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Abstract

This paper analyzes the physical resources necessary and sufficient to tie a knot of given structure. We present the first

sufficient bound on the number of fingers required to tie a given knot; the bound is linear in the number of crossings

appearing in the knot diagram for a given knot. We also present a lower bound on the required number of fingers, under a

particular model of knot tying. We study how many re-grasps are sufficient to tie an arbitrary knot, and present an algorithm

that can yield a small sufficient number of re-grasps to tie the given knot. Physical experiments in which different knots

are tied and untied by robots, alone and in collaboration with a human, serve as a proof of concept to show the simplicity

and correctness of the approach.
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1. Introduction

How hard is knot tying, and what are the fundamental chal-

lenges? Different physical resources are used during the

execution of any manipulation task. One of the most studied

physical resources in robotic manipulation is the number of

contact (grasp) points, or fingers, used in the task. From the

study of immobilizing rigid bodies (Mishra et al., 1987a;

Rimon and Burdick, 1995), to immobilizing chains of rigid

bodies (Rimon and van der Stappen, 2012), to constrain-

ing the motion of rigid bodies through caging (Rimon and

Blake, 1999), to immobilizing cloth (Bell, 2010), a primary

measure of difficulty is the number of fingers required.

This paper studies bounds on the number of contacts

needed to manipulate string. We also study the number of

times the string needs to be released and re-grasped, another

measure of the difficulty of the knot-tying process. This

paper extends work first presented by Wang and Balkcom

(2016).

String can be fully controlled when it is stretched tightly

between contacts in a polygonal configuration. If we can

find strategies that tie knots while maintaining polygonal

structure (possibly while moving fingers to lengthen or

shorten segments of string), such strategies give an upper

bound on the complexity of tying a given knot, over all

models of string. We can also derive some lower bounds

that are specific to this particular polygonal model.

We model fingers as immobilizing specific points on the

string. In the mathematical analysis, a major advantage of

polygonal knots is that we know the configuration of the

string (and, thus, its topology) when the locations of all the

contact points are known.

Perhaps the first step in understanding controlled knot

manipulation is to determine how many fingers are needed

to immobilize string in a configuration that has the topology

of a given knot. For an arbitrary knot with k crossings in the

knot diagram (Section 2), we find that at least
⌈

3+
√

8k+1
2

⌉

+1

and no more than 2k contact points are needed to immobi-

lize the knot in a polygonal shape with the right topology.

Figure 1 shows an example.

However, the goal is not to immobilize a knot in a goal

configuration, but to find continuous motions that manipu-

late the string from an initial straight configuration to a tied

configuration. To find an upper bound on the complexity,

we use a follow-the-leader approach to tie the polygonal

chain, introducing new joints and vertices as needed. We

find that 6k − 2 fingers are sufficient to tie an arbitrary

knot.
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Fig. 1. Polygonal grasps of various knots. (a) A double-coin knot. (b) A double-coin knot represented by polygonal arc. (c) An overhand

knot represented by polygonal arc. (d) A figure-eight knot represented by a polygonal arc.

If we allow some fingers to slide along the string, or allow

fingers to release and re-grasp the string, we may sometimes

be able to use fewer fingers to tie the knot, as shown in

Section 4.2 and by Theorem 19.

Re-grasping is one of the more practically difficult tasks

during much robotic manipulation, since contact is lost and

must be re-acquired, possibly using extensive sensing or

careful control. We therefore also analyze and attempt to

minimize the number of re-grasps, and use the number of

re-grasps required to tie a knot as a measure of the difficulty

of tying.

We present an algorithm to compute a number of re-

grasps sufficient to tie an arbitrary knot. The algorithm rec-

ognizes adjacent crossings that can be formed as a sequence

of weaving-type motions, and uses these sequences to

choose particularly suitable goal configurations for the

string, such that several crossings can be achieved by drag-

ging the tip of the string in a straight line. For many knots

that we studied, only one re-grasp is required after choosing

the knot layout with the provided algorithm.

Table 1 summarizes the different complexity measures

for a few knots. Over time, all knots with nine crossings

or fewer have been discovered, standardized, and compiled

into a table, which is referred as the standard knot table

(Burde, 1978). Some of the knots used as examples in this

paper are described using their knot names from the stan-

dard knot table, where the first number represents the num-

ber of crossings on the knot, and the subscript is derived

from the order in the standard knot table.

The paper is organized as follows. We first introduce the

necessary background on knots (Section 2), and analyze the

knot-tying process (Section 3.1). We derive the number of

contacts necessary and sufficient to grasp arbitrary polyg-

onal knots (Section 3.2) and to fold them (Section 4). We

then introduce the knot weaving process (Section 5.1), and

identify different types of crossings on knots based on what

type of motion can be used to arrange the crossings (Sec-

tion 5.3). We choose some motion strategies to tie knots

with robots alone (Section 5.5), and in collaboration with a

human (Section 5.7). We also derive a strategy that can be

used to untangle knots (Section 6). Details of a few of the

proofs are left to Appendix B.

1.1. Related work

This paper makes use of the language of knot theory

(Adams, 2004; Armstrong, 1983; Crowell and Fox, 1977;

Livingston, 1993; Manturov, 2004). Although polygonal

knots have been studied from the perspective of knot the-

ory, the focus has been on the topology of knots. In contrast,

the present work is the first we are aware of that investi-

gates the complexity of polygonal knots, in terms of the

number of line segments needed to represent the knot. The

problems studied in this paper are also very related to a

three-dimensional version of the Carpenter’s Rule Problem

(Biedl et al., 1999), in which the objective is to reconfigure

a polygonal chain without self-intersection. However, we

allow both the number of joints and joint locations (finger

placements) to vary in such a way as to reduce the number

of links.

In robotics, knot-tying frequently uses active controls and

sensors. Inoue and Inaba (1985) used a 6 + 1-degree-of-

freedom (DOF) robot arm equipped with stereo machine

vision to tie knots around a ring. A graph-based language

was developed by Hopcroft et al. (1991) to program knot-

tying motions, and tested through knot tying with a robot

arm.

Untying knots has also been studied recently as a vision

and learning problem by Lui and Saxena (2013), where the

authors used a vision system to recognize the configuration

of the knot, and built a system that follows human demon-

stration to untie simple overhand knot. The untying task

has also been studied as a motion planning problem (Ladd

and Kavraki, 2004), where the authors studied the motion

needed to untie knots in simulation.

Real and simulated knots were tied using motion plan-

ning algorithms developed by Saha, Isto, and Latombe

with a string model (Saha and Isto, 2006, 2007; Saha et

al., 2006). Sequences of motions were planned and car-

ried out by a pair of robot arms. The approach intro-

duced a hierarchical decomposition of the knot using

loops as basic structure. The tree search planner of Waka-

matsu et al. (2006) finds sequences of motions (selected

from four primitives) to tie or untie a knot. Matsuno

and Fukuda (2006) used a vision system to recognize
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Table 1. Knots examples and corresponding complexity.

Knot Example Number of crossings Sufficient fingers Sufficient re-grasps

Overhand 3 16 1

Figure-eight 4 22 1

Knot 62 6 34 1

Knot 77 7 40 2

Double-Coin (818) 8 66 1

Knot 82 8 46 1

Knot 83 8 46 1

Knot 84 8 46 2

Knot 85 8 46 1

Knot 810 8 46 1

Knot 817 8 46 2

Knot 91 9 52 1

Knot 930 9 52 1

Knot 931 9 52 1

Knot 932 9 52 1

Cloverleaf knot 16 94 6

River knot 25 148 4
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crossing points to describe knots and manipulation tasks.

Similarly, Takamatsu et al. (2006) used observed crossings

and the direction of motion to represent string manipulation

tasks.

Recently, we have studied how to tie knots with the assis-

tance of fixtures (Bell, 2010; Bell et al., 2014; Wang et al.,

2014,?). The approach resulted in a generalized knot-tying

approach, that can tie many different knots effectively using

minimum control and no feedback information.

The approach we take in the present paper immobilizes

each segment of string at different configurations to reduce

uncertainty, just as rigid bodies are immobilized during

grasping (Mishra et al., 1987b; Rimon and Blake, 1999;

Rimon and Burdick, 1995; Rimon and van der Stappen,

2012).

Starting with a planar representation of the knot, we con-

struct a 3D configuration for the string that preserves the

topology implied by the planar diagram while attempting to

minimize the number of fingers that must be placed at ver-

tices. Reconstruction of 3D objects from 2D projections has

been studied in work going back as far as the 1970s (Huff-

man, 1971, 1976, 1977; Kanade, 1980; Waltz, 1972). One

approach has been to label intersections, and to find contra-

dictions in the labels to determine whether a projection is

realizable in three dimensions.

Even though changes of geometry are quite common

when manipulating flexible objects, large-scale deformation

away from the given goal geometry is often considered an

undesirable error, instead of a means to simplify the manip-

ulation process; in this work, we allow such changes in

geometry, so as to establish an accurate upper bound. One

notable study about changing geometry to simplify manip-

ulation is the work by Demaine et al. (2010) on kirigami, in

which paper is first folded into a particular shape, so that a

single cut can be made such that when the paper is unfolded,

a desired pattern or scene is created.

Physical knot theory (Kauffman, 1991) studies the geom-

etry of tight knots formed with thick string (Ashton et al.,

2011). The tightness of a knot has been studied in applied

mathematics and physics (Baranska et al., 2008; Carlen et

al., 2005; Rawdon, 1998).

Stretching string tightly between fingers makes the geo-

metric model of the string studied in this paper reasonable,

but we can also envision studies of knot complexity that

allow for twisting, bending, and dynamics. Elastic rods have

been used to model wires and string for manipulation (Bretl

and McCarthy, 2014; Pai, 2002). Friction plays an important

role in tightening a knot, or in untying tight string. Analysis

of the frictional forces is frequently a key component of the

analysis of rigid-body systems (Balkcom et al., Berard et

al., 2004; Mason, 2001), and as string wraps around other

segments of string with a certain thickness, the friction

can be modeled using capstan equations (Attaway, 1999).

However, in the present work, we consider only string that

does not self-contact, so friction can be neglected from the

analysis.

2. Mathematical knots and notation

Knots are tied using string or rope that can deform. To cat-

egorize and differentiate knots, mathematicians observed

that if one connects the open ends of a physical knot, then

the structure of the knot is invariant under deformation. Two

knotted pieces of string are said to be in the same class if

and only if there exists a smooth deformation taking one

curve to the other, without separating the ends. Formally, a

knot is a smooth embedding of the topological circle into R
3

(Adams, 2004; Armstrong, 1983; Crowell and Fox, 1977;

Livingston, 1993; Manturov, 2004); the phrase “topological

circle” describes the idea of connecting the open ends.

To describe or illustrate a knot, we usually project the

knot onto a plane. When the projection is regular (no three

points on the knot project to the same point, and no vertex

projects to the same point as any other point on the knot

(Livingston, 1993)), the projected diagram is called a knot

diagram.

On the projected drawing, broken lines are used to indi-

cate where one part of the knot under-crosses the part of the

knot that is directly above the broken lines; such locations

are called crossings. Each crossing is labeled by a unique

number, indicating the order of the appearance when tracing

along the diagram. Figure 2a shows a shoelace knot dia-

gram. Note that the same number crossing appears twice

while tracing the figure; crossing 1 first occurs as an over-

crossing, and then later is an under-crossing for the string,

as the string is traced from 4 to 2.

We can use the labels of the crossings to describe the

knot. One such description is the Gauss code: a sequence

of labels for crossings indicating a walk along the dia-

gram from a given starting point. We use numbers to label

crossings, and a superscript “+” or “−” to indicate an

over-crossing or an under-crossing. For example, a shoelace

unknot with Gauss code 1+ 2− 3− 4+ 5− 6− 7+ 3+ 2+ 1−

4− 5+ 6+ 7− has seven crossings, so the length of G is 14

(|G| = 14).

The projected knot diagram separates the plane into sev-

eral disconnected closed cells, labeled by capital letters in

Figure 2a.

2.1. Polygonal knots

To find an upper bound on manipulation complexity, we

study a particular simple strategy, in which the string is

always stretched tightly between supporting contacts, mak-

ing the knot polygonal. Formally, we provide the following

definition.

Definition 1 (Armstrong, 1983). A polygonal knot is a

knot whose image in R
3 is the union of a finite set of line

segments.

In this work, we focus on knots that are tame, with finitely

many crossings.
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Fig. 2. Shoelace knot diagrams: (a) a shoelace knot, with numbered crossings and cells labeled with letters; (b) an overhand knot, with

numbered crossings; (c) a double-coin knot, with numbered crossings; (d) a polygonal (grasp-able) shoelace knot.

A polygonal knot diagram (example in Figure 2d) with

k crossings is a 4-connected planar graph G =( V , E) with

straight line edges, and |V | ≥ k. On the diagram, we trim

the first and the last links of the string (crossings 1 and 7

in the example figure), so that the first and last crossings

become the endpoints. Thus, k−2 of the vertices (the cross-

ings) have degree four, and two vertices have degree three;

the remainder have degree two.

2.2. Knot cells and knot paths

We will need some vocabulary to describe the anatomy of a

knot diagram. We will call the cell that extends to infin-

ity the exterior cell, and all other cells interior cells. In

Figure 2d, the interior cells are labeled A–G. We refer to

the sequence of one or more line segments connecting two

labeled crossings on the Gauss code as a knot path, which

is a subsection of the knot diagram.

We call a knot path that contacts both the exterior cell

and at least one interior cell an exterior knot path (as an

example, see knot paths ( 1, 2) through a, ( 2, 3) through b,

( 3, 7), ( 7, 6) through e, ( 6, 5) through d, ( 5, 4) through c

and ( 4, 1) on Figure 2d). Let an exterior crossing be a cross-

ing that is the common endpoint of two adjacent exterior

knot paths; all the other crossings are interior crossings. If

a connection between two crossings is not an exterior knot

path, it is called an interior knot path. Knot paths are undi-

rected, so ( i, j) and ( j, i) represent the same knot path. In the

remainder of the paper, when we read the Gauss code from

different directions, we may use one or the other order.

Each crossing appears twice on the Gauss code for the

knot. Define a knot unit as a connected subsection of Gauss

code where all the labels in the subsection have appeared

twice. As an example, consider three overhand knots tied in

sequence along a single piece of string, with Gauss code 1+

2− 3+ 1− 2+ 3− 4+ 5− 6+ 4− 5+ 6− 7+ 8− 9+ 7− 8+ 9−.

This structure contains three knot units, G1 = 1+ 2− 3+ 1−

2+ 3−, G2 = 4+ 5− 6+ 4− 5+ 6− and G3 = 7+ 8− 9+ 7−

8+ 9−. We call a knot path a bridge if it connects two knot

units.

3. Immobilizing grasps of polygonal knots

How hard is it to grasp a particular knot? Unlike a rigid

body, the description of a knot allows many possible geome-

tries; computing the number of fingers needed to grasp the

knot entails choosing a suitable geometry as well as a place-

ment of the fingers. This section presents a method for

finding a polygonal geometric configuration from a Gauss

code; such a configuration of the string may be immobilized

simply by grasping each of the vertices. This gives a useful

way of computing a measure of the complexity of grasping

the knot based on the underlying structure of the knot.

3.1. Properties of polygonal knots

From the Gauss code, we would like to find a polygon that

has only a few line segments, that may be simply grasped

by fingers at vertices. We present a procedure in the follow-

ing few subsections to first build a polygonal knot diagram

based on the Gauss code (Algorithms 1–3), then project it

to three dimensions to find a polygonal configuration for the

given knot.
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The procedure is recursive, placing all crossings so that

the straight line connections between appropriate crossings

do not create undesired intersections, which would require

the use of additional line segments to correctly represent the

knot diagram. We start by placing the crossings on the out-

side boundaries of the polygonal knot diagram, and proceed

inwards.

To derive this procedure and show its correctness, we

will need a few properties of polygonal knot diagrams, pre-

sented as lemmas. Interested readers may find the proofs

of these following lemmas, as well as several others in the

paper, in Appendix B.

The first necessary step is to show that the connections

between the outward-most crossings form a closed curve,

formally, a Jordan curve.

Lemma 1. All the exterior knot paths of a knot unit form a

Jordan curve.

The following lemma is also proven in Appendix B. The

basic idea of the proof is based on the fact that the knot

diagram is a graph of degree four; we apply Euler’s theorem

to compute the number of interior cells.

Lemma 2. A planar polygonal knot diagram with k cross-

ings has k interior cells.

Lemma 2 forms the basis to prove the relations stated

in Lemma 3 between the numbers of interior and exterior

cells, crossings, and knot paths. These equations will be

used shortly to derive the upper bound on the number of

fingers needed to immobilize and fold the given knot.

Lemma 3. For an arbitrary knot with Gauss code G where

|G| = 2k, let there be nip interior knot paths, nep exterior

knot paths, nic interior crossings and nec exterior crossing.

Then, the following equations and inequalities hold:

nic = nip−( k − 1) (1)

nec = nep (2)

nic + nec = k (3)

nip + nep = 2k − 1 (4)

nep ≥ 3 (5)

k − 1 ≤ nip ≤ 2k − 4 (6)

3.2. Immobilizing grasps

Given a Gauss code G, we would like to generate an effi-

cient polygonal knot diagram, corresponding to a grasp of

the knot. The number of grasp points (fingers) needed is

related to the number of crossings, which can be found from

the Gauss code.

Lemma 4. For an arbitrary knot with k crossings, at least
⌈

3+
√

8k+1
2

⌉

sequential line segments are needed to plot the

corresponding polygonal knot diagram.

Although the formal proof of 4 is left to Appendix B, the

approach is worth mentioning. The complexity of arbitrary

arrangements of line segments, described by relationships

between the numbers of intersections of those segments and

the number of lines, has been well studied in the computa-

tional geometry community. Lemma 4 differs only in that

the line segments are required to form a single chain, con-

nected in a sequential path. This reduces the number of

possible arrangements.

Lemma 4 implies a necessary number of grasp points

(fingers) needed to polygonalize a knot. What is a suffi-

cient number? We introduce an algorithm to place all the

crossings and extra vertices, starting from exterior cross-

ings and moving inwards. We show that by connecting all

the placed crossings (and extra vertices) using line seg-

ments, no intersection (except at common end points) is

introduced.

For convenience, we sometimes place a negative sign that

negates the superscript. For example, an over-crossing can

be represented as i+, or −i−.

We start by showing how the edges are connected to an

exterior crossing.

Lemma 5. Given a crossing with label e that is not the first

or the last crossing, if one knot path containing ea is an

exterior knot path, then there must be another exterior knot

path containing −ea.

Lemma 5 shows that even though each crossing label

except the first or last appears in four knot paths (either

exterior or interior) with each superscript appearing twice,

if it is an exterior crossing, then the two exterior knot paths

connected to this crossing will contain one of each super-

script. This is a critical step in Algorithm 1, which finds a

set of exterior crossings on the polygonal knot diagram we

intend to build, using only the topological information from

the Gauss code as input.

The next lemma indicates what happens if the crossing

is either the first or the last crossing on the knot diagram.

Without loss of generality, let the first crossing be 1a and

last crossing be lb. Then, we have the following result.

Lemma 6. The two knot paths with −1a as endpoints and

two knot paths with −lb as endpoints are exterior knot

paths.

Now that we have ways to identify exterior knot paths and

know two exterior crossings, we can identify all the exterior

crossings using the following procedure.

Algorithm 1: Find exterior crossings and knot paths

1. Add two knot paths with −1a as endpoints (denote as

( pe, −1a) and ( −1a, qf )) into the exterior knot path

list;

2. Add two knot paths with −lb as endpoints (denote as

( sc, −lb) and ( −lb, td)) into the exterior knot path list;

3. Add crossings sc, td , pe and qf into a queue Q, and add

1, l, p, q, s and t to the exterior crossings list;
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4. Check whether any label appears twice in the exterior

knot path list with both superscripts; if yes, delete the

both labels from Q;

5. Pop a crossing xg from the queue, find previous cross-

ing uh and next crossing vr of −xg on the Gauss code.

Check whether u and v are in Q (possibly with different

superscripts);

6. If u (or v) is in Q, add ( uh, −xg) (or ( vr, −xg)) to exterior

knot path list, add u (or v) to exterior crossing list (note,

at most one of u and v can be in the queue);

7. If both u and v are not in Q, add both of them in Q, add

both knot paths into exterior knot path list, and add both

of them to exterior crossing list;

8. Check whether a subset of exterior knot paths in the list

form a cycle; if a cycle is formed, then delete all knot

paths not used in the cycle, delete all crossings not used

in cycle from Q and exterior crossing list;

9. If Q is not empty, go to step 5;

Let us look at an example. The Gauss code 1+ 2− 3+ 4−

5+ 6− 2+ 7− 4+ 8− 6+ 1− 7+ 3− 8+ 5− represents a double-

coin knot. We use the construction of the knot diagram for

the double-coin knot from the Gauss Code as a demonstra-

tion of the execution of the Algorithms 1–3; results can be

seen in Figure 3, 5, and 6.

First, we find that 1− and 5+ are on exterior knot paths,

and so add ( 4−, 5+), ( 5+, 6−), ( 6+, 1−), and ( 1−, 7+) to

the exterior knot path list, and put 4−, 6+, 6−, and 7− in

the queue. Since 6 has appeared twice, delete it from the

queue. Now start with crossing 4. Note that 4+ has previous

crossing 7− and next crossing 8− in the Gauss code. We find

that 7 is already in the queue; add knot path ( 7−, 4+) to the

exterior knot path list, delete 7 from the queue, and notice

the queue is empty; terminate.

So far, we have knot paths ( 4−, 5+), ( 5+, 6−), ( 6+, 1−),

( 1−, 7+), and ( 7−, 4+) in the exterior knot path list for the

double-coin knot, and exterior crossings include 1, 4, 5, 6,

and 7; the labels form a cycle. We then place the exterior

crossings on a plane as the outer boundary for the polygonal

knot diagram, using Algorithm 2.

Algorithm 2: Place all exterior crossings

1. Place crossing 1 at ( −1, 0) and denote the origin o =
( 0, 0);

2. In the exterior knot paths list, we find an knot path ( 1a,

b) that has crossing 1 as an endpoint, and delete it from

the list;

3. Place crossing b at ( cos( π − t) , sin( π − t) ) where t =
2π/j;

4. Label the crossing just placed as p, find an exterior knot

path ( p, q) in the list that has p as an end point, and

delete it from the exterior knot path list; if op has angle

α, then place q at ( cos( α − t) , sin( α − t) );

5. If exterior knot path list has more than 1 knot path, go

to step 4;

Fig. 3. Placing all exterior crossings for a double-coin knot.

As the goal is to form a polygonal knot diagram, we

show below that using a line segment connecting the exte-

rior crossings placed using Algorithm 2 does not create

intersection.

Lemma 7. If all exterior crossings are placed using Algo-

rithm 2, then line segments connecting exterior crossings

that are adjacent on the Gauss code do not intersect except

at common endpoints.

So far, we have placed all of the exterior crossings

and connected them if they are adjacent on the Gauss

code. An example is shown in Figure 3. Now we will

work inwards, starting by placing all the crossings that are

directly connected to the exterior crossings.

Algorithm 3: Place interior crossings

1. Find all crossings V that directly connect to exterior

crossings on the Gauss code;

2. For a v ∈ V , find all adjacent exterior crossings Ev, and

delete v from V ;

3. Find the smallest circular sector that contains all the

crossings in Ev, denote it as aob; let oa and ob inter-

sect a circle centered at o with radius 1/2 at a′ and b′,
place v at the midpoint of a′b′ within aob;

4. If V is not empty, go to step 2;

Figure 4 demonstrates step three in Algorithm 3. Since

v connects to a, b and c (or even d), the wedge with oa

and ob as boundary contains all the crossings v connects to.

Place v on the smaller circle with radius 1/2. This step, as

we state formally below, also does not introduce undesired

intersection, if we introduce an ε perturbation.

Lemma 8. If v ∈ V is placed using Algorithm 3, and all v ∈
V are connected to their corresponding exterior crossings

using line segments, there exists an ε ≥ 0 perturbation of

each v along ov away from o such that these knot paths do

not intersect with each other or with previously connected

knot paths.

An example of connecting all crossings in V to exterior

crossings for the double-coin knot is shown in Figure 5.
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Fig. 4. Finding a placement for v based on the exterior crossings

it connects to.

Fig. 5. Connecting crossings in V with the exterior crossings

based on the Gauss code.

We now connect the crossings within V . We show that

these knot paths do not create intersections.

Let us consider vi ∈ V for i = {1, 2, 3, 4} and the case

where v3 and v4 belong to different pieces inside of P, with

respect to a polygonal arc ( a, v1, v2, b) connecting two exte-

rior crossings a and b and passing through v1 and v2. Since

v3 and v4 are both connected to exterior crossings as well

(otherwise they will not be in V ), then consider a polygo-

nal arc ( c, v3, v4, d) connecting exterior crossings c and d

which passes through v3 and v4. These two exterior cross-

ings c and d must also belong to two different pieces with

respect to ( a, v1, v2, b) because all v are placed adjacent to

the exterior crossings they are connected to. Then, the only

way to avoid intersection between ( a, v1, v2, b) and ( c, v3,

v4, d) is that one of the two polygonal arcs is outside P, and

neither is. Therefore, v3 and v4 must belong to the same

piece with respect to ( a, v1, v2, b).

If there are still unplaced crossings, recursively find

crossings Vi that directly connect to crossings in Vi−1 where

V0 = V , and place them on the circle with radius 1/2n+1,

perturbing slightly if needed. Analogously to the previous

argument, these connections will not intersect with each

other.

The final laid-out polygonal knot diagram for the double-

coin knot is shown in Figure 6. No extra intersections are

introduced, and 15 line segments are used.

Fig. 6. Connecting crossings in V to for the double-coin knot.

3.3. Grasp complexity

To obtain the sufficient number of fingers to immobilize

arbitrary knot into a polygonal shape, we may bound the

line segments generated by the above algorithms. The fol-

lowing lemma directly leads to one of the main result of this

work: a sufficient number of fingers needed to immobilize

any given knot.

Lemma 9. For an arbitrary tame knot unit with Gauss code

G, where |G| = 2k, there always exists a polygonal knot

diagram of the knot with no more than 2k −1 line segments.

Proof. In this proof, we first show a naive and looser bound,

and then show that we can improve the bound through

perturbation of the line segments.

First, place all the crossings using Algorithms 2 and 3,

connecting all of the crossings with line segments. Each of

the k crossings is visited twice, so 2k − 1 line segments are

used.

However, two crossings a and b may be adjacent twice

in the Gauss code, so that the two line segments connecting

them overlap. For example, an overhand knot with Gauss

code 1+ 2− 3+ 1− 2+ 3−, crossings 1 and 2 appear adjacent

to each other twice in G.

For the second time the two crossings a and b are adjacent

in the Gauss code, use two line segments instead of one to

connect them. Denote the midpoint of ab as ma,b. For the

second time a connects to b, if it is an exterior knot path,

place p at ( 1 + ε) Eoma,b, otherwise, place p at ( 1 − ε) Eoma,b,

where ε > 0.

With k crossings, overlap may occur at most k − 1 times.

Therefore, at most 2k − 1 + k − 1 = 3k − 2 line segments

are necessary to draw any planar polygonal knot diagram.

Now, let us try to find a alternate representation of the

polygonal knot diagram using fewer line segments, by per-

turbing the original representation using 3k − 2 line seg-

ments. Compared with 2k −1, the extra k −1 line segments

are due to the overlapping line segments (repeated adjacent

crossings on the Gauss code). We originally added one ver-

tex near the center of the connection, to reroute the second

connection to avoid overlapping, as shown in Figure 7.
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Fig. 7. The method to avoid overlapping in Lemma 9.

Fig. 8. The method to avoid overlapping in the first case.

Consider two crossings i and j that appear twice in the

Gauss code. First consider the case where ij is adjacent to k

the first time, and adjacent to p the second time on the Gauss

code, and k and p are different crossings. Add a vertex j′ on

the extension of pj, such that j and j′ are not coincident.

When the second time i is adjacent to j on the Gauss code,

let i connects to j′ instead of j, then the crossing j still hap-

pens at j, but no collision will happen, as shown in Figure 8.

Now let us consider the case where i and j are connected

to k both time on the Gauss code. Choose points j′ and j′′,
where j′ is on the extension of ij, and j′′ is on the exten-

sion of kj, neither coincident with j. The first time ij appears

adjacent on the Gauss code, let i connect to j′ instead of j,

and let i connect to j′′ the second time they appear adjacent

on the Gauss code, as shown in Figure 9. The crossing j

is still at the location of j, but j is a projected intersection

instead of an end point of a line segment.

Fig. 9. The method to avoid overlapping in the second case.

By re-arranging the crossings following the principles

stated earlier, only 2k−1 line segments are needed (because

we avoided using k − 1 extra line segments to avoid

collision).

Combining Lemmas 4 and 9, we have the following

result.

Theorem 10. For an arbitrary knot with Gauss code G

where |G| = 2k, to draw a polygonal knot diagram of this

knot, at least
⌈

3+
√

8k+1
2

⌉

and no more than 2k−1 sequential

line segments are required.

Then, for the polygonal knot itself, we have the following

result.

Theorem 11. For arbitrary polygonal knot with k cross-

ings, at least
⌈

3+
√

8k+1
2

⌉

and no more than 2k−1 sequential

line segments are required to represent the polygonal knot.

Proof. We construct the 3D polygonal arc using the loose

bound of 3k − 2 line segments, and then show that the

perturbation does not introduce intersection.

To project to n line segments on the plane, at least n line

segments are needed in three dimensions. In the polygo-

nal knot diagram constructed in the proof of Lemma 9 with

3k − 2 line segments, all the crossing are the vertices of the

projected planar graph. This, combined with fact that the

knot diagram is a regular projection, implies that the same

number of projected line segments is sufficient to represent

the 3D polygonal knot.

Place a crossing with coordinates ( xi, yi) in the knot dia-

gram at ( xi, yi, 1) if it is an over-crossing, and at ( xi, yi, −1)

if it is an under-crossing. If a vertex on the polygonal knot

diagram has degree two, place it at ( xi, yi, 0). Since the pro-

jected line segments do not intersect, the original 3D line

segments also do not intersect. Therefore, no more than

3k − 2 line segments are needed to describe an arbitrary

polygonal knot with k crossings.



Wang and Balkcom 387

When projecting the perturbed polygonal diagram back

to three dimensions, in the first case, j and j′ have different

z coordinates, so the two line segments will not intersect. In

the second case, because j′ and j′′ also have different z coor-

dinates, the two connecting line segments will not intersect.

Therefore, only 2k−1 line segments are needed to represent

the polygonal knot.

Since each polygonal arc with n links has n+1 end points,

we have the following corollary, which is the main result of

the paper regarding the complexity of immobilizing a knot.

Corollary 1. At least
⌈

3+
√

8k+1
2

⌉

+ 1 and no more than 2k

grasp points are needed to grasp an arbitrary knot with k

crossings in a polygonal knot configuration.

4. Continuous folding of knots

In this section, we investigate the problem of folding a

polygonal arc from a straight line configuration to a knotted

configuration, yielding formulas for computing a sufficient

number of fingers needed to tie a knot. We may expect that

achieving continuous folding motion will require at least

as many fingers as the immobilizing grasps of the final

configuration studied in the previous section.

We will need some terms. Given an arbitrary x–y plane,

we say a polygonal knot Kp is approximated by a polygonal

arc P if the projection of P on this x–y plane is a polygo-

nal knot diagram of Kp. We use the word approximate as

a reminder that a knot is a 3D structure, and we are only

concerned with the relative z coordinates at each crossing,

rather than finding a polygonal arc that overlaps every ver-

tex on the polygonal knot. A link l on Kp is approximated

by a link l′ on P if the projection of l′ overlaps with the

projection of l on the x–y plane. We do, however, need to

choose the x–y plane carefully to ensure that the projection

of a given Kp is a regular, i.e. no three points on Kp projects

onto the same point on this x–y plane.

Theorem 12. An arbitrary knot with Gauss code G where

|G| = 2k can always be folded from a polygonal arc

of no more than 6k − 3 links, starting from a straight

configuration.

The proof is fairly lengthy; the basic approach is to

fold an approximation of the computed polygonal arc by

threading a slightly different polygonal arc of string along

it, using a follow-the-leader approach. Additional fingers

and bends are added as needed to allow threading without

self-intersection.

Proof. We approximate as follows. For two vertices vi and

vj on the knot, if i < j, then let vi appear earlier than vj when

traversing along the knot from endpoint v0. Once the links

up to lj (pj−1pj) on the arc P have approximated the links up

to vivi+1 on the knot, then all vertices before pj on the arc are

fixed. When approximating a link vivi+1 using links from

Fig. 10. Folding links given arbitrary small clearance.

vertex pa to pb on the arc (a < b), it is possible to ensure

that pa and vi, pb, and vi+1 have the same coordinates; we

will do so. Initially, for the ith link (li) on the arc between

vertex pi−1 and pi for which 1 ≤ i ≤ n, let the length of the

link d( pi−1, pi) (d( li)) equal the distance between vi−1 and

vi, the ( i − 1)th and ith vertex on the knot, d( vi−1, vi).

Now fold, starting with the first link of the polygonal

knot, v0v1. Without loss of generality, let v1 be an over-

crossing. We use the link p0p1 on the arc to approximate

the first link of the knot, while keeping all the links from p1

to pm (m ≥ n) above the plane z = z( v1). Then approximate

v1v2 using link p1p2, by rotating all the links following p1p2

around p1 until p2 has the same coordinates as v2 and all

other vertices are below plane z = z( v2). Then, repeat this

process if such a rotation around pi does not collide with the

fixed links (we will consider the collision case next). After

approximating an over-crossing (under-crossing) vi using

links before vertex pj on the arc, all vertices after pj will

be above (under) the plane z = z( vi).

When approximating a vertex vi (where all vertices

before pj are used to approximate vertices up to vi−1, with-

out loss of generality, let vi be an under-crossing and vi−1

be an over-crossing). Since all the previous links are fixed

in space, it is possible that their projection forms a loop on

x–y plane such that the previous attempted rotation around

pj will collide with the fixed links. Let v′
i−1 and v′

i denote

the projected points on x–y plane, and the crossing over

vi (denote as vo
i ) has been placed, we have d( pj, pj+1) ≥

d( v′
i−1, v′

i).

In this situation, insert two additional links l1
j+1 and l2

j+1

before link lj+2 and after link lj+1, pointing from pj to pj+1

(recall that links l1 to li are fixed. We need to move li+1

and all links after it to let pj+1 occupy the same location as

vi), and change the length of li+1. Let d( l1
j+1) = d( lj+1) ≥

max( la
b) where b ≥ j + 2 and a = {0, 1, 2} (l0

i = li), and

let l2
j+1 =

√

d( vi, vo
i )2 +ε2. For arbitrary small d( v′

i−1, v′
i),

every link la
b and its previous link can rotate around one

of the two endpoints with the smaller index such that all

vertices after pa (including pa) can move continuously along

a line Lvi−1 that is perpendicular to the x–y plane and pass

through vi−1, either up or down depending on whether vi is

an over-crossing or an under-crossing, respectively. During

the folding, since all vertices move along Lvi−1 , no link will

collide with the fixed links.
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An example of the folding is shown in Figure 10. During

the folding, we combine links to form AB, so as to maintain

the constraint that length l( AB) ≥ l( BC).

After the folding sequence moves link l1
j+1 (pj+1p1

j+1) to

be perpendicular to the x–y plane where pj+1 is directly

above p1
j+1, move p1

j+1 on the plane z = z( vi−1) along Ev′
i−1v′

i

and stop when d( p1
j+1, vo

i ) = ε > 0. Then move link l2
j+1

to let p2
j+1 occupy the location of vi. Repeat this process to

approximate the knot using the arc.

Since there are at most 2k − 1 links on original lay-

out, we may at most need to add two links every time we

approximate a new link. Therefore, we need at most 6k − 3

links.

4.1. Better bounds for specific knots

Although the preceding theorem gives a sufficient num-

ber of links, analysis of particular knots may allow tighter

bounds. For example, to fold the configuration calculated

using the algorithms from Section 3.2, seven links are suffi-

cient to fold an overhand knot (Theorem 11 requires seven

line segments), and 18 links are sufficient for the double-

coin knot (Theorem 11 requires 15 line segments). In the

following, we show that even for the simplest knot, over-

hand knot, the upper bound we derived above is not tight.

This suggests a very interesting challenge for future work.

Theorem 13. At least five links are necessary to fold an

overhand polygonal knot.

Proof. Four links are necessary to create three crossings.

However, consider the plane P formed by the first three end-

points of the links v1, v2, and v3. To form an overhand knot,

the projection of v4 must be outside the triangle formed by

v1, v2, and v3. Without loss of generality, let v4 be above P.

Then, to form an overhand knot, the last link must penetrate

P, with the last vertex vn above P and projects outside tri-

angle formed by v1, v2, and v3 (this can be verified using

the Gauss code). Then, v4 (above P) must connect to vn−1,

which is below P. Therefore, n − 1 = 5, and five links are

necessary to form an overhand knot.

Theorem 14. There exist 5-link polygonal arcs that cannot

fold into any overhand polygonal knot.

Proof. Consider a 5-link polygonal arc with lengths ( 100,

1, 1, 1, 100). Folding the overhand knot involves an opera-

tion to insert one of the links on the end through a triangle

formed by other links, which in this case has a limited size.

Two of the edges have length 1, and the other edge is shorter

than 2. What is more, one of the endpoints for the outer

link has to be no further than 1 unit away from the triangle.

Therefore, such motion cannot be achieved.

4.2. Knot tying with sliding fingers

In the previous analysis, we did not allow the fingers to

move along the string or release contact. Owing to these

Fig. 11. Sliding fingers allow the string to bend and thread

through small openings.

constraints, the number of fingers needed to tie a knot is

quite large.

In fact, even if we only allow fingers to slide along the

string, the number of fingers needed to tie an arbitrary knot

with k crossings can be reduced to just 2k, twice the number

of crossings. Let us use the polygonal configuration com-

puted in previous section and the same follow-the-leader

motion sequence to tie the knot. In the previous approach,

we may need to add fingers during each threading motion

along the z axis, because the polygonal links cannot bend

at arbitrary point. Additional fingers were used to form the

triangle to allow threading through arbitrary small opening.

Theorem 15. If a contact is allowed to slide along the

string, then an arbitrary knot with k crossings can be folded

by using 2k fingers.

Proof. If we allow the fingers to slide along the string, no

triangle needs to be formed to thread the string along z axis,

following the approach used in Theorem 12. As shown in

Figure 11, finger at point B can continuously slide along the

string, so the distance to the finger at A is reduced, while

the finger at C is threading further down along the Z axis.

Therefore, only 2k fingers are sufficient to tie an arbitrary

knot.

We have just shown that a polygonal overhand knot

requires six fingers to be immobilized. Since an overhand

knot has only three crossings, the sufficient number of fin-

gers 2k is tight both for immobilizing the knot and tying the

knot.

5. Knot weaving

The number of fingers proposed in the previous section

is still too large to be provided by a traditional pair of

robot arms. To physically tie knots with robots, we need to

find alternative strategies to the follow-the-leader approach

described above. One strategy to tie knots is to simulate

human approaches to knot tying, in which some sections of

string are laid out and immobilized together, and then other

sections of string are threaded through the loops formed.

This approach requires some release and re-grasping of the
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Fig. 12. The comparison between (a) a cloverleaf knot and (b) a weaving pattern.

string, if executed with a robot arm that is itself too large

to pass through loops of the string. Since re-grasping can

be difficult, we attempt to reduce the required number of

re-grasps needed.

Many knots have alternating over- and under-crossing

patterns when traced along the string. This pattern also

shows up in weaving. One difference is that in weaving,

the crossings that have alternating over- and under-crossing

pattern (a weaving sequence) are geometrically adjacent

to each other. Through a comparison between knot tying

and weaving, we show many crossings can be arranged

together using simple motions, which in turn reduces the

total number of re-grasps used.

Let us consider the example of a weaving and a clover-

leaf knot (both with 16 crossings) shown in Figure 12. Even

though all the crossings may appear in the same geometri-

cal locations, when traced along the string, the over/under

patterns are different.

5.1. Knots and weaving

In a weaving loom, the warp is the set of strings that form

the basic structure around which the weft (the string pulled

by the shuttle) is woven. The approach we take to knot

tying is to find a simple substructure of the knot in such a

way that the under-crossing always appears before its over-

crossing; this spiral-like structure is somewhat analogous to

the warp. The rest of the knot, like the weft, is then arranged

with respect to this warp to construct the more challenging

crossings.

The approach we present will form weft crossings in

iterations, and form necessary warp crossing between iter-

ations. Therefore, in this approach, we sometimes immobi-

lize segments of string that are manipulated as weft in pre-

vious iterations, and consider them as (immobilized) warp

in the following iterations.

Let us consider the following example. For a double-coin

knot with Gauss code 1+ 2− 3+ 4− 5+ 6− 2+ 7− 4+ 8−

6+ 1− 7+ 3− 8+ 5−, the last five crossings counting from

Fig. 13. A configuration of a double-coin knot with the last five

crossings on a straight line.

the right open end are 5, 8, 3, 7, and 1. These five cross-

ings can be formed by dragging the right open end along a

straight line like the motion of a shuttle on a loom, provided

that the other segments of string are arranged appropriately.

An example of the rearranged polygonal configuration of a

double-coin knot is shown in Figure 13. We implemented

the knot arrangement using the proposed layout with a

Da Vinci robot arm. Figure 14 shows the results of the

implementation.

5.2. Division into warp and weft stages

In this section, we introduce a method to change the geom-

etry of a knot to allow the division of knot arrangement

into warp and weft stages. In traditional weaving, the warp

does not cross itself, but knots may have a more complex

structure. We allow crossings in the warp, as long as those

crossings can be achieved without regrasps, and then immo-

bilized. We refer to all crossings formed by the warp stage

as warp crossings, and all crossings formed in the weft

stage as weft crossings. We will see that a crossing i is a

weft crossing if and only if after all the crossings to the

right (or all of the crossings to the left) of ia have been

removed, the crossing to the left (right) of ia has a different

sign than a.
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Fig. 14. Arranging a double-coin with a Da Vinci robot arm. (a) Arranging the warp crossings of a double-coin knot. (b) Completing

the arrangement of a double-coin knot with one re-grasp.

5.3. Forming or removing crossings based on

weaving sequence

We define a minimal Gauss code as a Gauss code that can-

not be simplified by performing Reidemeister moves: three

local motion primitives that create or remove crossings

(Reidemeister, 1927). Adding or removing of a crossing

from a structure with minimal Gauss code through physical

manipulation of the string can only be achieved if one of the

two appearances of the crossing number is at the beginning

or the end of the Gauss code.

What happens if we remove crossings one-by-one from

the open ends? Intuitively, we know that after a certain

number of removals, the remaining crossing pattern is no

longer knotted, because eventually the knot is untied if we

remove all crossings. The knotting and unknotting process

are symmetric. It is easier to see the pattern when remov-

ing crossings from an existing sequence of crossings, so we

choose the unknotting process for analysis.

We define a weaving sequence as a sequence of alter-

nating over- and under-crossings that have to be formed

or deleted in the given order indicated by the Gauss code.

Consider the example of unknotting a double-coin knot, the

Gauss code of which is 1+ 2− 3+ 4− 5+ 6− 2+ 7− 4+ 8− 6+

1− 7+ 3− 8+ 5−. Let us start from the right end. Crossing 5−

is adjacent to 8+ on the Gauss code, and the crossings have

different superscript signs, and are therefore weft crossings.

The untying process we employ removes weft crossings one

by one, and in this case, we will remove 5−.

We continue to remove crossings that are part of the

same weaving sequence from the right end of the remain-

ing Gauss code, including crossings 8, 3, 7, and 1, in given

order. After we remove the last five crossings on the Gauss

code, we have 2− 4− 6− 2+ 4+ 6+. Now, the next two cross-

ings from the right have the same superscripts, so they are

no longer part of a weaving sequence. We know that the five

deleted crossings can be formed by a single weft (weaving)

motion, dragging the string along a straight line. We con-

tinue searching for weaving sequences from right to left. In

this example, there are none, and the remaining structure

consists only of warp crossings.

Algorithm 4, which takes the Gauss code of the knot as

input, finds a weaving sequence for the given knot.

Algorithm 4: WEAVE

1. Select either left or right end of the Gauss code;

2. Delete crossings from the selected end;

3. If the crossing to be removed has a different sign from

the next crossing to removed, then the two crossings

belong to the same weaving sequence. Register a new

weaving sequence if the current crossing to be removed

is not already on a weaving sequence. If the crossing to

be removed has the same sign as the next crossing to be

removed, then terminate the current weaving sequence;

if the crossing to be removed has the same label as the

next crossing to be removed (for example, i−j−j+ where

j− and j+ have the same label), then compare the sign

with the first crossing with a different label (compare j+

with i− in the given example);

4. Repeat steps 2 and 3 until only one crossing is left, and

attach the last crossing to the on-going pattern;

With a single pass through the Gauss code, the algorithm

outputs a sufficient number of m weaving sequences that

can be used to form the knot; m is also a sufficient number

of re-grasps to tie the knot with a fixed-base arm.

For a Gauss code with k crossings where |G| = 2k, we

can find O( k2) different sequences of labels that are the

results of removing the crossings at the beginning or the

end of the Gauss code. However, since a weaving sequence

can only be formed by weaving with one end of the string,

we only need to check the sequence of labels that are the

results of removing crossings from solely the left or right

end. The total length of such a sequence of labels is 2k.

The algorithm only checks whether the current crossing

has a different sign from the adjacent one. This approach

may consider some structures that are unknotted part of a

weaving sequence, because the sequence contains adjacent

labels with different superscripts, such as 1+ 2− 3+ 4− 4+

3− 2+ 1−. This structure is unknotted, but still contains one

weaving sequence.

Knots such as the overhand knot contains only one weav-

ing sequence associated with the last two crossings, while

the first crossing can be formed by a type I Reidemeis-

ter move. Similarly, the figure-eight knot with Gauss code
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Fig. 15. Rotating extreme segments to align all weaving crossings

on a straight line.

Fig. 16. Reconfiguration of a double-coin knot to align weft cross-

ings onto a straight line. (a) A polygonal knot diagram for a

double-coin knot. (b) The rearranged configuration for the double-

coin knot, by rotating extreme segments using the proposed

method indicated in Algorithm 5.

1+ 2− 3+ 4− 2+ 1− 4+ 3− also contains only one weav-

ing sequence associated the last three crossings where the

first crossing is achieved by a type I Reidemeister move.

The double-coin knot shown earlier contains one weaving

sequence, with the crossings 2, 4 and 6 forming the initial

unknotted structure.

Lemma 16. If a knot can be arranged by following a sin-

gle weaving sequence, then a motion that removes all weft

crossings unties the knot.

5.4. Aligning crossings on a straight line for

simple manipulation

A straight-line motion is easy to achieve even for simple

robotic devices. This section will show that weft crossings

can always be aligned on a single straight line, without

changing the knot topology.

Lemma 17. In a weaving sequence, each crossing label

appears only once.

Since no crossing appears twice on a weaving sequence,

we can move the crossings so that they appear on a straight

line. Therefore, a single straight line motion of the string

can form multiple crossings at once. Define an extreme seg-

ment of the weaving sequence as the segment between two

exterior crossings.

Algorithm 5 shows how to arrange extreme segments on

a straight line if they are on the same weaving sequence.

The input to the algorithm is the locations of all the cross-

ings, which may be computed from the Gauss code using

Algorithms 1–3.

Algorithm 5: ALIGN

1. For each given extreme segment, connect a line between

the two exterior crossings (or an interior to an exte-

rior crossing), and move each of the crossings on the

extreme segment to its projection on the connected line;

2. Let crossing i (( xi, yi)) and crossing j (( xj, yj)) be the two

adjacent exterior crossings on two adjacent extreme seg-

ments, with k connections between them; without loss

of generality, let yj < yi; let p be the other end point on

the extreme segment with j as an end point;

3. Rotate all the points above extreme segment between p

and j (because yj < yi) around j then around i in the

stated order, so that ( x′
j, y′

j) is the new location of cross-

ing j where y′
j = yi, as shown in Figure 15; the angle

rotated around crossing i can be calculated as the acute

angle α between the x axis and the vector Eij, and the

rotation angle around crossing j is β = π − α − γ ,

where γ is the angle between Epj and x axis;

4. Along the line x =( xi + x′
i) /2, find k points above

(or under) the line y = yi if x′
i ≥ xi (x′

i < xi) with

equal distance. For the endpoints of the k pair of con-

nection between two extreme segments, connect to k

points along the line x =( xi + x′
i) /2 in order based on

the distance of the end point on segment pj to the exte-

rior crossing j, such that no additional intersection is

introduced;

5. Adjust the z coordinates of all crossings so that the

crossings on the rearranged weaving sequence lie on a

straight line in three dimensions;

The result of applying the process to a double-coin knot

is shown in Figure 16.

In previous sections, we have shown that an arbitrary

(polygonal) knot with k crossings can be laid out based on

its Gauss code using no more than 3k − 2 line segments.

We use this projected configuration to compute where each

crossing should be placed so the crossings on a weaving

sequence is on a straight line in our experiments.

Lemma 18. The reconfigured polygonal knot configura-

tion following Algorithm 5 uses no more than 2k − 1 line

segments.

Given that we can use fewer line segments to represent

the same knot, we can easily show that by rearranging the

knot, we can use fewer fingers to grasp and fold a given

knot, even without using re-grasping.

Theorem 19. Given a knot and the configuration computed

in Algorithm 5, fewer than 6k − 2 fingers are needed to tie

the knot.

Proof. In the reconfigured configuration in Algorithm 5,

instead of k possible threading operations, the threading
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only happens when arranging aligned crossings. For a given

knot, let m piercing motions be sufficient to arrange the

knot. Since we have shown at most two extra line segments

are needed at each threading, and m ≤ k, we only need

2k − 1 + 2m line segments, less than 6k − 3 line segments.

Therefore, we need less than 6k − 2 fingers to arrange the

knot.

5.5. Re-grasping and weaving

This section analyzes the number of re-grasps needed to

arrange each of the two types of crossings. If we arrange

a given knot by simply following the Gauss code without

any change of geometry, the number of re-grasps needed to

arrange a knot maybe be as large as the number of weft

crossings, plus one re-grasp for each sequence of warp

crossings.

We show that the output of Algorithm 4 also gives a suf-

ficient bound for the number of re-grasps needed to arrange

a given knot, if each sequence of weft crossings are aligned

on a straight line following Algorithm 5.

We can use a fixed-base robot arm to lay out the warp

crossings without re-grasping.

Lemma 20. Let i be a crossing label. If on a sequence of

crossings, i− always appears before i+, then the crossings

can be laid out by a robot arm without re-grasping.

Proof. The structure is unknotted and belongs to two lay-

ers. If for each layer, we trace along the configuration with

a robot arm, then the two layers form the corresponding

crossings. Therefore, no re-grasping is needed.

An elephant-trunk arm with infinite degrees of free-

dom can arrange any knot without re-grasping. Sometimes,

changing the geometry of the knot can reduce the number

of degrees of freedom that a fixed-base arm must have to tie

the knot using a particular number of re-grasps.

The next lemma shows that changing the geometry of the

knot is, in fact, sometimes necessary to optimize this trade-

off between degrees of freedom of the arm and the number

of re-grasps required: some knot geometries are quite dif-

ficult for any finite-DOF arm. For example, a sequence of

crossings of the form ia, jb, ka, where a and b have oppo-

site signs. A 4-DOF robot arm needs at least one re-grasp

to arrange this sequence of the crossings, if ja has already

been arranged. Such sequence of crossings are the basic

structures of the weaving sequence.

A weaving sequence contains a sequence of consecu-

tive over- and under-crossings. However, if we imagine

the robot end-effector as the shuttle on the loom, it does

not need to re-grasp every time the string switch between

over- and under-crossing, if all the crossings on this weav-

ing sequence is on a straight line. However, for a weaving

sequence, one re-grasp is still needed.

Lemma 21. To arrange a weaving sequence with a fixed-

base robot arm grasping the ends of the string, at least one

re-grasp is needed.

The number m output by Algorithm 4 gives a sufficient

number of re-grasps needed to tie a given knot. For many

knots, including the double-coin knot, the number is 1.

Since these knots are in a different topology class from a

topological loop when one of their end points are grasped

by a robot arm and the other end point is attached to the

ground, therefore at least one re-grasp is needed. In these

cases, the number output by Algorithm 4 is also a lower

bound.

5.6. Knot weaving with Da Vinci

We conducted experiments with a Da Vinci surgical robot,

which has two symmetric high-precision arms. We com-

puted knot layouts and built fixtures to support string

arranged at various heights, allowing weaving to be imple-

mented with a single translation.

Figure 14a shows the layout of the warp crossings of a

double-coin knot, arranged without re-grasps. After layout,

the effector of the second arm grasps the tip of the string

and uses a pure translation to complete the knot, as shown

in Figure 14b and in the multimedia attachments.

The preliminary arrangement of the string requires many

support structures laid out in the workspace of the robot.

For simplicity, we programmed the robot to just arrange the

warp crossings of the string at the same heights around sim-

ple fixtures. Figure 17 shows the arrangement of a 71 knot.

Figure 18 shows the arrangement of a double-coin knot.

5.7. Robot–human collaboration

When we arrange the segments of string that are not part

of a weaving sequence at the same height, the robot arm

weaves around arranged segments of string. Even though

the locations of the string segments are known, the motion

still may not be easy to perform for a robot. Humans,

however, can arrange the weaving sequence easily with

re-grasps.

For example, a double-coin knot can be tied using the

robot to lay out the structure, and allowing the human to

finish the weft crossings. We used this technique to tie

figure-eight knots, and knots 71, 82, 85, 810, 931, and 932

from the standard knot table. Applying Algorithm 4, all the

listed knots can be tied with one re-grasp. Figures 19, 20,

and 21 show the examples of a human collaborating with

an Adept Cobra industrial arm to tie knot 810, knot 931, and

knot 932, respectively.

6. Untangling knots

In the previous approach, we changed geometry of knots to

simplify the knot arrangement, based on the identification
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Fig. 17. Arranging a 71 knot with a Da Vinci robot arm: (a) without re-grasping; (b) with one re-grasp.

Fig. 18. (a) Arranging a double-coin by laying out the warp crossings on the same height. (b) Completing the arrangement of a

double-coin knot with a single re-grasp.

Fig. 19. (a) Arranging a 810 knot by robot and human collaborating together. (b) Completing the arrangement of a 810 knot by a human

weaving the string.

Fig. 20. (a) Arranging a 931 knot by robot and human collaborating together. (b) Completing the arrangement of a 931 knot by a human

weaving the string.

of type 1 and weft crossings on the knots, and we identified

the weft crossings by processing the Gauss code.

The same change of geometry can also be used to untan-

gle knots. In this work, we focus on untangling knots from
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Fig. 21. (a) Arranging a 932 knot by robot and human collaborating together. (b) Completing the arrangement of a 932 knot by a human

weaving the string.

Fig. 22. Friction prevents the untying of a double-coin knot.

a loose configuration rather than from a tight configura-

tion. We untangle the knot by changing the geometry of the

knot and pulling the string several times along straight lines.

With each pull of the string, we remove all consecutive weft

crossings that extend to the current end of the string. How-

ever, non-consecutive weft crossings may not be able to be

removed in a single motion.

Given two different sequences of weft crossings, in order

for them to be aligned, other crossings need to be relocated.

Since each crossing can only appear once on a weaving

sequence (weft crossing sequence), two different sequences

of weft crossings may not be disjoint. Therefore, they can-

not be aligned on the same line. Therefore, without knowing

which specific knot we are trying to untangle and detailed

analysis of the specific knot, the best we can do with each

grasp is to align a sequence of consecutive weft crossings,

and remove them by moving the string along a straight line.

Even when a knot is in a loose configuration, the untan-

gling of knots usually have to overcome friction. After we

have identified all the weft crossings, and attempt to use a

single motion to untangle them, friction may prevent the

untangling, as shown in Figure 22 where we attempt to

remove the last five crossings by pulling an endpoint of

the string in a straight line. Therefore, a pulling motion

of string that involves least friction is desirable. It appears

that pulling string along a straight line can keep friction

relatively low.

The process of manipulating the string geometry can be

described as follows. We first choose one end of the string

to untangle the knot. Along the chosen end of the string,

we determine a side that is closer to the boundary, left or

right. Starting from the chosen end of the string, identify

all the cells on the chosen side to the string in sequence,

until the last consecutive weft crossing, and find the largest

inscribed circle in each cell. Using the same algorithm we

presented in the previous section, we will delete crossings

from the chosen end, and record how the crossings change,

either from under-crossing to over-crossing, or from over-

crossing to under-crossing.

Given the x–y plane on which the knot diagram is pro-

jected, we place a vector parallel to the z axis at each center

of the largest inscribed circle we have identified. The direc-

tion of the vector is positive if the crossings associated with

the cell change from under-crossing to over-crossing, other-

wise negative. We then use a robot arm manipulating a rod

to follow these vectors parallel to the z axis to the points

above and below the z = 0 plane, and connect between

these points by following linear motions with the end effec-

tor. After tracing all the vectors, we have aligned all the

weft crossings. Figures 23 and 24 show the change of the

geometry.

We then identify the last weft crossing we have aligned,

and the warp crossing adjacent to it, and let the robot grasp

any point between the two crossings. The robot arm then

pulls the string along the direction parallel to the vector

point along the rod we used to align the crossings. After all

the consecutive weft crossings are removed and the rod is

removed, the knot will be untangled. Even though we have

only demonstrated the untangling of loose knots, the prin-

ciple can be applied to tight knots, if we can identify the

crossings and thread a needle through those enclosed cells.

7. Conclusions and future work

In this work, we have studied the physical resources needed

to tie arbitrary knots. First bounds on the number of fingers

necessary and sufficient to tie knots without re-grasping

were derived. We have also considered an alternative knot-

tying approaches where re-grasping is allowed. In the
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Fig. 23. Untangling a double-coin knot. (a) The initial configuration of double-coin knot before untangling. (b) Aligning several cross-

ings on a straight line for untangling. (c) Pulling string along straight line to untangle. (d) Knot is fully untangled after removing the

rod.

Fig. 24. Untangling knot 71. (a) The initial configuration of knot 71 before untangling. (b) Aligning several crossings on a straight line

for untangling. (c) Pulling the string endpoint along a straight line to untangle. (d) Knot is fully untangled after removing the rod.

accompanying Extension 1, we have demonstrated how to

use our approach to immobilize and arrange any given knot,

and also demonstrate how rearranging of the geometry can

greatly simplify tying and untying of knots.

For future work, we would like to better understand how

motions can be designed to mechanically simplify tying

knots and untying even tightened knots. We are also inter-

ested to know whether by changing the geometry of the

goal, we can manipulate other flexible objects, such as

cloth, using simple motions.

We are particularly interested in knots such as the

shoelace and sheepshank; humans tie these knots by pulling

loops through loops. We can identify these structures from

the Gauss code, as type II Reidemeister moves: for each

adjacent appearance, crossings i and j have the same sign,

and the sign is different from the crossings adjacent to the ij

(or ji) sequence. Therefore, our approach applies to unknots

such as the shoelace or sheepshank, with small modification

to the crossings removal process.
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Appendix A. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior

to 2014 can be found at http://www.ijrr.org, after 2014

all videos are available on the IJRR YouTube channel at

http://www.youtube.com/user/ijrrmultimedia
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Table of Multimedia Extension

Extension Media type Description

1 Video The media extension demon-

strate how to reconstruct the

3D configuration of any given

knot based on the input Gauss

Code; and the video also

demonstrate how the rear-

ranging of the knots can sim-

plify the tying and untying of

many knots.

Appendix B. proofs of certain lemmas

Complete proofs of certain of the lemmas appear only in

this appendix.

Proof of Lemma 1. On a knot unit, consider the first cross-

ing and last crossing, and ignore the links before first and

after last crossing. Then, these two crossing vertices have

degree 3. Denote these vertices as v0 and vn, corresponding

to the first and the last crossing on the Gauss code. Since

this is a section of a knot diagram, the graph contains a

Eulerian path starting from v0 to vn.

If a knot path is only adjacent to the exterior face, it must

be a bridge. Since the knot unit does not contain a bridge,

no knot path on the projected polygonal arc of the knot

unit will adjacent only to the exterior face. Therefore, there

exists a set of connected knot paths ∂E that are adjacent

to both an exterior face and to an interior face. So, these

exterior knot paths are closed.

Since all the three- or four-degree vertices are crossings

(intersections of edges on the projected plane), and all such

intersections are represented by these vertices, ∂E does not

self-intersect.

Since all the knot paths in ∂E are closed and have no

self-intersections, they form a Jordan curve.

Proof of Lemma 2. Let there be m + k vertices in the pla-

nar polygonal drawing of the knot, such that there are k

crossings, with degree four or three, and m other vertices

with degree two. By counting edges, we find that there are

m+2k −1 edges. Let the number of faces be |f |. By Euler’s

theorem, |v|+|f | = |e|+2, and |f | = m+2k −1+2−( m+
k) = k + 1 faces, k of which are interior.

Proof of Lemma 3. First, there are a total of k crossings, so

m + n = k. For k crossings, where each crossings appears

twice in the Gauss code, there are a total of 2k − 1 knot

paths between crossings, so i + j = 2k − 1.

Each exterior knot path is on the boundary of one interior

face. Each interior knot path is on the boundary of two inte-

rior faces. When we consider the crossings. For the first and

the last crossing, they can only be adjacent to two interior

faces. For the rest of the exterior crossings, each of them is

adjacent to three interior faces (four degrees cuts the plane

into four pieces, one of which for the exterior vertex is the

exterior face). For an interior vertex, each vertex is adjacent

to four interior faces. Therefore, because for all the closed

interior faces, the number of boundary crossings equals the

number of boundary knot paths,

2i + j = 4m + 3( n − 2) +4 (7)

⇒ i+( 2k − 1) = m + 3k − 2 (8)

⇒ i−( k − 1) = m. (9)

We always have m ≥ 0, so i ≥ k − 1. In addition,

m + n = k (10)

⇒ i−( k − 1) +n = k (11)

⇒ i + n = 2k − 1 (12)

⇒ j = n (13)

For an arbitrary knot, we know that the boundary of the

planar drawing is closed; therefore, all the exterior edges

form a cycle, which involves at least three crossings.

Let us assume only two crossings 1 and 2 are exterior

crossings, and crossing 1 is both the first and the last label

on the Gauss code. Then this crossing is formed by a type I

Reidemeister move, so it can be removed, which leads to a

different knot diagram and Gauss code. Then, the only pos-

sibility is if 1 is the first label and 2 is the last label on the

Gauss code. It can be easily checked that such sequence

will result in more crossings on the exterior knot paths.

Therefore, n = j ≥ 3.

Proof of Lemma 4. Agarwal and Sharir (1998) indicated

that n independent line segments (not sequential line seg-

ments) can create at most n( n − 1) /2 intersections. How-

ever, for a sequence of n line segments (polygonal arc),

there is one common endpoint between each pair of adja-

cent line segments, which results in n − 1 common end-

points. Therefore, the maximum number of intersections

for a sequence of n line segments is n( n − 1) /2 − n − 1

or ( n − 1) ( n − 2) /2.

Given n sequential line segments, at most ( n − 1) ( n −
2) /2 intersections (crossings) can be created. To make it

a knot diagram, we need to have ( n − 1) ( n − 2) /2 ≥ k.

Therefore, n ≥
⌈

3+
√

8k+1
2

⌉

.

Proof of Lemma 5. We know that the on the knot diagram,

there exists an Eulerian path from the first crossing to the

last crossing. Each of the crossings is visited twice. A cross-

ing e that is not the first or last crossing has degree four,

which means it is on a segment of polygonal curve that

projects to e+, and also on a segment of polygonal curve

that projects to e−. Therefore, on the polygonal knot dia-

gram, e has two incoming edges and two outgoing edges.

One pair of incoming and outgoing edge is associated with

e+, and the other pair is associated with e−.

Without loss of generality, denote the incoming edges as

( a, es) and ( c, −es), and outgoing edges as ( es, b) and
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Fig. 25. (a) An example of the edges related to a crossing. (b) If

the edges are not structured correctly, the vertex can be separated

into two.

Fig. 26. The line segments that pass through the first crossing.

( −es, d). Construct two rays starting from e and passing

through c and d, respectively; denote them as Rec and Red .

These two rays separate the plane into two disconnected

regions, and a and b must belong to different regions, as

shown in Figure 25a.

If a and b belong to the same region, then the line-

segment sequence ( a, e, b) projects an over-crossing (or

under-crossing) over (under) line segment ( c, e, d). Then,

either these two line segment sequences form a type II

Reidemeister move (as shown in Figure 25b) where e can

be redrawn as two independent vertices or more than two

points projects at e, which is a violation of the regular

projection property.

Without loss of generality, let us assume knot path ( a, es)

is an exterior knot path. Then the knot path contacting the

same exterior face will be another exterior knot path, which

is either ( c, −es) or ( −es, d) since a and b belong to two

different region separated by rays Rec and Red .

Proof of Lemma 6. The polygonal arc starts from the first

crossing and ends at the last crossing, and the polygonal

knot diagram is achieved by trimming the first and last link,

making the first and last crossing the new end points of

the polygonal arc. These crossings must be adjacent to the

exterior face, making them exterior crossings.

Let us consider the first crossing. Without loss of gen-

erality, let the first crossing be 1s. On the polygonal knot

diagram, the first crossing has only degree three, with only

one outgoing edge associated with 1s, denoted as ( 1s, a),

and two edges associated with −1s, denoted as ( i, −1s) and

( −1s, j), respectively.

If we draw two rays starting from −1s and passing

through i and j, then the two rays separate the plane into two

regions with one of them containing edge ( 1s, a). Therefore,

( 1s, a) cannot be connected to the exterior face, so it cannot

be on the boundary. The same argument can be made for

the last crossing.

Proof of Lemma 7. All exterior knot paths form a regular

convex polygon P. Because no chord of P will intersect

the boundary except at endpoints, no exterior knot path

will intersect with non-exterior knot paths between exterior

crossings.

Now we will show that chords formed by connecting

exterior crossings that are adjacent in the Gauss code do

not intersect except at common endpoints. Consider four

exterior crossings a, b, c, d, such that a and c are adjacent in

the Gauss code, and b and d are adjacent in the Gauss code.

Line segment ac cuts P into two pieces. If b and d belong to

different pieces of P with respect to ac, then the only way

to avoid intersection between ac and bd using any arbitrary

curve is if b and d are connected outside P. However, knot

path ( b, d) is not an exterior knot path; therefore to be con-

sistent with the Gauss code, b and d must be in the same

piece.

Proof of Lemma 8. The polygonal arc starts from the first

crossing, and ends at the last crossing, and the polygonal

knot diagram is achieved by trimming the first and last link,

making the first and last crossing the new end points of

the polygonal arc. These crossings must be adjacent to the

exterior face, making them exterior crossings.

Let us consider the first crossing. Without loss of gen-

erality, let the first crossing be 1s. On the polygonal knot

diagram, the first crossing has only degree three, with only

one outgoing edge associated with 1s, denoted as ( 1s, a),

and two edges associated with −1s, denoted as ( i, −1s) and

( −1s, j), respectively.

If we draw two rays starting from −1s and passing

through i and j, then the two rays separate the plane into two

regions with one of them containing edge ( 1s, a). Therefore,

( 1s, a) cannot be connected to the exterior face, so it cannot

be on the boundary. The same argument can be made for

the last crossing.

Proof of Lemma 16. If we remove all the crossings on the

weaving sequence and there is only one weaving sequence,

the remaining crossings are all warp crossings by definition.

Then, if we continue to remove crossings, every crossing

they remove will have the same sign as the next crossing to
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remove. Without loss of generality, let us assume the first

crossing we will remove is an over-crossing. Then, since all

remaining crossings are warp crossings, whenever we are

trying to remove a crossing ia, a is + until all crossings are

removed. Then, all these warp crossings can be arranged

on two layers. One plane contains only the over-crossings,

while the other plane contains all the under-crossings, with

finitely many vertical line segments connecting two planes.

This structure has the topology of a circle when the ends of

the string are connected to each other, an unknot.

Proof of Lemma 17. A weaving sequence contains an alter-

nating over- and under-crossing pattern, and all the cross-

ings on the weaving sequence are adjacent to each other

on the Gauss code. If the same label j appears twice, let

crossings i− and k− be the two crossings on the Gauss code

adjacent to j+, and let s+ and t+ be the two crossings adja-

cent to j−. The crossings i, k, s and t have the corresponding

signs because they are adjacent crossings to j, and they are

on the same weaving sequence. Without loss of generality,

let j− be closer to the open end. After the deletion of the

crossing j−, crossings i and k are now adjacent on the Gauss

code, and they have the same sign, so they cannot be on the

same weaving sequence.

Proof of Lemma 18. Let us consider the case where, fol-

lowing Algorithm 5, three or more crossings are aligned.

For any two adjacent crossings, since the configuration is

already polygonal, they must be on the same line.

First, let us consider where only three consecutive cross-

ings are aligned. When three crossings are aligned, the

number of line segments used to connect them in sequence

changed from three to two. However, if the first and the

last crossing was originally connected with a single line

segment, one extra line segment is needed to connect the

aligned crossings, avoiding overlapping. Therefore, no extra

line segment (finger) is needed.

In the process of changing the configuration proposed in

Algorithm 5, extra line segments (or fingers) are used only

when originally non-intersecting straight line segment was

used to connect two crossings that are being aligned. For

each one of such connection, one extra line segment will be

used.

Let us arrange m ≥ 4 crossings on a straight line. One

line segment is used to connect all crossings in sequence,

instead of m−1 line segments, reducing m−2 line segments.

Originally, there could be at most m−2 non-intersecting line

segments connecting them. Since each crossing can have at

most 4 connections, and we are only considering the con-

nection among the m crossings, there can at most be m − 2

non-intersecting connections. Thus, at most m−2 extra line

segments can be used.

Since the original representation uses 2k − 1 line seg-

ments, the reconfigured configuration uses no more than

2k − 1 line segments.

Proof of Lemma 21. Let the two ends of a knot be S1 and

S2, and let S1 be fixed to ground. Let the base of the robot

arm be B and let the end effector be E. The robot arm needs

to grasp S2 with E during the arrangement of the knot. Let

us assume no re-grasp is performed during the arrangement

of a weaving sequence w. At the end of the arrangement

of the weaving sequence, let the configuration of the string

be fixed in space. Let curve c1 be the current configuration

of the robot arm, connecting from B to E. Let curve c2 be

the curve of a different robot arm configuration connecting

from B to E, where the entire robot arm is outside the con-

vex hull of the knot. In both configurations, the E is attached

to S2. Then, the two curves belong to two different homo-

topy classes with respect to the string. The curve connecting

c2 to S2 and then to S1 has the correct knot topology. There-

fore, at least one re-grasp is needed to arrange a weaving

sequence.




