
Interlocking Structure Assembly with Voxels

Yinan Zhang1 and Devin Balkcom2

Abstract— This paper explores the problem of building a
structure of a desired shape, using re-usable interlocking blocks.
Blocks are cubes; we make use of nine different types of cubes,
each with different arrangements of male and female connectors
on the six sides of the cube. The desired shape is specified by a
set of voxels. We propose an algorithm that lays out cubes in a
particular pattern to give the desired shape and gives a fairly
simple assembly order.

I. INTRODUCTION

Furniture, buildings, and machines are typically built out
of smaller pieces, allowing complex structures to be built
from a small selection of easily manufacture-able parts.
These smaller parts form a language for the design of
devices; the range of what can be built depends on what
parts are available. Some parts, such as screws and nuts, are
intended to allow easy dis-assembly as well as assembly, to
allow repair, replacement, or re-use. Parts may be connected
in different ways: by glue, cement, or geometric constraints.

In this work, we examine the problem of building struc-
tures of arbitrary geometric shape (specified with voxels)
using cube-shaped pieces that include connectors. The struc-
tures built are connected using interlocking geometries rather
than glue, cement, or friction, to allow easy assembly and
dis-assembly. This work is motivated by recent increase of
availability of 3D printing technology: 3D printers allow
relatively fast printing of small objects that fit within the
working volume of the printer; we would like to build larger
structures quickly, with the possibility of re-use of parts after
dis-assembly.

Systems like Legos are designed to allow physical ex-
perimentation, assembly, and prototyping at larger scales.
However, these systems often rely on frictional locking that
can be hard to achieve, and unreliable for large systems when
external forces are applied. We therefore explore structures
that interlock and are constrained to the desired shape
geometrically. We imagine building structures of the type
described in this paper using robots (see Figure 11), although
the current work focuses on the design process.

The input for our problem is a set of voxels that is a
discretized representation of an object of interest. The desired
output is a set of pieces, piece types, locations and an
assembly order such that the pieces cover, and only cover
the voxels, with the possible exception of some connectors.

We will use eight blocks to build each voxel; blocks are
unit cubes, and voxels are 2 × 2 × 2 cubes. Our goal is to
construct an assignment of block types for each piece such
that these blocks can be assembled one by one to mimic

1,2Department of Computer Science, Dartmouth College, NH, USA

(a) An alpaca model with
400 blocks, with one key at
the top of each ear.

(b) A model of a house with 13104
blocks, with one key at the top of
the chimney.

Fig. 1: Two globally interlocking models.

the structure of any 3D model and no sub-structure of the
resulting assembly can be disassembled without removing
some key blocks. Figure 1 shows two interlocking struc-
tures generated by the design algorithms based on simple
voxelized models of a quadruped animal (an alpaca) and a
house.

Each block has six faces and may be adjacent to at most
six blocks. For any pair of adjacent blocks, we want to
assign a joint (made of two compatible connectors) that
constrains the relative motion of blocks. For a block with
joint assignments on its faces, there is a corresponding block
type that can be built and reused.

The completed structure will have a small number of keys:
pieces that, if they all remain fixed relative to any non-key
piece, ensure that the entire structure behaves as a single
rigid body. A structure is said to be locked if all keys are
immobilized.

The basic unit of our design is four interlocking blocks,
called a square. By appending squares, we can build an
interlocking segment. The algorithm constructs the model
segment by segment to build interlocking layers that com-
prise the model. The run-time of our algorithm is linear in
the number of voxels.

II. RELATED WORK

Friction connectors [11], [10], glue, and 3D interlocking
shapes [16] are three methods commonly proposed to con-
nect 3D printed parts.

This work is closest in spirit to that of Song et al. [16],
[17], which gives an algorithm for constructing interlocking

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Daejeon Convention Center
October 9-14, 2016, Daejeon, Korea

978-1-5090-3762-9/16/$31.00 ©2016 IEEE 2173

Fig. 2: We firstly work on even layers, determine segments and assembly direction of blocks. Then ensure the even layers
lock with lower-layers by potentially removing some squares. Constraints on segments and block assembly directions in odd
layers are then determined. Finally, the whole structure is constructed using prefabricated blocks that satisfy the constraints.

3D geometric puzzles. Both approaches use keys (pieces
that must be immobilized using external means) to lock sets
of pieces geometrically, and both allow shapes represented
using voxels to be built. However, in [16], the shapes of the
pieces are the primary output of the algorithm, meaning that
pieces must be constructed individually; in our work, there
are only a few pre-defined types of pieces, allowing piece
re-use.

This work is also inspired by the study of self-assembly
robots. Popescu et at. [12] work on digital materials which
explored a design of 2D components to construct 3D
structures. Rus and Vona’s early work on the Crystalline
robot [14] presented an algorithm to assemble robotic mod-
ule. Recently Rubenstein et al. [13] demonstrated an algo-
rithm of moving kilo-bots to form certain planar shapes.
Arbuckle et al. [1] allowed identical memoryless agents to
construct and repair arbitrary shapes in the plane.

Interlocking puzzles have a rich history. Interlocking burr
puzzles, consisting of notched sticks, have been used in toys,
furniture and architecture for centuries. In China and Japan,
wood joints are commonly seen in traditional architecture, as
well as furniture [19]. Timber connections have been claimed
to improve seismic characteristics [6]. Recently, architects
such as Kengo Kuma [8] have designed large-scale buildings
inspired by traditional puzzles.

Xin et al. [18] suggest that Culter [2] was the first to
employ computers to systematically analyze all possible
combinations of the 6-piece burr puzzle. Work by Xin et
al. [18] generalized the 6-piece orthogonal burr puzzle to
design and model burr puzzles from 3D models.

Computer scientists have been interested in puzzles for
many years [3], [5], [7]. Early works primarily focus on
the solution of puzzles; study of design algorithms is rel-
atively recent. Lau et al. [9] proposed an algorithm that
takes as input a 3D model of a man-made object, and
automatically generates parts and connectors. Luo et al. [11]
also partitions an object into parts, but further requires the
dimensions of each part fit the working volume of a 3D
printer. Saul et al. [15] provided a sketch-based interface
and design-validation tools to help novice user design their
own chairs and fabricate them from sheet materials. Fu et
al. [4] proposed a method to plan and construct a network
of joints in the design of interlocking furniture. By repeatedly
constructing locally interlocking groups, the structure can be
globally interlocked. However, the formulation is NP-hard in

(a) A segment virtually
lifted. The higher segment
constrains the movement of
the lower one in Z+ direc-
tion and XY plane.

(b) A layer virtually lifted.
Red pieces are keys of each
component, green ones are
segment keys.

Fig. 3: Layers and segments. In the same layer component,
later constructed segment constrains previous segments. Be-
tween layers, male joints immobilize both layers.

the number of pieces.

III. OVERVIEW

Figure 2 gives a visual description of the overall process.
The goal of our work is to assign predefined blocks with
male and female connectors to build an interlocking structure
and to generate the order of the assembly. Assembly is
accomplished using a simple coordinate-aligned translation
of each block.

A joint is a pair of male-female connectors on two facets of
blocks. Each joint permits motion in a direction either normal
to the face, or along one of the four coordinate directions
tangent to the face (Figure 5).

Each layer is a set of horizontal blocks. Inside each layer,
we would like to build a structure such that, if the first and
last blocks are immobilized with respect to their relative
position, the whole layer is immobilized. We built layers
out of horizontal strips, called segments. We assign the last
block of each segment based on the order of segments. Every
segment’s movement is prevented by a following adjacent
segment.

We assemble blocks one vertical layer at a time. Every
layer has male tangential connectors that lock with its
substrate (the layer below) to be immobilized.

Because tangential joints between layers require sliding
movements in the horizontal plane, blocks with male connec-
tors in the upper layer are only possible if their lower layer
neighbors have no adjacent block in the sliding direction. In
every pair of layers, the odd layer always has a substrate with
the same shape, since each voxel layer is divided into a pair

2174

(a) X+, Y- and Z+ faces of the
9 kinds of blocks

(b) X-, Y+ and Z- faces of the
9 kinds of blocks

Fig. 4: The nine block types.

of block layers, allowing tangential joints can be assigned.
But even layers and their substrates do not have such a
guarantee. To fix this, we need to firstly know the assembly
directions of every block in the even layer. Then we delete
some squares in the substrate accordingly to allow the upper
layer blocks to slide into place.

We will also describe a way of assigning joints between
blocks based on segment order and last block assembled.
Assembly directions and orders of blocks are implied by the
joint assignments.

Predefined blocks with connectors are then selected to be
consistent with the joint assignments between blocks. And
we assemble the whole model with these predefined blocks.

This process is described in Section VIII-A in pseudo-
code.

IV. BLOCKS

In this and the next several sections, we will show how
to construct a simple cube-shaped model out of blocks
arranged into squares, segments, and ultimately, layers. Then,
in Section VIII, we will present an algorithm that breaks a
particular model into layers and assigns block types to build
those layers in sequence.

Figure 4 shows the nine types of blocks that we use to
construct models. Various pairs of blocks fit together along
certain facets, depending on the available joints on each facet.

A. Joints

Blocks can be described by the joint types available along
each facet. Each joint between a pair of blocks permits
motion in a direction either normal to the face, or along
one of the four coordinate directions tangent to the face.
There are therefore four types of connectors that make up
joints: male and female connectors that permit motion in
the normal direction, and male and female connectors that
permit a single tangential motion. Figure 5 shows tangential
and normal connectors. Each block type is defined by the
arrangement of connectors on faces. We denote a joint
between two blocks a and b as J(a, b). In Fig. 5a, J(a, b) =
X− meaning that a can be dis-assembled in X− direction
and b can be dis-assembled in X+ direction. J(a, b) = Z+

in Fig. 5b. J(b, a) = −J(a, b) = Z−.

(a) A normal direction joint (b) A tangential direction joint.

Fig. 5: Two kinds of connectors: one permits motions along
the normal direction, while the other permits motion in
tangential direction along a coordinate.

V. SQUARES

A square is made up of four blocks arranged in a 2x2
pattern within a layer. Depending on the selection and
orientation of blocks of various types, the square might be
assembled using only vertical translation, or may instead
require that blocks be added from the side. Table I lists joints
of 4 different squares, and their assembly orders. Assembly
directions are implicitly determined by the order and joints.

In order to determine which block to use in a square, we
need to fully understand how a square is connected to all
of its six neighbor squares. We assign joints between blocks
before deciding the types of blocks. After all the joints are
decided, we finally match each block with the predefined
block types.

Based on the internal joints, we classify squares into two
types: regular squares, and connector squares. There are
four regular squares, shown in Figure 6; each has one x-
axis joint, one y-axis joint, and two z-axis joints (both on
the same block). There are four connector squares, each
containing four z-axis joints. Figure 6b shows one example
of a connector square; other connector squares are symmetric
to this one.

Regular squares require some clearance in the x and y
directions for assembly. For example, Fig. 6a requires the
X+ and Y− direction to have no adjacent square built when
assembling the square. A connector square does not have
such a requirement because all blocks are translated along
the z-axis.

Keys of regular squares are the last blocks assembled.
Connector squares do not have keys, but the last block still
immobilizes the square if no block can move in the Z−
direction and the last block is prevented from moving in the
Z+ direction. These conditions must be enforced by blocks
external to the square.

A pseudo-key is a block which, if immobilized with respect
to any single block in the lower layer, prevents any block in
the assembly from moving in the Z+ direction. The last
block of a connector square is a pseudo-key. Connector
squares have male connectors that by nature prevent Z−
movement of blocks.

Notationally, a square s has four pieces s(a), s(b), s(c)
and s(d), ordered as shown in Fig. 6f. There are some
symmetries between squares; Fig.6c is a mirror of Fig. 6a in
the x direction. Table I lists joints of four symmetric regular
square. Similarly, we can mirror connector squares.

2175

(a) regular square (b) connector sqr. (c) x-mirror of 6a

(d) y-mirror of 6a (e) x-mirror of 6d

a b

c d

x

y

(f) Notation

Fig. 6: Two types of squares and their mirrors. Fig. 6c - 6e
are mirrors of Fig. 6a.

Square Fig 6a Fig 6c Fig 6d Fig 6b
J(a, b) X− X− Z− Z−
J(a, c) Y+ Z− Y+ Z−
J(c, d) Z− Z+ X− Z−
J(b, d) Z− Y+ Z+ Z+

Order (c,a,b,d),
(a,c,b,d)

(d,b,a,c),
(b,d,a,c)

(a,c,d,b),
(c,a,d,b)

(a,c,d,b)

Key d c b b (pseudo-
key)

TABLE I: Joints of four squares

A. Block types

The ultimate goal is to connect sequences of squares to
form segments and layers that are themselves components
of the desired model. After joints are assigned, blocks must
be selected to match the joint assignment; this motivates the
design of the nine block types shown in Figure 4.

We use regular squares to: (1) connect a list of regular
squares to form a segment with one key, (2) constrain
the Z+ movement of adjacent squares that are not in the
same segment, (3) lock with lower layer adjacent squares to
constrain movement in Z axis, and (4) be locked by upper
layer adjacent blocks.

Fig. 7a is an example of a regular square with male con-
nectors in the X+ and Y− directions. The X+ connectors
link a with regular neighbor square in X+ direction and
immobilize two adjacent blocks. The Y− connectors prevent
adjacent square in Y− direction from moving in the Z+
direction. Replacing the top two blocks in Fig. 7a gives a
square with 3-side female connectors as shown in Fig. 7b.
This square is used when there is not adjacent square in Y-
direction, so it can be locked by male connectors from the
upper layer. Fig. 7c shows two male connectors that lock with
lower layers. Fig. 7d is an example of introducing female
connectors in all four edges.

Connector squares are used to link one or more squares
and prevent their movements in the Z+ direction and in the
XY plane.

We assign male connectors to some or all of the 2x1 facets

(a) A x direction expand-
able square constrains z di-
rection motions of pieces in
Y- side.

(b) Two pieces are replaced
in Y+ size. The square can
be locked by upper-layer
blocks’ female joints.

(c) Lock lower layer pieces
by replacing the other two
pieces with male joints on
Z- sides.

(d) A square that can be
locked by any pieces to
prevent z-directional move-
ments.

Fig. 7: Regular squares built using 7 kinds of pieces.

of connector squares (the faces pointing outwards in the
layer). On any face, we place either 0 or 2 male connectors.
There are five situations: connectors on four sides, connectors
on three sides, connectors on two sides (two sub-cases) and
connectors on a single side. The final case can be eliminated
by placing some additional connectors on sides that are
adjacent to empty locations. Figure 8 shows the four kinds
of connector squares.

VI. SEGMENTS

We build long flat chains of squares (named segment) by
connecting joints of previous squares to new squares.

A maximal segment is a segment not contained by other
segments. An x-segment is a maximal segment parallel to
the x-axis, and a y-segment is parallel to the y-axis. Even
layers have only x-segments while odd layers have only y-
segments.

Ultimately, segments will be used to construct flat layers
of blocks. Sometimes segments need to be built between
two adjacent pre-existing segments. Since regular squares
require clearance in the horizontal direction for assembly,
we build such intermediate connector segments purely out
of connector squares, which permit assembly in the purely
vertical direction. As we will see in the discussion of the
assembly algorithm, there are other circumstances in which
there is insufficient clearance to permit horizontal assembly,
and connector segments are needed.

We also need segments with regular squares. Regular
squares contain blocks sliding in horizontal plane. Adding
male connectors to these sliding blocks can constrain the

2176

(a) Male joints on 4 sides (b) Male joints on 3 sides

(c) Male joints on 2 sides (d) Male joints on 2 sides

Fig. 8: Connectors squares built using 6 kinds of pieces.

movement of current segment/layer in z-axis. Other segments
are regular segments.

In section VII, we describe in detail how to determine the
construction order of segments in the same layer, as well
as the choice of segment key (or pseudo-key) based on the
order.

We choose a local coordinate frame for each layer such
that segments are aligned with the x axis. A regular segment
with the key at the X+ end and Y− side of the segment
is shown in Figure 9a. We build this segment along the
x-positive direction, one square at a time, and denote the
segment as X+Y− based on the key location. Similarly, we
have X+Y+, X−Y+ and X−Y− segments. For some of our
segment designs, the pseudo-key is not at either end of the
segment. Such segments are labelled as X±Y− or X±Y+

(Fig. 9b); a connector square contains the pseudo-key.
A connector x-segment can be X+Z, X−Z or X±Z,

depending on the pseudo-key position. Fig. 9c is an example
of an X+Z segment with a pseudo-key at the X+ end.

A regular segment has two pieces that can slide in the XY
plane; these two pieces can have male connectors to prevent
motion in the Z direction. Knowing the type of a regular
segment means knowing where to place male connectors to
lock with lower layer. For example, a X+Y− segment with
n squares (n ≥ 2) has 2n− 2 prevents (at the Y− side but
not at either ends) sliding in from Y− direction.

VII. LAYERS

A layer is a set of blocks with the same z-coordinate. A
layer can have multiple components. We build even layers
with only x-segments and odd layers with y-segments.

We construct a rigid layer by connecting a set of segments
in the same plane; each segment prevents movement of the
previous segment. To determine the assembly order inside a

(a) An X+Y− segment with all regular squares. Red
block is the key. Algorithm 2 assembles the segment.

(b) An X±Y+ segment l = [s0, s1, s2] can be viewed
as a X+Y− segment l′ = [s0] and a X−Y− segment
l′′ = [s2] connected by a connector square s1. Alg. 3
assembles this segment. Red block is the final block.

(c) An X+Z segment with all connector squares. Alg. 4
assembles this segment. Red block is the final block.

Fig. 9: Segment types explained.

layer by selecting the last block assembled then determining
the dis-assembly order of segments. The final block will be
constrained by the following layer.

For even-layer components, the last block will always
be a block at either end of a boundary segment with the
largest y-coordinate, where a boundary segment is a maximal
segment with same-layer neighbor segment(s) on exactly
one side. In an odd layer component, if one end of the
boundary segment with the largest x-coordinate block has
a neighbor in the layer above, we select that block as the
final block. Otherwise, we choose any other block with an
upper layer neighbor. Some odd components have no upper
layer neighbors, so we choose the block at one end of a
boundary segment with the largest x-coordinate.

After deciding the last assembled block in the layer, we
determine the order of segment construction, and then assign
joints to prevent the Z+ movement of each segment using
its successor’s male connectors. Fig. 10 has two layers,
each with three segments. The male connectors prevents
movement in XY plane.

A. Segment order

We find the segment order by determining a dis-assembly
order. The segment containing the component’s last block
is the last one assembled. Any unscheduled neighbors of a
scheduled segment are assembled before it.

2177

Fig. 10: A two-layer structure. Layers and segments are
virtually separated with male joints highlighted. The text
shows the type of each segment. Blue pieces are segment
keys and red pieces are component keys.

Let s be a square in a segment l adjacent to a later
assembled segment. The last assembled block of l can be
either block in s adjacent to the next segment’s blocks
assembled from Z+ direction. We choose the block that
generates fewer connector squares, which makes the next
step easier.

B. Model fix

Segment type can be determined when the key (or pesudo-
key) of a segment is known along with the construction
order of its neighbors. Section VIII-C assigns joints between
blocks inside a segment based on the segment type. Therefore
the block assembly directions are implicitly decided after
knowing the segment type. Let l = [s0, s1, . . . , sn] be a
X+Y− segment, where n ∈ Z+. These blocks are assembled
from the X+ direction:
• {si(d)|i ∈ {0..n− 1}}
• sn(b)

These blocks are assembled from Y+ direction: {si(a)|i ∈
{0..n}}. Blocks assembled within the XY plane are sliding
blocks. Other blocks are assembled from Z direction.

In order to lock with lower layer, we need to ensure that in
the assembly direction, the sliding blocks’ lower neighbors
do not have neighbors in two different horizontal directions.

We only need to perform the check for even layer compo-
nents, because odd layers have lower layers with the same
shape. If this condition cannot be satisfied, we firstly expand
the layer and its upper layer to at least 2 × 2 square size,
or find a 2 × 2 square set with no connector squares. Then
we remove the square in the lower layer according to the
assembly direction of blocks to ensure there can be tangential
connectors with two different sliding directions.

C. Joints between segments and layers

A x-segment with the last block in the Y+ side requires
the Y+ side neighbors to be built after current segment.

Similarly, the Y− side last block requires Y− clearance. If
such condition is not satisfied, the current segment must be
a connector segment.

Inside a layer, to ensure that a segment cannot move in
Z+ direction, we assign joints between the segment and its
later-built neighbor segment. In Figure 10, some segments
have male joint connector neighbor segments; if the segment
is immobilized in Z axis, its neighbor cannot move in Z+
direction.

The last step of working on a layer is to assign tangential
joints between the current layer and the layer below. For
any sliding block with assembly direction d, if its neighbor
in the lower layer does not have a neighbor in −d direction,
we can assign a tangential joint between the block and its
lower layer neighbor. Figure 10 shows some tangential joints
between layers.

Inside each layer, some subset of segments can potentially
move in Z+ direction. By connecting both ends of a upper
layer segment with the lower layer, no segments can move
along z-axis.

VIII. AUTOMATIC DESIGN ALGORITHM

A. Algorithm overview

Algorithm 1 gives an overview of the design algorithm.

Algorithm 1 Algorithm overview

1: function CONSTRUCTINTERLOCKINGASSEMBLY(M)
2: M ′ ← split every voxel into 8 equal size blocks.
3: for each layer Li from top to bottom do
4: Determine the last block assembled of the layer.
5: Order segments in the layer
6: Determine the last block of each segment.
7: Determine assembly directions of each block.
8: Test if there can be joints between L and Li−1
9: if test failed then

10: remove some squares in Li according to
block assembly directions in L.

11: Assign joints to blocks in every segment
12: Assign joints between segments
13: Assign joints between layers.
14: Match every block with predefined blocks.
15: Assemble the model using predefined blocks.

B. Symmetries

Some structures are similar to each other. The similarity
helps simplify the algorithm for assigning joints between
blocks.

An x-mirror of a structure is the reflection formed by
placing a plane mirror perpendicular to the x-axis, while
a y-mirror is the reflection by a mirror perpendicular to the
y-axis. For squares, Figure 6d is a y-mirror of Figure 6a,
Figure 6e is an x-mirror of Figure 6d.

For segments, X+Y− and X−Y− are x-mirrors. X+Y+

and X−Y+ are x-mirrors. X+Y− and X−Y+ are y-mirrors,
as are X−Y− and X−Y+. So for these four kinds of

2178

segments, we need an algorithm to assign joints for only
one type. X±Y+ and X±Y− segments are y-mirrors to each
other, so we can assign joints for X±Y− by assigning a
mirror X±Y+ segment. Similarly, X+Z and X−Z segments
are x-mirrors.

C. Joints in a segment and between layers

We choose a local coordinate frame for each layer such
that segments are aligned with the x-axis, based on the
segment order and last block. We have six types of reg-
ular segments: X+Y+, X+Y−, X−Y+, X−Y−, X±Y+ and
X±Y−, and 3 types of connector segments: X+Z, X−Z and
X±Z.

Algorithm 2 assigns joints between blocks in a X+Y−
segment. The result is shown in Figure 9a. As mentioned in
Section VIII-B, we need a algorithm for only one type of
segment to handle all segment types.

A X±Y+ segment can be seen as a X+Y+ segment
and a X−Y+ segment connected by a connector square.
Algorithm 3 describes joints in a X±Y− segment. Similarly,
a X±Y+ segment can be viewed as a y-mirror of a X±Y−
segment.

Assigning joints to connector segments is much simpler,
because all are z-axis joints. Algorithm 4 assigns joints to
an X+Z segment. X−Z segment is an x-mirror of an X+Z
segment.

Algorithm 2 Algorithm to assemble a X+Y− segment

1: function ASSEMBLEXPYN(l)
2: for i ∈ [0, n− 1] do
3: // Assign joints inside each square
4: J(si(c), si(a))= Y−
5: J(si(c), si(d))= X−
6: J(si(b), si(a))= J(si(b), si(d)) = Z+

7: // Assign joints to lock previous square
8: if i ≥ 1 then
9: J(si(a), s(i− 1)(b)) = Z+

10: J(si(c), s(i− 1)(d)) = Y−

11: // Lock the square in neighbor segment
12: if n(si(a), Y+) exists & assembled then
13: na ← n(si(a), Y+)
14: nb ← n(si(b), Y+)
15: J(si(a), na) = J(si(b), nb) = Z+

16: // Lock the square containing the key
17: J(sn(c), sn(a))= Y−
18: J(sn(a), sn(b))= X−
19: J(sn(d), sn(c))= J(si(d), si(b)) = Z+

20: J(sn(a), s(n− 1)(b)) = Z+

21: J(sn(c), s(n− 1)(d)) = Y−
22: if n(sn(a), Y+) exists & assembled then
23: na ← n(sn(a), Y+)
24: nb ← n(sn(b), Y+)
25: J(sn(a), na) = Z+

26: if not n(nb, X+) exist then
27: J(sn(b), nb) = X+

Algorithm 3 Algorithm to assemble a X±Y+ segment

1: function ASSEMBLEXPNYN(l, sk)
2: l′ ← [s0, . . . , sk−1]
3: l′′ ← [sk+1, . . . , sn]
4: Assemble l′ as a X+Y− segment.
5: Assemble l′′ as a X−Y− segment.
6: Assign a Type II square or Type II square mirror to

sk with the same key position.
7: J(sk(a), sk−1(b)) = Z+

8: J(sk(c), sk−1(d)) = Z+

9: J(sk(b), sk+1(a)) = Z+

10: J(sk(d), sk+1(c)) = Z+

11: if n(sk(a), Y+) exists & assembled then
12: J(sk(a), n(sk(a), Y+)) = Z+

13: if n(sk(c), Y−) exists & assembled then
14: J(sk(c), n(sk(c), Y−)) = Z+

15: if n(sk(b), Y+) exists & assembled then
16: J(sk(b), n(sk(b), Y+)) = Z+

17: if n(sk(d), Y−) exists & assembled then
18: J(sk(d), n(sk(d), Y−)) = Z+

Algorithm 4 Algorithm to assemble a X+Z segment

1: function ASSEMBLEXPZ(l)
2: for i ∈ [0, n] do
3: if i > 0 then
4: // lock previous square
5: J(si(a), si−1(b)) = Z+

6: J(si(c), si−1(d)) = Z+

7: J(si(b), si(a)) = Z+

8: J(si(c), si(a)) = Z+

9: J(si(d), si(b)) = J(si(d), si(c)) = Z+

10: // Lock adjacent segments
11: if n(si(a), Y+) exist & assembled then
12: J(si(a), n(si(a), Y+)) = Z+

13: J(si(b), n(si(b), Y+)) = Z+

14: if n(si(c), Y−) exist & assembled then
15: J(si(c), n(si(c), Y−)) = Z+

16: J(si(d), n(si(d), Y−)) = Z+

17: Re-assign Z directional joints in sn pieces to have
the pre-determined key piece position.

Let l and l′ be two adjacent segments ordered such that l
is assembled before l′. Let Z be the set of blocks in l′ that
are assembled from Z+ direction. To connect l with l′, we
simply assign Z directional joints to any block in Z and its
adjacent block in l.

Let p be a sliding block in the current layer with dis-
assembly direction d whose lower layer neighbor p′ does not
have a neighbor in the d direction. We assign a tangential
joint between p and p′ to lock the two layers.

IX. RESULTS

We implemented the design algorithm in Python and exe-
cuted it on a desktop with a 3.4GHz CPU and 8GB memory.

2179

Fig. 11: Robot arm assembling a 2-layer structure

Table II shows number of blocks, layers and running time
for executions of the design algorithm for various structures.
Figure 11 shows a robot arm assembling a two layer structure
with pure translations.

Model # blocks # layers Timing (ms)
alpaca 400 18 15

pyramid 552 2 15
elephant 784 12 22

hollow cube 2184 8 69
hollow cube 3264 12 100
solid cube 4400 20 132
solid cube 6600 30 201
solid cube 8360 38 263
solid cube 9680 44 316

house 13104 40 633

TABLE II: Statistics about some structures

X. CONCLUSIONS AND FUTURE WORK

This paper explores a solution to assemble general vox-
elized models as interlocking structures. Our method auto-
matically generates a set of block types, assembly order and
assembly directions that form the shape of the input voxel
model.

Future work will include further experiments in building
real-world models based on the design algorithm. In the
experiment shown, joints have been filed to allow easier
assembly, at the cost of some structural rigidity. We intend
to explore alternate construction techniques that allow much
larger models. We expect some portions of the assembly
can be done in parallel. For example, some segments can
be assembled mostly independently.

We would like to avoid the step in the algorithm in which
some squares are removed from an odd layer. Choosing dif-
ferent assembly orders, patterns for laying out the design, or
new block types might allow a greater number of completely
filled voxels. We would also like to minimize the number
of keys used. For the example models we considered, the
number of keys is small, but models with layers that are not

well-covered by upper-adjacent layers may have many keys
using our approach.

We also wonder if the nine block types represent a lower
bound; if similar techniques can be used with fewer block
types, both production of block types and assembly might
be simplified.

REFERENCES

[1] DJ Arbuckle and Aristides AG Requicha. Self-assembly and self-
repair of arbitrary shapes by a swarm of reactive robots: algorithms
and simulations. Autonomous Robots, 28(2):197–211, 2010.

[2] W. H. Culter. A computer analysis of all 6-piece burrs. Self published,
1994.

[3] Herbert Freeman and L Garder. Apictorial jigsaw puzzles: The
computer solution of a problem in pattern recognition. Electronic
Computers, IEEE Transactions on, (2):118–127, 1964.

[4] Chi-Wing∗ Fu, Peng∗ Song, Xiaoqi Yan, Lee Wei Yang, Pradeep Ku-
mar Jayaraman, and Daniel Cohen-Or. Computational interlocking
furniture assembly. ACM Transactions on Graphics (SIGGRAPH
2015), 34(4):091:1–091:11, 2015. ∗ joint first author.

[5] David Goldberg, Christopher Malon, and Marshall Bern. A global
approach to automatic solution of jigsaw puzzles. In Proceedings of
the eighteenth annual symposium on Computational geometry, pages
82–87. ACM, 2002.

[6] Xu Minggang Qiu Hongxing. Analysis of seismic characteristics of
chinese ancient timber structure.

[7] Weixin Kong and Benjamin B Kimia. On solving 2d and 3d puzzles
using curve matching. In Computer Vision and Pattern Recognition,
2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society
Conference on, volume 2, pages II–583. IEEE, 2001.

[8] KENGO KUMA and ASSOCIATES. Prostho museum research center.
2010.

[9] Manfred Lau, Akira Ohgawara, Jun Mitani, and Takeo Igarashi.
Converting 3d furniture models to fabricatable parts and connectors.
ACM Trans. Graph., 30(4):85:1–85:6, July 2011.

[10] Kui-Yip Lo, Chi-Wing Fu, and Hongwei Li. 3D Polyomino puzzle.
ACM Tran. on Graphics (SIGGRAPH Asia), 28(5), 2009. Article 157.

[11] Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik.
Chopper: Partitioning models into 3D-printable parts. ACM Transac-
tions on Graphics (Proc. SIGGRAPH Asia), 31(6), December 2012.

[12] George A Popescu, Tushar Mahale, and Neil Gershenfeld. Digital
materials for digital printing. In NIP & Digital Fabrication Confer-
ence, volume 2006, pages 58–61. Society for Imaging Science and
Technology, 2006.

[13] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Pro-
grammable self-assembly in a thousand-robot swarm. Science,
345(6198):795–799, 2014.

[14] Daniela Rus and Marsette Vona. Crystalline robots: Self-
reconfiguration with compressible unit modules. Autonomous Robots,
10(1):107–124, 2001.

[15] Greg Saul, Manfred Lau, Jun Mitani, and Takeo Igarashi. Sketchchair:
an all-in-one chair design system for end users. In Proceedings of the
5th International Conference on Tangible and Embedded Interaction
2011, Funchal, Madeira, Portugal, January 22-26, 2011 [15], pages
73–80.

[16] Peng Song, Chi-Wing Fu, and Daniel Cohen-Or. Recursive interlock-
ing puzzles. ACM Transactions on Graphics (SIGGRAPH Asia 2012),
31(6):128:1–128:10, December 2012.

[17] Peng Song, Zhongqi Fu, Ligang Liu, and Chi-Wing Fu. Printing 3d
objects with interlocking parts. Computer Aided Geometric design
(Proc. of GMP 2015), 35-36:137–148, 2015.

[18] Shiqing Xin, Chi-Fu Lai, Chi-Wing Fu, Tien-Tsin Wong, Ying He,
and Daniel Cohen-Or. Making burr puzzles from 3D models. ACM
Transactions on Graphics (SIGGRAPH 2011 issue), 30(4):97:1–97:8,
August 2011.

[19] K. Zwerger and V. Olgiati. Wood and Wood Joints: Building Traditions
of Europe, Japan and China. Birkhäuser, 2012.

2180

