
Assembling and disassembling planar structures
with divisible and atomic components

Yinan Zhang, Emily Whiting, Devin Balkcom

Dartmouth Computer Science

Abstract. This paper considers an assembly problem. Let there be two
interlocking parts, only one of which may be cut into pieces. How many
pieces should we cut the divisible part into to separate the parts using
a sequence of rigid-body motions? In this initial exploration, we primar-
ily consider 2D polygonal parts. The paper presents an algorithm that
computes a lower bound on the number of pieces that the divisible part
must be cut into. The paper also presents a complete algorithm that con-
structs a set of cuts and a motion plan for disassembly, yielding an upper
bound on the required number of pieces. Applications of the future ex-
tension of this work to three dimensions may include robot self-assembly,
interlocking 3D model design, search-and-rescue, packaging, and robotic
surgery.

1 Introduction

Assembly of parts is one of the oldest problems in robotics. This paper considers
a variant of the assembly problem in which some parts can be cut into pieces,
and others cannot be. How many pieces must an amber fossil be cut into to
extract a fly? How many pieces must a model ship be broken into in order to
construct a ship-in-a-bottle? How many pieces must rubble be cut into to rescue
an injured person? How should styrofoam packaging be assembled to support a
delicate object for transport?

As an initial exploration, we consider planar devices composed of one polygon
of each of the two material types. We allow arbitrary rigid body motion of the
parts after cutting; the cuts may be along arbitrary curves. Figure 1a shows an
example of a mammoth in a ice cube. The gray material may not be cut, but
the white material may be cut to be separated from the indivisible, or atomic,
part.

We provide algorithms to find lower and upper bounds on the number of
pieces that the device must be cut into. We also provide a prove-ably complete
algorithm for design and for determining an assembly sequence. Figure 1b shows
three rotation centers that could be used to locally separate ice edges of cor-
responding colors from the mammoth; the ice must be cut into at least three
pieces. However, there is no guarantee that three is a sufficient number, because

(a) A mammoth body inside an ice
cube. We want to separate the mam-
moth and the ice (except the hole)
by breaking the ice into pieces.

(b) Edges with the same color might
be locally separated from the atomic
part using a single rotation about the
corresponding rotation center.

Fig. 1. A mammoth in the ice and one necessary solution to remove ice without dam-
aging the mammoth body.

global properties of the geometry also matter; we find that cutting into 61 pieces
is sufficient (Figure 8c).

We believe that extension to three dimensions would have practical value for
many problems in 3D printing and prototyping for robotics. Many structures
cannot be printed out of a single material; robots may contain atomic compo-
nents such as motors, wires, micro-controllers, and batteries that cannot be cut
into pieces, supported by a rigid but divisible structure that fits around and sup-
ports the atomic components. We can also imagine applications in other areas,
including search-and-rescue and robotic surgery.

However, the focus of the current paper is not on applications, but on the
exploration of a fundamental robotics problem: the difficulty of assembly, mea-
sured by the number of required pieces, if some of the parts can themselves be
disassembled. Such analysis of lower and upper bounds on physical complexity
forms a useful basis for thinking about robotics problems, just as bounds on
computational complexity are useful in computer science. Because the difficulty
of assembly appears to depend on the shapes of the parts in non-trivial ways,
we cannot simply provide an interesting bound directly; however, we can devise
algorithms that compute bounds for an input shape. These bounds may give
insights into the question of which shapes are hard, which are easy, and how to
design appropriate shapes.

There are both local and global properties of the geometry that may cause
a part to need to be cut into many pieces. Locally, two contacting rigid bodies
may be interlocked, in the same way that a robot grasp may interlock with a
part, effectively forming a single rigid body that must be cut to allow separation.
Globally, there may be narrow openings though which only small parts can fit,
the classic furniture-mover’s problem.

When computing a necessary number of pieces, we focus on the local geome-
try, and relax or ignore the global geometric constraints. We consider cutting the
interlocking parts into sufficiently many pieces such that there is no single immo-
bilizing grasp, using a geometric method inspired by Reuleaux’s method [20, 24]
to formulate the problem as a minimum-set-cover problem. Computationally,
minimum-set-cover is NP-complete, but can be approximated in polynomial-
time to within a logarithmic factor. In future work, better lower bounds might
be found by also considering global constraints.

We also give an algorithm to compute a sufficient number of pieces, by con-
structing cuts and an assembly order that respect global and local constraints.
We prove that as long as atomic components do not contain voids, the parts
can be cut into a finite set of pieces and disassembled using only translation;
rotations are not required.

1.1 Related work

The current paper is closest in spirit to work on k-moldability. In the k-moldability
problem, a separable k-piece mold is taken apart using a single translation per
piece to expose a molded atomic part [16, 22]. Ravi and Srinivasan [23] give a list
of criteria to aid the engineer in making decisions of parting surfaces. Pryadarshi
and Gupta [22] used accessible directions to decompose molds into a small num-
ber of pieces. Exact-cast-mold design methods require models to be moldable or
result in a large number of mold pieces. Herholz et al. [14] deform a model into
an approximate but moldable shape, and then decompose mold pieces.

The primary contribution of the current paper is the relaxation of the require-
ment that the mold be separated using single translations; this allows study of
the fundamental theoretical limits of dis-assembly. Most of the structures stud-
ied in this paper are not k-moldable, because there is no set of directions from
which all of the divisible structure is visible; some portions of the structure are
occluded. We show that in fact, any structure without inaccessible voids can be
dis-assembled using only sequences of translations. The lower and upper bounds
that we study are true physical bounds — they hold over any sequence of rigid
body motions, not just single translations or rotations.

This paper is also inspired by Snoeyink’s work on the number of hands re-
quired to dis-assemble a collection of rigid parts [31]. Because we allow parts
to be cut, simultaneous motions are not required for dis-assembly. In the Car-
penter’s Rule problem studied by Rote, Demaine, Connelly [9], Streinu [35], and
others, the rigid pieces are also all atomic, and connected by joints, typically
requiring many simultaneous motions.

This paper is therefore somewhat closer in spirit to work by Wang [37] that
studies the number of fingers needed to tie a knot – in that work, the string is
treated as a collection of rigid bodies, but the joints may be placed arbitrarily,
essentially cutting the carpenter’s rule, without disconnecting the pieces. The
current work is also close in spirit to work by Bell and coauthors [5] that studies
the number of pieces that a mechanical knotting device must be cut into to
extract the knotted string.

There has been significant work in the graphics community in computational
fabrication. Song et al. [32]’s approach to fabricating large 3D objects was to
break the shell of the object into pieces and assemble after fabrication. Hu et
al. [15] presented a method to decompose 3D object into a set of pyramidal
shapes such that no support material is needed when 3D printing the model. Fu
and Song [13, 33] studied computational interlocking furniture design.

Our approach to the lower-bounds problem in particular grows out of seminal
work on immobilizing rigid bodies, or grasping. Traditional geometric approaches
to grasping attempt to prevent all possible sliding and rotational motions of a
polygonal object by placing fingers around the object. Reuleaux [24] is credited
with the concept of form closure. Mishra et al. [21] proved the sufficiency of four
fingers to immobilize any polygonal object. Czyzowicz et al. [10, 11] showed that
polygons without parallel edges can be immobilized using three fingers. Rimon
and Burdick [26, 27] showed how two-finger grasps can be analyzed using second-
order immobility. Cheong [7] provided an algorithm to compute all immobilizing
grasps of a simple polygon. Cheong et al. [8] also showed that n + 3 contacts
suffice to immobilize a chain of n hinged polygons.

A polygonal object can be caged by surrounding an object with fingers, such
that the object has some freedom locally but cannot escape the cage. Some of
the earliest work on caging was by Rimon and Blake [25]. Vahedi et al. and Allen
et al. [36, 1] proposed algorithms to find all caging grasps of two disk fingers.
Erickson et al. [12] studied the case of three-finger caging for arbitrary convex
polygon. Makita et al. [19] extend the caging problem from 2D to 3D with
multi-fingers. Our work, instead of caging an object, can be viewed as removing
contacting pieces to uncage a polygon in the plane.

A classic problem of self-assembly is to move a set of small robots to specified
target positions; some of the challenges with narrow corridors and coordination
are similar to those faced in the current work. Kotay et al. [17], for example,
designed a robotic module, groups of which aggregate into 3D structures. Rus
and Vona’s early work on the Crystalline robot [30] presented an algorithm to
do self-reconfiguration. Recently, working on the problem of scale, Rubenstein
et al. [29] provided an algorithm for moving kilo-bots one-by-one to form certain
planar shapes. Arbuckle et al. [2] allowed identical memoryless agents to con-
struct and repair arbitrary shapes in the plane. In the authors’ own work [38] on
assembly of interlocking structures, 9 kinds of blocks are used to build large-scale
voxelized models such that all blocks are interlocked and the whole structure is
rigid as a whole. Self-assembly and modular robots in the presence of obstacles
has also been extensively studied. Becker et al. [4] proposed an algorithm to
efficiently control a large population of robots in this scenario. Rubenstein et
al. [28] used multiple robotic units to manipulate the positions of obstacles.

2 Computing a lower bound on the number of pieces

Let parts A and B be interlocked. In this section, we show how to find a lower
bound on the number of pieces that part B must be cut into to separate the

A

P

++ +

++ ++
+

+ + +

++

+

+

+

+

++
+

+- - -

- - -

- - -

- --- - - -

-

- - - - - - - - -

-

(a)

Fig. 2. Contacting point P can rotate in
positive direction about centers in + area
and in negative direction about centers
in − area.

(a)

Fig. 3. The normal lines through the
contact points form a set of cells, such
that the number of points that may be
separated from the gray part is maxi-
mized by choosing a rotation center at
a cell vertex.

parts. The approach is inspired by analysis of contact modes for contacting 2D
rigid bodies [3, 20], as well as by Reuleaux’s graphical method for analyzing
whether a collection of points fully constrains (or in our case, is constrained by)
the motion of a rigid body [24].

We first replace B with a collection of points P from B along the boundary
of A; whichever points we choose, at least these points must be separated from A
using a collection of rigid-body motions. For simplicity, we place three vertices
per edge: one in the center, and one at each endpoint. Choosing more points
may allow a larger lower bound to be computed, at the cost of some additional
computation.

Now consider any subset of these points. Can this subset be contained in
a single rigid piece after cutting, in such a way that the rigid piece may be
separated from A? In order to separate this piece from A, there must at least
instantaneously be a single rigid body motion that at least does not cause colli-
sion for any of the points, and ideally, simultaneously separates all of the points
from A. Every motion of a planar rigid body is instantaneously a rotation or
a translation. Does there exist a translation direction or a rotation center that
allows separation? How do we compute good (large) subsets without considering
the power set over P?

Theorem 1. If n points P of a planar rigid body B are in contact with a polyg-
onal rigid body A, then there are at most n(n − 1)/2 + 2n maximal subsets of
P , such that each subset may be moved together as a rigid body without collid-
ing with A, and any other non-colliding subset is a contained within one of the
maximal subsets.

Proof. We would like to group subsets of points in P and see if they can be
separated from A as a group. Let us first consider rotations. To find a compatible
group, we might choose a particular rotation center and a positive or negative
direction for rotation. Then find all points in P that separate from (or at least

do not collide with) A under that motion; we have found a compatible subset.
This is our basic approach; but how many potential rotations must we consider,
and how many compatible subsets may be generated?

Consider a rotation center r somewhere in the plane, with an associated
direction (either positive or negative rotation). Reuleaux’s method makes use
of the fact that for a particular point Pi, for most choices of rotation center,
one direction of rotation (either positive or negative) is permissible, while the
other causes collision of Pi with A. Along the normal to the edge of A at Pi,
either negative or positive rotation is possible. Let Pr ∈ P be the set of points
compatible with rotation center and direction r. If we move r along a continu-
ous trajectory, membership in Pr only changes as r crosses one of the normals
through one of the points in P . The constraint is least restrictive along the nor-
mals themselves, so to compute the maximal subsets of compatible points, such
that any other compatible subset is either a singleton or a subset of a computed
subset, we need only consider rotation centers at the intersections of the nor-
mals, as shown in Figure 3. The normals form an arrangement [34], and there are
n(n− 1)/2 possible intersections, each with at most one corresponding maximal
subset(Figure 3). Once candidate maximal subsets have been generated, discard
any that are contained within other computed subsets.

Translation directions may be analyzed similarly. Each point Pi, if included
in a subset, forbids an open half-plane of translation directions. So for each point,
it is sufficient to test two translations directions, each corresponding to sliding in
one direction or another along the point. Collect all 2n directions, and for each
direction, test the remaining points against that direction to generate candidate
maximal subsets.

The proof of Theorem 1 implies an algorithm for computing a lower bound
on the number of pieces that the divisible part must be cut into to allow assem-
bly or disassembly. Compute the maximal subsets as suggested; then solve the
minimum-set-cover problem to find the minimum number of such sets needed
to separate all points in P from A. If the number of maximal subsets is small,
minimum-set-cover may be solved exactly. The simple examples presented in this
paper were solved exactly using integer-linear programming. If there is a large
number of subsets, then a greedy approach yields a solution in polynomial time,
with guaranteed logarithmic approximation quality.

Figure 1b shows a solution of the necessary number of pieces needed to
extract the planar mammoth from the ice. If two points on the same edge are
in the same set, the segments between the points are considered able to rotate
about centers in the same region as the two points. In this case, three sets cover
all edges.

Edges containing points in the same set are not necessarily connected. Whether
there exist cuts to separate edges exactly into the derived sets as connected rigid
bodies is an open question, as is whether those bodies can be extracted after
initial separation. This technique thus yields only a lower bound, and we expect
that the lower bound might be significantly improved in future work.

Results for other shapes can be found in Figure 4. A few statistics are shown
in Table 2. Time costs were measured on a 2016-model MacBook Pro with a 2.6
GHz Intel processor and 8 GB 1600 MHz DDR3 memory, and are intended only
to give a sense of the practicality of analysis of analyzing structures with varying
numbers of edges. From the table, we can see that with the increase of maximum
number of rotation sets, the time cost increases dramatically, as we would expect
for a O(n3) checking of rotations centers and a linear-integer program optimal
solution to minimum-set-cover; we expect that much larger problems could be
solved with good approximation by using greedy minimum-set-cover techniques.

shape # edges largest set size set cover size time cost

cavity 8 144 2 0.2018 s

spiral 14 612 3 1.8764 s

dumbbell 12 1104 4 7.2543 s

mammoth 64 12012 3 540.327 s

Table 1. Lower-bound analysis examples.

(a) Cavity. Orange edges
move to the left, and green
edges rotate about the
green point.

(b) Spiral. Black and or-
ange edges rotate about
black and orange points
respectively. Green edges
move to the right.

(c) Dumbbell. 4 sets of
edges in 4 colors. Each set
of edges rotates about cen-
ters with the same color.

Fig. 4. Three examples of analyzing necessary number of pieces the divisible part
should be cut into. In each example, edges with the same color are in the same set.

3 Computing a sufficient number of pieces

In this section, we present a complete algorithm that chooses where to cut the
divisible part B, and finds a motion plan to achieve separation from the indivis-

ible part A. We want to find an upper bound on the minimum number of pieces
B can be cut into to move each piece out of a planar box that contains both A
and B.

The algorithm first decomposes the part into a small number of convex poly-
gons, and moves pieces within these convex shapes; the number of pieces depends
on the number and size of polygons. In our implementation, we used a Delau-
nay triangulation, but better bounds could be achieved by finding larger convex
components.

After decomposition of B into convex polygons, consider two adjacent convex
polygons that share an edge. Flipping one polygon about the shared edge and
intersecting with the other polygon gives a new convex polygon. Inside the new
polygon we compute a largest inner square with one edge on the shared edge.
This square, called the transit square, can move freely between the two convex
polygons without leaving the interior.

We would like to find an axis-aligned grid such that at least one complete
grid cell fits entirely within the transit squares for each pair of adjacent con-
vex polygons. For each transit square, we find the largest axis-aligned inscribed
square, divide the width by two (shown in Figure 5c), and take the minimum
over all such values as the width of cells in the grid.

To find the size of the largest axis-aligned square, assume the width of the
outer square is L and the small angle between x-axis and edges of the square is
α. There exists another square of edge length l = L

√
1− 2 · tanα/(1 + tanα)2

inside the outer square.
We intersect the grid cells with the convex polygons to create small pieces

that we will call components. We will extract the material from each convex
polygon; we will say that a polygon that has already had its material extracted
is empty, and one that has not is full. We will prove that components can move
from one full convex polygon to an adjacent empty polygon without leaving
either convex polygon (and thus without collision with atomic parts or uncleared
divisible parts), assuming each component disappears once it has completely
entered the empty polygon. This is sufficient to prove inductively that the entire
structure can be disassembled.

Lemma 1. In a planar grid of square cells with a designated target square,
continuous translation of each grid cell to the target will not cause collision, if
the cells are translated in order of L2 distance from the target.

Proof. Let A be a square whose bottom-left point is at position (xa, y
′
a), moving

in one direction towards the target square O, with bottom-left point at (xo, yo).
Without loss of generality, assume xa > 0, ya > 0 and xo = 0, yo = 0, and that
the width of each cell is 1. We know that, during the motion, every point of
square A is bounded by the rectangle R defined by its bottom-left point (0, 0)
and top-right point (xa + 1, ya + 1).

Assume A collides with a square B whose bottom-left point is at (xb, yb),
xb, yb ∈ Z+. Then 0 ≤ xb ≤ xa and 0 ≤ yb ≤ ya; otherwise, no point in the
square is in R. Because OA is along the diagonal of R, OA is the longest edge in

(a) Two interlocked parts
where the gray part is
atomic and the rest is divis-
ible. Gridding the divisible
part into small enough cells
and removing them will sep-
arate both parts.

(b) Between two adjacent
convex shapes, there exists a
square that can move freely
from one to another without
leaving either shape.

α

x

y

α

L

l

(c) Partitioning the
space using a (green)
square of width l/2
guarantees there exists
at least one square in
the transition square.

Fig. 5. Gridding the divisible part to find sufficient pieces to separate parts.

triangle 4OAB. So |OB| < |OA|, and square B would have been moved before
A using the proposed order.

Although we claim and prove Lemma 1 in the plane, it extends easily to
similar results in arbitrary dimensions. We now come to the main result of this
section:

Theorem 2. Given an intersection of a grid with a pair of adjacent convex
polygons, such that at least one complete grid cell is completely contained within
each of the transit squares of the polygons, one polygon can be emptied into the
other without collisions, using the intersections of the cells with the polygons as
components, assuming each component disappears once it has completely entered
the empty polygon.

Proof. Lemma 1 indicates that cells in a grid can be translated to a target in
order of distance without collision. Since all motions of all points in cells are along
straight lines during translation, the result extends trivially to a case where the
space is constrained to a convex polygon, and the cells are clipped by the convex
polygon, as are the previously-defined components.

We therefore have the following approach. First, empty the transit square
in the full polygon into the transit square in the empty polygon, by sorting the
grid cells in order of distance from an arbitrarily chosen complete grid cell in
the empty polygon, and translating those cells to the target in that order; since
the pair of transit squares is together a convex polygon, there are no collisions.
Then choose a target cell in the now-empty transit square in the first polygon.

O

A

B

(0, 0)

(xa, ya)

(xb, yb)

(a) Squares in a
grid space can move
to any target position
with no collision fol-
lowing the order of
their distances to the
target.

(b) Cells can also move
to any target square with
no collision in the grid
space bounded by a con-
vex polygon using the
same method.

(c) The convex polygons
forms a graph that may
be weighted by the size of
the transit squares connect-
ing each pair of polygons.
Removing the smallest edges
but keeping the connection be-
tween vertices improves the
grid square size.

Fig. 6. Moving cells inside a convex shape, and between multiple convex shapes.

Sort the components in the polygon based on their distance from the target cell.
In this order, first translate each component first into the transit square, and
then into the adjacent empty polygon.

3.1 Algorithm 1: simple separation

The previous theorem suggests a simple, but complete, algorithm for cutting and
separating the interlocked parts. First, using triangulation or some other means,
decompose B and its containing square (from which we would like to remove B)
into convex polygons. Polygons within B will be full, and polygons outside of
B will be empty. Define a boundary polygon as a polygon that is connected by
a sequence of adjacent empty polygons (the exit sequence) to the outside of the
containing square, the exit.

Figure 7 shows the approach to extraction. Choose a boundary polygon, and
an exit sequence. Extract components from that polygon one at a time in the
order suggested in the proof of the theorem. As each component enters the exit
sequence, move it through the sequence of empty polygons to the exit, using
translation first to and then through each pair of transit squares along the exit
sequence.

3.2 Algorithm 2: greedy separation with grouped components

There are many possible ways to improve Algorithm 1. For example, if there
is a tiny shape in the convex decomposition of the divisible part, the cell size
will be very small. In this section, we propose an algorithm to plan a path for
every cell generated by the decomposition algorithm. Based on the paths, we

Fig. 7. Moving components through a chain of convex polygons. White polygons are
empty and the gray one is filled. Using the pairs of transit squares, cells can move
between any two adjacent polygons, or through a chain of connected polygons.

aggregate components into pieces and cut only along piece divisions; this will
greatly reduce the number of pieces needed.

Let the path of a component be P = [p0, p1, p2, . . . , pn] where pi ∈ P is the
intermediate position after the i-th control, and p0 is the initial position of the
component, where a control is a single translation. Define the control sequence
for the component as C = [c1, c2, . . . , cn] where ci = pi−pi−1 is the i-th control.

A simple greedy approach to grouping components is as follows. Compo-
nents may be whole (entire grid cells) or partial. We first deal only with whole
components. Simulation motion of all of the whole components in each of the
four cardinal directions. For each direction, count the number of components
that reach the exit area, and may be grouped together based on 4-connectivity;
greedily choose the direction that gives the fewest such grouped pieces.

Add the resulting cleared squares as a target area, and attempt motion in
each of the four cardinal translation directions, potentially creating new piece
groups; attempt to then move these new groups to the exit.

Table 2 shows some statistics for the sufficient decomposition for some ex-
ample shapes, and a few illustrative run times. The main time cost is spent on
testing collisions. Decomposition solutions are shown in Figure 8.

shape # components # pieces decomposition time planning time

cavity 144 6 0.862 s 0.822 s

spiral 462 26 0.786 s 1.500 s

dumbbell 269 8 0.529 s 0.496 s

mammoth 61 9954 16.816 s 149.192 s

Table 2. Analysis of sufficient number of pieces for a few example shapes.

(a) Cavity. The divisi-
ble part is divided into 6
pieces.

(b) Spiral. The divisi-
ble part is divided into 26
pieces.

(c) Mammoth. The divisible
part is divided into 61 pieces.

Fig. 8. Decompositions of separable parts into pieces. Colors are reused as needed;
each set of same-color components is a single piece.

4 Conclusions, limitations, and future work

We proposed the problem of separating a divisible polygon from an interlocked
atomic polygon by cutting. We explored lower and upper bounds on the number
of pieces the divisible part must be cut into, and presented algorithms to make
the cuts and achieve the separation using a sequence of translations. Both bounds
are very conservative; the main contribution of this work is the proposal of the
problem and an initial exploration of solutions.

Improving the quality of bounds is of great interest for future work. In the
section of computing the necessary number of pieces the divisible part must be
cut into, we only considered some sets of points immediately adjacent to the
edges of the atomic part, ignoring global properties. For example, extremely
small exit corridors through the atomic part should increase the lower bound.
Such properties might be considered by how large a component might be before
it ‘plugs’ a hole in configuration space.

While computing a sufficient number of pieces, the algorithm firstly decom-
poses the divisible part into convex polygons, then computes a grid resolution
using all pairs of adjacent polygons. The algorithm can generate a large number
of pieces if there exists a single narrow corridor anywhere in the divisible part.
Different convex decomposition methods might also yield better decompositions,
as might the selection of good disassembly sequences [18, 6].

In future work, we would also like to expand the problem scope. We expect
that most practical problems in this area are 3D, rather than planar. Also, we
can imagine situations where there are several atomic components, and several
divisible components. How should such multi-component 3D puzzles be designed,
assembled, or disassembled?

References

1. Thomas F Allen, Joel W Burdick, and Elon Rimon. Two-finger caging of polygonal
objects using contact space search. IEEE Transactions on Robotics, 31(5):1164–
1179, 2015.

2. DJ Arbuckle and Aristides AG Requicha. Self-assembly and self-repair of arbitrary
shapes by a swarm of reactive robots: algorithms and simulations. Autonomous
Robots, 28(2):197–211, 2010.

3. Devin J Balkcom and Jeffrey C Trinkle. Computing wrench cones for planar rigid
body contact tasks. The International Journal of Robotics Research, 21(12):1053–
1066, 2002.

4. Aaron Becker, Golnaz Habibi, Justin Werfel, Michael Rubenstein, and James
McLurkin. Massive uniform manipulation: Controlling large populations of simple
robots with a common input signal. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 520–527. IEEE, 2013.

5. Matthew P Bell, Weifu Wang, Jordan Kunzika, and Devin Balkcom. Knot-
tying with four-piece fixtures. The International Journal of Robotics Research,
33(11):1481–1489, 2014.

6. Lukas Beyeler, Jean-Charles Bazin, and Emily Whiting. A graph-based approach
for discovery of stable deconstruction sequences. In Advances in Architectural
Geometry 2014, pages 145–157. Springer, 2015.

7. Jae-Sook Cheong, Herman J Haverkort, and A Frank van der Stappen. Comput-
ing all immobilizing grasps of a simple polygon with few contacts. Algorithmica,
44(2):117–136, 2006.

8. Jae-Sook Cheong, A Frank Van Der Stappen, Ken Goldberg, Mark H Overmars,
and Elon Rimon. Immobilizing hinged polygons. International Journal of Com-
putational Geometry & Applications, 17(01):45–69, 2007.

9. Robert Connelly, Erik D Demaine, and Günter Rote. Straightening polygonal arcs
and convexifying polygonal cycles. In Foundations of Computer Science, 2000.
Proceedings. 41st Annual Symposium on, pages 432–442. IEEE, 2000.

10. Jurek Czyzowicz, Ivan Stojmenovic, and Jorge Urrutia. Immobilizing a polytope.
In Workshop on Algorithms and Data Structures, pages 214–227. Springer, 1991.

11. Jurek Czyzowicz, Ivan Stojmenovic, and Jorge Urrutia. Immobilizing a shape.
International Journal of Computational Geometry & Applications, 9(02):181–206,
1999.

12. Jeff Erickson, Shripad Thite, Fred Rothganger, and Jean Ponce. Capturing a
convex object with three discs. In Robotics and Automation, 2003. Proceedings.
ICRA’03. IEEE International Conference on, volume 2, pages 2242–2247. IEEE,
2003.

13. Chi-Wing Fu, Peng Song, Xiaoqi Yan, Lee Wei Yang, Pradeep Kumar Jayara-
man, and Daniel Cohen-Or. Computational interlocking furniture assembly. ACM
Transactions on Graphics (TOG), 34(4):91, 2015.

14. Philipp Herholz, Wojciech Matusik, and Marc Alexa. Approximating Free-form
Geometry with Height Fields for Manufacturing. Computer Graphics Forum (Proc.
of Eurographics), 34(2):239–251, 2015.

15. Ruizhen Hu, Honghua Li, Hao Zhang, and Daniel Cohen-Or. Approximate pyra-
midal shape decomposition. ACM Trans. Graph., 33(6):213–1, 2014.

16. Jun Huang, Satyandra K Gupta, and Klaus Stoppel. Generating sacrificial multi-
piece molds using accessibility driven spatial partitioning. Computer-Aided Design,
35(13):1147–1160, 2003.

17. Keith Kotay, Daniela Rus, Marsette Vona, and Craig McGray. The self-
reconfiguring robotic molecule: Design and control algorithms. In Workshop on
Algorithmic Foundations of Robotics, pages 376–386. Citeseer, 1998.

18. Anne Loomis. {Computation reuse in stacking and unstacking}. 2005.

19. Satoshi Makita and Yusuke Maeda. 3d multifingered caging: Basic formulation
and planning. In 2008 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 2697–2702. IEEE, 2008.

20. Matthew T Mason. Mechanics of robotic manipulation. MIT press, 2001.

21. Bhubaneswar Mishra, Jacob T Schwartz, and Micha Sharir. On the existence and
synthesis of multifinger positive grips. Algorithmica, 2(1-4):541–558, 1987.

22. Alok K Priyadarshi and Satyandra K Gupta. Geometric algorithms for automated
design of multi-piece permanent molds. Computer-Aided Design, 36(3):241–260,
2004.

23. R. Ravi and M. N. Srinivasan. Decision criteria for computer-aided parting surface
design. Comput. Aided Des., 22(1):11–17, January 1990.

24. Franz Reuleaux. Theoretische Kinematik: Grundzüge einer Theorie des Maschi-
nenwesens, volume 1. F. Vieweg und Sohn, 1875.

25. Elon Rimon and Andrew Blake. Caging 2d bodies by 1-parameter two-fingered
gripping systems. In Robotics and Automation, 1996. Proceedings., 1996 IEEE
International Conference on, volume 2, pages 1458–1464. IEEE, 1996.

26. Elon Rimon and Joel W Burdick. Mobility of bodies in contact. i. a 2nd-order
mobility index for multiple-finger grasps. IEEE transactions on Robotics and Au-
tomation, 14(5):696–708, 1998.

27. Elon Rimon and Joel W Burdick. Mobility of bodies in contact. ii. how forces are
generated by curvature effects. IEEE Transactions on Robotics and Automation,
14(5):709–717, 1998.

28. Michael Rubenstein, Adrian Cabrera, Justin Werfel, Golnaz Habibi, James
McLurkin, and Radhika Nagpal. Collective transport of complex objects by simple
robots: theory and experiments. In Proceedings of the 2013 international confer-
ence on Autonomous agents and multi-agent systems, pages 47–54. International
Foundation for Autonomous Agents and Multiagent Systems, 2013.

29. Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Programmable self-
assembly in a thousand-robot swarm. Science, 345(6198):795–799, 2014.

30. Daniela Rus and Marsette Vona. Crystalline robots: Self-reconfiguration with com-
pressible unit modules. Autonomous Robots, 10(1):107–124, 2001.

31. Jack Snoeyink and Jorge Stolfi. Objects that cannot be taken apart with two
hands. In Proceedings of the ninth annual symposium on Computational geometry,
pages 247–256. ACM, 1993.

32. Peng Song, Bailin Deng, Ziqi Wang, Zhichao Dong, Wei Li, Chi-Wing Fu, and Lig-
ang Liu. Cofifab: Coarse-to-fine fabrication of large 3d objects. ACM Transactions
on Graphics.

33. Peng Song, Zhongqi Fu, Ligang Liu, and Chi-Wing Fu. Printing 3d objects with
interlocking parts. Computer Aided Geometric design (Proc. of GMP 2015), 35-
36:137–148, 2015.

34. Jacob Steiner. Einige gesetze über die theilung der ebene und des raumes. Journal
für die reine und angewandte Mathematik, 1:349–364, 1826.

35. Ileana Streinu. A combinatorial approach to planar non-colliding robot arm motion
planning. In Foundations of Computer Science, 2000. Proceedings. 41st Annual
Symposium on, pages 443–453. IEEE, 2000.

36. Mostafa Vahedi and A Frank van der Stappen. Caging polygons with two and
three fingers. The International Journal of Robotics Research, 27(11-12):1308–
1324, 2008.

37. Weifu Wang and Devin Balkcom. Grasping and folding knots. In 2016 IEEE
International Conference on Robotics and Automation (ICRA), pages 3647–3654.
IEEE, 2016.

38. Yinan Zhang and Devin Balkcom. Interlocking structure assembly with voxels. In
Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference
on. IEEE, 2016.

