.

Unfortunately, the KKT-derived conditions do not provide some of the information
about trajectory structure (in particular, the sequence of actions) that the PMP condi-
tions do for the planar case, necessitating the use of additional discrete search in the
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described algorithm. The trajectory search algorithm we present explores the trajectory
space in an in a branch-and-bound fashion, using constraints provided by λ to prune the
search. As the algorithm runs, a numerical representation of the synthesis of approxi-
mately optimal trajectories is discovered. This algorithm is an extension to 3D of an
algorithm for approximating planar optimal trajectories presented in [30]. In addition
to the extension to 3D, the current algorithm works with the weaker conditions derived
using KKT.

We hope that the numerical techniques and geometric insights presented in this pa-
per prove useful, but must point out several weaknesses in the approach. Chief among
the weaknesses is the possibility that for any given system, optimal trajectories do not
exist. Typically, for each new system, existence must be considered carefully. One po-
tential issue is that for certain goal configurations, for any given trajectory, there exists
another trajectory that is faster, but which requires a greater number of switches be-
tween controls: the phenomenon of chattering. While it is common to discretize the
action space before using a planner such as RRT* [18], doing so may well introduce
chattering. For example, choosing only the left and right turning actions for a Dubins car
as discrete actions (and not including pure forward translations) leads to a system that
moves forwards most quickly by rapidly alternating between the two rotation actions.

If there is some fixed cost to switching between actions, then optimal trajectories
do exist for any reachable configuration [22, 21]. We consider the assignment of some
small switching cost to be at least as reasonable a model as a cost of zero for switches;
effectively, a zero-cost switch requires infinite accelerations of the physical system.
The algorithm in the present paper works without modification for this model of costly
switches. As long as the described algorithm is applied to a system with (possibly small)
switching costs, we can expect that the trajectory found is close to optimal, subject to
the resolution of the search.

Further weaknesses include the fact that although the rigid bodies we consider have
orientation, we do not restrict the orientation at the goal. We also point out that the
kinematic model of rigid bodies is not a good model for airplanes, which have dynamics
and thrust. Nonetheless, we hope that short or fast trajectories for this model are useful
for the basic geometry they provide, as they have proven to be for the planar Dubins
particle. Finally, this paper does not provide any particular insight about how to select
a finite control set; for the systems studied, we choose simple extreme controls that are
analogous to those that have turned out to be sufficient for planar systems.

2 Related work

Analytical time-optimal trajectories are known for several planar mobile robots, in-
cluding the Dubins car [14], the Reeds-Shepp car [23, 8, 27, 24], bounded-velocity
differential-drive robots [6, 10], and omnidirectional robots [5, 29], all in the unob-
structed plane. These systems are all planar rigid bodies with different velocity con-
straints; Furtuna [16, 15] showed that this similarity allows derivation of necessary
conditions on the time-optimal trajectories that apply to all of these models; a unified
theory of time-optimal motion for simple models of planar mobile robots.
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Few analytical solutions have been derived for dynamic models of systems. In
fact, some systems with bounded accelerations do not even have time-optimal trajec-
tories [25, 26]. Beyond land and air aerial vehicles, time-optimal trajectories for ships
under constant current [13] and underwater vehicles has also been studied [11]. To sim-
ulate the effect of acceleration, a cost can be introduced between each switch of control.
Lyu used Blatt’s Indifference Principle (BIP) [7], Lyu et. al. [22, 21] to study and find
approximation algorithms for optimal trajectories for a costly switch model for planar
Dubins-like systems.

Most of the described work on time-optimal strategies does not consider the ex-
istence of obstacles; notable exceptions include work by Vendittelli et. al. on how to
measure the distance between a car-like robot and obstacles [28, 17]. Planning among
simple obstacles has also been studied for simple car-like systems [1, 12].

3 Model of constant-control rigid bodies

A Dubins car in the plane with a maximum turning radius of 1 may be considered to
have forward velocity v of 1 and an angular velocity ω in the range [−1,1]. As Dubins
proved, only three discrete controls out of this continuum are required for optimality:
ω ∈ {−1,0,1}. Six discrete controls are required for the Reeds-Shepp car, with v ∈
{−1,1}. We may view controls for the planar systems as actions attached to the local
frame of the robot. For example, the left-turn action for a Dubins car has associated with
it a rotation center to the left of the robot; as the robot moves, the rotation center moves
with the local frame. Furtuna’s work [15] showed that many other mobile robot models
also are equivalent to rigid bodies in the plane with body-fixed rotation and translation
controls, only a finite subset of which are required to find an optimal trajectory to each
reachable configuration.

We extend this idea to spatial rigid bodies. We attach a small number of constant
controls to the local frame of the robot. Each control is either a translation, a rotation
about an axis fixed to the local frame, or a screw of constant pitch around an axis fixed
to the local frame. We call such a system with constant controls attached to the local
frame a spatial Dubins system.

We consider an example spatial Dubins system that might be called a Dubins air-
plane or submarine. We attach the following frame to the robot: x-axis is along the nose
of the vehicle and the y-axis is along the left wing of the vehicle and is perpendicular
to x-axis; the z-axis is perpendicular to both x and y axis and follows the right-hand
rule. The vehicle can translate forward along the x axis of the robot frame at speed 1. In
addition to translation, the vehicle can perform the following six controls:

– pitch up or down: unit-speed rotation around one of two axes, each parallel to
y-axis and offset by 1 along the z axis;

– yaw left or right: unit-speed rotation around one of two axes, each parallel to the
z-axis and offset by 1 along the y axis;

– roll left or right: unit-speed rotation around the x axis of the robot frame while
translating along the x-axis at speed 1 (a screw).

One might question whether this model is reasonable for a jet airplane. It is not.
Nonetheless, constant actions selected from the tangent space to SE(3) may generate
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geometrically interesting paths that are in some sense short and may be useful for sys-
tems such as steerable needles or submarines.

4 Necessary conditions for time-optimal trajectories

In [3], we derived the necessary conditions for this model of controls for a spatial rigid
body. The model may be termed a spatial Dubins model, but is also quite similar to the
kinematic model of a robot arm. Specifically, an arm is a series of joints offset by links;
the joints typically provide translations along or rotations about axes fixed to the prior
link. The primary difference for the current system is that unlike the arm, the particular
sequence of joints must be selected as well as the duration.

4.1 The constraint Jacobian

We require that the robot reach a specified goal location in minimum time T , such that
at t = T , we have three constraint equations: x(t) = xg, y(t) = yg, and z(t) = zg. Let the
duration of the ith control applied in the trajectory be ti. Then, for any given sequence
of controls, x(t), etc. are functions of t1 . . . tk. As shown in [3], this problem is thus a
constrained minimization problem, for which necessary conditions may be found using
Lagrange multipliers. For any time-optimal trajectory, there exists constants λ1, λ2, and
λ3 such that: 

∂x/∂ t1 ∂y/∂ t1 ∂ z/∂ t1
∂x/∂ t2 ∂y/∂ t2 ∂ z/∂ t2

...
∂x/∂ tn ∂y/∂ tn ∂ z/∂ tn


λ1

λ2
λ3

=


1
1
...
1

 . (1)

4.2 Geometric interpretation of necessary conditions

Since for a given sequence of control actions, x(t), y(t), and z(t) are equivalent to kine-
matics equations for an arm of a particular design, the Jacobian in equation 1 is equiv-
alent to the Jacobian for the same arm. In fact, as pointed out by [3], equation 1 is
equivalent to a force-torque balance equation for the arm.

The similarity of the trajectory to the kinematics of an arm motivates an observation:
for each rotation action, the corresponding column of the Jacobian for an arm, or row of
the matrix in equation 1, may be found by taking the cross product of a vector pointing
along the rotation axis with the vector from the current joint to the end effector. If the
ith control is a rotation, let the axis be ωi, and let the vector pointing from the axis ωi
to the end-effector g be −→oig. Then:∂x/∂ ti

∂y/∂ ti
∂ z/∂ ti

= ωi×−→oig (2)

at any instant during control i. For translations, denote the velocity vector of the ith
control as −→vi . Then vi · λ = 1. We will use this geometry to place constraints on the
locations of rotation axes or lines of translation for controls; time-optimal trajectories
must satisfy these constraints.
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4.3 Geometric relationship between λ and trajectory structure

The main algorithm in this paper will iterate over durations and structures of the first
few controls in the trajectory. Each iteration generates a particular geometry for the first
few segments of the trajectory, with which only a single value for λ is consistent. That
value is computed and then used to constrain the structure of the rest of the trajectory.
Searching over consistent trajectory structures provides candidate optimal trajectories
to various configurations. In the two steps of this process, the relationship between the
potential λ values and the duration and structure of the trajectory will be critical; we
now discuss this relationship.

Knowing λ informs us about potential trajectory geometries. Since the differential
motion of the endpoint due to varying a control duration must make a unit dot product
with λ , that motion vector must lie on a plane perpendicular to λ . For a translation
control, this indicates that the translational velocity must lie on this plane. For a ro-
tation control, the differential motion of the endpoint is generated by a cross product;
specifying λ constrains orientation and distance to the goal of the rotation axis. Fig-
ure 2 illustrates some possible rotation axes (green arrows) for a given example λ (blue
vector).

On the other hand, the geometry of a trajectory constraint λ values. Knowing the
location and the orientation of one control limits λ to a plane, knowing two controls
limits λ to a line, and a third control limits λ to a single vector value.

(a) A few rotation control axes (green ar-
rows) that satisfy the necessary condition
for a given λ (blue vector) and a fixed dis-
tance between the rotation axis and the goal.

(b) Several rotation control axes (green ar-
rows) that can satisfy the necessary condi-
tion for a given λ and a fixed distance be-
tween the rotation axis and the goal.

Fig. 2: Relations between rotation controls and λ . λ is in blue, and a red vector is the
cross product vector that satisfies the necessary condition; rotation axes are drawn in
green.

Figure 2 shows a few rotation axes consistent with a particular λ vector; to simplify
the figure, all of these axes are the same distance from the goal, yielding a sphere such
that rotation axes are tangent the sphere. As the distance to the goal varies, the radius
of the sphere changes; we omit some details. There are some further constraints on the
placement of rotation axes. Specifically, there is a cylinder with the axis parallel to λ

within which no rotation axis will occur. This occurs because any particular control
switch that is followed by a fixed trajectory geometry cannot reach certain goals that
are too close to that switch.
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5 Finding time-optimal trajectories

The basic strategy we will pursue to find a near-optimal trajectory between a given start
and goal is the following:
1. Loop over all possible triplets of actions for the first three controls in the trajectory.
2. For each triplet of actions, iterate over densely sampled durations for the first two

actions.
3. Compute the unique λ vector consistent with the current trajectory structure and

first two durations.
4. For the current λ vector, compute the fastest trajectory that reaches the goal.
5. Choose the fastest trajectory among all computed λ vectors.

In this section, we will discuss the details for each step. Why iterate over sampled
trajectory durations and partial trajectory structures in steps 1 and 2? Why not just
densely sample λ and search over λ -space? As we will discuss below, λ is not bounded.
Further, it was shown in [30] that by carefully selecting the sampling rate for durations
of a few of the controls, any final goal can be approximately reached with approximately
optimal cost.

5.1 Finding λ given partial trajectory structure and durations

Since λ has three elements, we need three constraint equations to compute a λ vector,
and thus we need to know three controls. Let the portion of the trajectory corresponding
to the ith control be its ith segment. Given a endpoint g, define the tangential velocity
of a given control as the sum of the translation velocity and the cross product between
the rotation axis and the vector pointing from the rotation axis to g. Depending on the
control type, a tangential velocity may have zero rotational or translational component.
Two controls are considered co-linear if they have the same tangential velocity.

Lemma 1. Given a endpoint g, three trajectory segments and their configurations in
space, if the three corresponding controls are not co-linear, then either these three seg-
ments cannot be on the same time-optimal trajectory, or a λ vector can be uniquely
computed.

Proof. Given the ith control, the tangential velocity must have dot product 1 with λ

vector in order to satisfy the necessary condition. Let there be a 3× 3 matrix A with
three different rows where each row is the tangential velocity for one of the controls
corresponding to the three segments. If the controls are not co-linear, then matrix A
is of full rank. Therefore, the equation A · λ = b where b = [1,1,1]T has one or zero
solutions. ut
Since three arbitrary segments can be used to compute λ vector as long as they are not
co-linear, let us consider the first three segments for simplicity. The reason to choose
the first three segments is that only two durations need to be known to generate the
configurations of the three segments. When some of the first three controls are co-linear,
we need to consider later segments.

For a rotation control, the duration is bounded in the range [0,2π), but no such
natural bound exists for translation. However, if some (non-optimal) method exists to
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compute some trajectory to any goal, then the cost of reaching that goal can be used as
an upper bound for the duration of a single translation section, yielding the following
lemma:
Lemma 2. If there exists an arbitrary trajectory that can reach a given endpoint g,
then it is sufficient to search a bounded set of durations to compute the unique λ vector
corresponding to any given trajectory structure of length no less than three.

Given Lemma 2, the goal is to be able to iterate over the first few trajectory segments
to compute the corresponding λ . Therefore, the key is to find a trajectory to serve as the
upper bound. However, there do exist systems so that it is not easy to find any trajectory
to reach a given endpoint. We will not focus on such systems.

5.2 Screw actions

A screw action for Dubins airplane (roll) is a combination of rotation and translation. In
order for such a screw action to satisfy the necessary condition, the following equation
must hold, given the goal g, the translation velocity v, the rotational component of the
tangential velocity ω×−→og.

(ω×−→og+−→v ) ·λ = 1 (3)

Along the trajectory, λ will not change, and v will not change. Therefore, in order
to have a constant dot product with λ , the rotation axis of a roll must go through the
goal. Because the translation direction of the roll shares the same direction vector with
ω , this means that the translation velocity also goes through the goal.

For the spiral type of screw actions, because there is just a single rotation axis and
no translation velocity, the necessary condition can be satisfied if the tangential velocity
remains constant. Therefore, such screw actions are almost like rotations, except the
duration is not bounded by 2π .

5.3 Fastest trajectory for a given λ

Given each feasible λ , we need to find the fastest trajectory that satisfies the necessary
conditions. At each switch of controls, there may exist multiple controls that can satisfy
the necessary condition. Then, all the possible trajectory structures corresponding to
a specified λ forms a tree with unknown depth and potential large branching factor.
However, one interesting observation is that many of the trajectory structures cannot
lead the robot to the endpoint. Therefore, only a portion of the tree needs to be searched
to find the fastest trajectory for a given λ . What is more, if we have already found
a trajectory with duration T that can reach the goal, the candidate fastest trajectories
cannot be longer than T , which further reduce the portion of the tree that needs to be
searched.

For a Dubins airplane, it is easy to find a control sequence that can reach the goal.
Let us consider a drive-turn-drive sequence. We first execute a roll control so that g is
either on x-z plane or x-y plane, then find a trajectory within that plane that will lead
the robot to the goal following a drive-turn-drive strategy. The same strategy can also
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be used to find a trajectory to reach any goal in 3D for the Reeds-Shepp system. The
resulting trajectory with duration T will serve as the upper bound.

We, therefore, can use a Depth First Search (DFS) to find the fast trajectory for a
given λ and terminate if any trajectory exceeds duration T . Whenever a new trajec-
tory is found that can reach the goal and is shorter than the current solution, the upper
bound will be updated, so that fewer and fewer branches need to be explored. What is
more, this upper bound also reduces the region of durations we need to explore to find
candidate λ vectors.

5.4 Complete procedure

Below is the complete procedure that we use to find the time-optimal trajectory for a
given pair of start and goal.

Algorithm 1: Find time-optimal trajectory given a goal position
Input: g(oal) T ← Find a trajectory that can reach g;
for All possible one segment or two segment trajectories that can reach g do

Update the upper bound T to the fastest trajectory;
k← 3;
for All possible sequence of first k controls do

for All possible durations for first k−1 controls that do not exceed T do
if The some of the first k controls are co-linear then

k← k+1;
continue;

Compute corresponding λ ;
Starting from the third control, compute next possible control;
Run DFS until reach goal, or exceeds upper bound;
if Found trajectory can reach goal shorter than T then

Update the upper bound T ;

return the upper bound T to be the time-optimal trajectory;

One step we have not yet discussed in Algorithm 1 is the need to loop over all
possible one or two segment trajectories. This is because in the main search, we need
three controls to compute a corresponding λ , but we cannot rule out the situations where
one or two controls can reach the goal. This procedure can be computed easily in closed
form. In fact, we can compute in closed form whether any trajectory containing no more
than three segments can reach the goal.

Algorithm 1 involves looping over the durations for the first k−1 linear independent
controls. Given an arbitrary resolution, the returned trajectory may not even share the
same structure with the time-optimal trajectory. So, what is the sufficient resolution? In
the next section, we will show that given arbitrary tolerance ε , there exist a sampling
resolution so that the resulting trajectory will reach a location g′ where |g′−g|< ε .
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5.5 Approximation theorems

We will show that given any two trajectories of the same structure, i.e. control sequence,
if the duration of each segment is similar, then at any time the two trajectories will
reach locations that are close (measured by Euclidean distance). We extend Lemmas
and Theorems from [30] to 3D.

Lemma 3. Consider two spatial trajectories Y and Y ′ with identical structure, equal
duration for all segments but one translation segment k, and a small distance κ . The
corresponding end points are G and G′ . For any translation control k in Y with duration
tk, and the same control k in Y ′ with duration t ′k, if |tk− t ′k|<

κ

vk
, ‖G−G′‖< κ .

Proof. Translation is commutative. ut

Lemma 4. Consider a spatial trajectory Y with end point G, a small angle σ , and
two pints P and Q on the trajectory, with ‖P−G‖ > ‖Q−G‖. Form a new trajectory
Y1 with endpoint G1 by rotating the trajectory from P to G around P by δ , and form
another trajectory Y2 with endpoint G2 by rotating from Q to G by σ . Then, ‖G2−G‖<
‖G1−G‖. What is more, for any trajectory Yk with end point Gk achieved by rotating
the trajectory Y around a series of points along the trajectory with σ angle in total,
‖Gk−G‖ is upper bounded by only rotating σ around the furthest point from G on Y .

Proof. If the trajectory only moves in a plane, the proof from [30] directly applies.
When the trajectory moves beyond a plane, we will show that the same conclusions still
hold.

First, between trajectory Y1 and Y2, formed by rotating around P and Q on trajectory
Y , since each rotation is still within a single plane, even though the two rotations may
be around two different planes, the result holds that if P is further from G than Q, then
G1 is further from G than G2.

Now, let us consider a trajectory Yk formed by a sequence of rotations around points
on Y by a total amount no larger than σ , where the rotations may not be on the same
plane. Denote the distance the endpoint moved by the rotation around a point X as
d(GX ). No matter on which plane is the rotation, d(GX ) is the same for the same rotation
angle. Therefore, for two given rotations around points A and B, the endpoints moved
by d(GA) and d(GB) respectively. If the two rotations are not in the plane, the total
movement of endpoint G can be computed as d(GA) · d(GB) · cos(θ) where θ is the
angle between the two movement vectors. The angle θ reaches the maximum when the
two movements are on the same plane. Therefore, given the trajectory Yk formed by a
sequence of rotations around points on Y , ‖Gk−G‖ is upper bounded by the cases when
all rotations are in the same plane, which is then upper bounded by rotating σ around
the furthest point on Y to G. ut

The screw controls are bounded by its rotational components, so Lemma 4 applies.
We therefore can also directly extend the following theorem directly for 3D.

Theorem 1 (Theorem 3 from [30]). Consider two spatial trajectories Y and Y ′ with
the same control sequence, both starting at S and having time cost t = ∑

n
i=1 ti and t ′ =

∑
n
i=1 t ′i respectively. Denote the point that Y ′ passes through at t ′ as G′, and the point
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that Y passes at time t as G. Then, for any ε > 0, there exist δ > 0 such that if ∑
n
i=1 |t ′i −

ti|< δ , then ‖G′−G‖< δ . Specifically, let δ be the minimum of ε

vT
max

and
√

(ωmaxtmaxvC
max/2+vC

max)2+2ωmaxvC
maxε−(ωmaxtmax/2+1)vC

max
ωmaxvC

max

Last but not least, we need to show that by sampling sufficiently small, the resulting
trajectory can be arbitrarily close to the desired goal.

Theorem 2. Consider two spatial trajectories Y and Y ′ with the same control sequence,
where every control on both trajectories will maintain a constant dot product with a vec-
tor λ and λ ′ respectively. Let the durations of the first two linear independent controls
be t1 (t ′1) and t2 (t ′2) on Y (Y ′). There exist a most sensitive segment k on both trajecto-
ries with duration tk and t ′k respectively, such that if |t1− t ′1| < ∆ t, |t2− t ′2| < ∆ t, and
|tk− t ′k|< ∆ t, then ∑

n
i=1 |t ′i − ti|< n∆ t.

Proof. First, we can show that because |t1− t ′1| < ∆ t and |t2− t ′2| < ∆ t, λ and λ ′ are
close both in magnitude and in orientation. Given the ith control, if the duration of
this segment changes from ti to t ′i , we can use the following equations to compute the
location and orientation of the next control if control i is rotation.

(ωi×−→cig) ·λ = 1 (4)
((|ωi|R(ti)ωi+1)× (−→cig−|ωi|R(ti)−−−→cici+1)) ·λ = 1 (5)

If the ith control is translation, then the location of the next control can also be easily
computed using the following equations,

vi ·λ = 1 (6)
(ω j× (−→c jg− vi · ti)) ·λ = 1 (7)

Therefore, given the first three linear independent segments, which are computed using
the durations for the first two linear independent controls, a λ can be computed. When
the duration changes from t1 (t2) to t ′1 (t ′2), the tangential velocities change by a small
amount both in magnitude and in direction, so the resulting λ and λ ′ = λ +∆λ are
similar both in scale and in direction.

Let us first consider the ith control being translation, and the i+ 1th control is ro-
tation. Extending from equation 7 by replacing ti and λ with ti +∆ ti and λ +∆λ re-
spectively, one can derive that ∆ t is a function of ∆λ scaled by 1/|vi|, we omit the
derivation steps in this proof. But geometrically, because rotation axes are on the sur-
face of concentric spheres, a translation connecting two rotation controls can be viewed
as a displacement to form the correct distance between the rotation axis and the goal.
This displacement can only change by a small amount when λ changes to λ +∆λ , so
the slower the translation, the larger the ∆ ti will need to be. If the i+1th control is also
a translation, the switch can happen at any time and ∆ t can be arbitrarily small. There-
fore, the slowest translation may need to change its duration the most given a small
change in λ , thus is the most sensitive translation control.

|ωi|R(ti) · v j ·λ = 1 (8)
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Let us then consider rotation control. Extending equation 5, one can similarly derive
that ∆ t is a function of ∆λ scaled by 1/|ωi| if the next control is also a rotation. If
the next control is a translation, one can extend equation 8 to derive that ∆ t again is a
function of ∆λ scaled by 1/|ωi|. Geometrically, recall that all rotation axis locates on
the surface of spheres, but at each point, only one possible direction for rotation axis
satisfies the necessary condition. Therefore, to form the appropriate tangential velocity
for the next control, a similar distance needs to be covered by the current control when
λ becomes λ +∆λ . Thus the rotational control with the smallest angular velocity is
the most sensitive rotation action. Given a screw action, either the slowest translation
component or slowest rotation component will dominate the sensitivity. Over the en-
tire trajectory, the comparison among the most sensitive of each type yields the most
sensitive control.

Therefore, given that the most sensitive segment and the first two linear independent
segments’ durations do not change more than ∆ t, all other segment durations will not
change more than ∆ t, then the total duration difference is no larger than n∆ t. ut

5.6 Synthesis of time-optimal control sequences

The proposed algorithm cannot find a closed form solution for the time-optimal trajec-
tory between an arbitrary pair of start and goal. However, using the geometric interpre-
tations of the necessary conditions, we can build a synthesis of all possible time-optimal
control sequences for all goals, and store them for future inquiry. We can employ Algo-
rithm 1 to find the time-optimal trajectory for each given goal position, but the reader
can easily tell that there are many repeated computations for the same or similar λ ,
especially for nearby goals. So, we can simplify the procedure needed to find the syn-
thesis.

Algorithm 2: Find synthesis of time-optimal control sequences to all goals

for All possible first control do
for Sample first duration at resolution ε do

Compare all reachable points and current reaching duration; if Found a
new shorter path then

Update the shortest time and control sequence to this point;
for All possible second control do

for . . . do
. . . ;

6 Planning algorithm examples and results

Using Dubins airplane as an example, we conducted experiments to show how our
algorithm can find the time-optimal trajectories for the Dubins airplane for a given res-
olution. Figure 3 shows the computed time-optimal trajectories for the given goal using
Algorithm 1. The airplane is represented by the gray tetrahedron, the yellow frame is the
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(a) Trajectory found to reach
(2,0.57,0.66) following
controls pitch(up)-yaw(left)-
translation. Euclidean
distance 2.182, and the
duration of the trajectory is
2.24.

(b) Trajectory found to reach
(1,1,2) following controls
pitch(up)-yaw(left) repeat-
edly. Euclidean distance
2.44, and the duration of the
trajectory is 2.915.

(c) Trajectory found to reach
(−2,0,1) following controls
pitch(up)-translation-
pitch(down). Euclidean
distance 2.23, and the
duration of the trajectory is
5.297.

Fig. 3: A few trajectories found using Algorithm 1 for Dubins airplane to reach given
endpoints.

world frame, and the green arrows are rotation axes. We implemented the procedure in
python, running on a modern desktop. With a resolution of 0.03 for the durations, each
search for the goal takes on the order of 300 seconds on a 2018 commodity desktop
computer system.

In addition to the Dubins airplane, we also conducted experiments with a 3D Reeds-
Shepp airplane, by adding symmetric reverse controls. To show the similarity and dif-
ference between Dubins airplane and Reeds-Shepp system, we ran the algorithm to find
trajectories to reach the same set of goals; a few examples are shown in Figure 3, 5,
and 1.

(a) Trajectory found to reach
(2,0.57,0.66) following
controls pitch(up)-yaw(left)-
translation. Euclidean
distance 2.182, and the
duration of the trajectory is
2.24.

(b) Trajectory found to reach
(1,1,2) following controls
pitch(up)-yaw(left) repeat-
edly. Euclidean distance
2.44, and the duration of the
trajectory is 2.915.

(c) Trajectory found to
reach (−2,0,1) follow-
ing controls pitch(back-
up)-translation(back)-
pitch(back-down). Euclidean
distance 2.23, and the
duration of the trajectory is
2.36.

Fig. 4: A few trajectories found using Algorithm 1 for Reed-Shepp airplane to reach
given endpoints.
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When the goal is along the positive x-axis, the resulting trajectory for Dubins and
Reed-Shepp airplanes are the same; when the endpoint is along the negative direction
of x-axis, the trajectory duration for Reeds-Shepp airplane uses some reverse actions.

6.1 Trajectories with many switches

The proposed algorithm can also find trajectories with many segments if no switching
cost is specified, as shown in Figure 3b and 4b. What is more, given different search
resolutions for the trajectory duration, the number of segments may change, as shown
in Figure 5a. At a resolution of 0.05, the fastest trajectory reaching (1,1,2) has 10
segments. The number of segments increases to 16 when the resolution increase to
0.03.

We have not proven existence of optimal trajectories for Dubins systems, so the
existence of trajectories with many switches is concerning. Fortunately, by adding a
small switching cost, existence of optimal trajectories is guaranteed, and we expect
much greater numerical stability for the search. For example, as shown in Figure 5b,
by adding a 0.01 switching cost, the number of segments decreased to four from 16 at
the same resolution of 0.03. With higher switching cost, the number of segments on the
fastest trajectory found by Algorithm 1 decreases even further.

(a) Trajectory found
to reach goal (1,1,2)
at resolution 0.03 with
no switching cost. Eu-
clidean distance 2.44,
total duration of tra-
jectory is 2.96 with 16
segments.

(b) Trajectory found
to reach goal (1,1,2)
at resolution 0.03 with
switching cost 0.01.
Euclidean distance
2.44, total duration of
trajectory is 3.02 with
4 segments.

(c) Trajectory found
to reach goal (1,1,2)
at resolution 0.03 with
switching cost 0.1.
Euclidean distance
2.44, total duration of
trajectory is 3.23 with
3 segments.

(d) Trajectory found
to reach goal (1,1,2)
at resolution 0.03 with
switching cost 0.3.
Euclidean distance
2.44, total duration of
trajectory is 3.24 with
2 segments.

Fig. 5: A few trajectories found using Algorithm 1 for Dubins airplane to reach (1,1,2)
with different switching costs.

7 Conclusions

In this work, we presented a generic numerical approach to find the kinematic time-
optimal trajectories for 3D rigid bodies. We showed that in order for a trajectory to be
time-optimal, there exist a λ vector so that some necessary conditions must be satisfied.
The proposed approach starts by finding valid λ vectors and compare the fastest trajec-
tory for each λ . We showed that for any given endpoint, the proposed approach can
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find a trajectory that reaches the endpoint within a given resolution and approximately
optimal.

For future work, we would like to extend the current approach to find trajectories
that can reach any given endpoint configurations rather than just locations. We would
also like to further generalize the algorithms to include more generic systems. Also,
we would like to explore how can the proposed approaches be integrated with existing
planners to find efficient trajectories even with obstacles.
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