
Rearranging agents in a small space using global controls

Yinan Zhang1,⇤, Xiaolei Chen2,⇤, Hang Qi3 and Devin Balkcom4

Abstract— This paper explores a problem of reconfiguration

of a large set of agents using global control signals: right, left,

up and down. A field of obstacles guides the reconfiguration by

limiting motion in the various directions. This paper extends

work by Becker et al. ([4], [5] and [7]), and shows there exists a

workspace a constant factor larger than the number of agents

that enables complete rearrangement for a rectangle of agents.

I. INTRODUCTION

This paper explores the problem of re-configuring a group
of simple agents using a sequence of global controls which
every agent must follow. If the global control right is issued,
then all agents move to the right, unless they are stopped by
an obstacle or another stationary agent. The other available
controls are left, up and down. Figure 1 shows a grid with
obstacles generated by our algorithm for rearranging 16⇥16

matrices of agents, and its application to rearrange an initially
randomized Super Mario image.

This paper is primarily inspired by a collection of prior
papers by Becker et al. ([4], [5] and [7]) that use the
same model, and show that by placing obstacles cleverly,
sequences of global controls can allow essentially arbitrary
re-configuration of the agents. The primary contribution of
this paper is the observation that with different placements
of obstacles, the total physical space requirements (the board
that the agents live on), may be much smaller than in
previous work. Specifically, general re-arrangement of an
n · m rectangle of agents requires a board that is only
a constant factor larger than the number of agents. For a
specific n ·m matrix of agents, constant-time rearrangement
can be done in a O(n ·m · (n+m)) workspace.

There are two approaches to placing obstacles. In the
first, simpler approach, task-specific design, the obstacles
are placed based on the specific start and desired goal
arrangement of the agents. This approach seems impractical
because a new board must be designed for each arrangement
task. In the second approach, multi-purpose design, the
obstacles are placed in fixed locations, and more complex
sequences of actions make use of those obstacles to rearrange
the agents. This approach, while more general, does have the
disadvantage that the reconfiguration algorithms so far dis-
covered act in serial on each agent or small groups of agents,
so that action sequences might be quite long. A primary goal
of future work is to parallelize the rearrangement process, so
that a much smaller number of moves is required.

⇤ Co-first author
1,2,3,4Department of Computer Science, Dartmouth College, NH, USA

(a) A randomized
arrangement of Su-
per Mario image.

(b) Mario image
rearrangement 66%
done.

(c) The target rear-
rangement of Super
Mario image.

(d) The space designed for rearranging the Super Mario image.
Dark gray squares are obstacles

Fig. 1: Rearranging a Super Mario image (16 ⇥ 16) in a
grid space using Bubble Sort with limited global controls.
The grid space size is linear to the number of elements in
the Super Mario image. Rearrangement is completed after
553583 moves.

A. Task-specific design

When agents are initially in a single contiguous row, we
provide an algorithm to place obstacles in the space such
that these agents reorder themselves within that row, using
a sequence of four actions.

Using the technique for rearranging a row of agents as a
subroutine, we derive an algorithm for rearranging a specific
n·m agent matrix in a O(n·m·(n+m)) space using constant
number of controls. This algorithm first moves every agent
into its target row in five moves, and then simultaneously
rearranges every row of agents in six steps.

B. Multi-purpose design

We present a design of a O(n ·m) space for rearranging
arbitrary agent matrix that is n ·m or smaller. We apply the
Bubble Sort algorithm to rearrange an agent matrix. We show



both shifting positions of agents and swapping between two
agents at fixed positions can be done in a space of size linear
to the number of agents. The combination of shifting and
swapping allows bubble-sorting an agent matrix in a space
that is a constant factor larger than the number of agents.
The required sequence of controls is O((n ·m)

2
) in length.

Figure 1 shows a grid space with obstacles generated by
our algorithm for rearranging an initially randomized Super
Mario image (16⇥ 16 agent matrix).

II. RELATED WORK

Global control of robots. Becker et al. [4] examined
the same model of particle swarms and proved it is NP-
hard to decide whether a given initial configuration can
be transformed into a desired target configuration, if the
obstacles are fixed. Becker et al. designed an algorithm to
construct AND and OR logic gates, when allowed to place
obstacles, and also provided an algorithm to place obstacles
in a O(N2

) space to perform arbitrary permutations, where
N is the number of robots. [5] later proved a stronger
result: the problem of finding an optimal control sequence
is PSPACE-complete. Shad et al. [22] extended the idea
of building logic gates using unit-size swarm robots with
global control into building a binary memory and showed it
is possible to have nano-robots perform arbitrarily complex
operations without using external computational devices.

Collecting objects in a compact manner has been studied
using a similar model. Dhagat and O’Rourke [10] considered
the problem of pushing square objects in a grid world.
Mahadev et al. [16] provided algorithms to concentrate
under-actuated swarm robots despite obstacles. Akitaya et
al. [1] considered the problem of sweeping a line to compact
a set of objects setting in a grid world, and showed that
deciding whether the set of objects can be pushed to form a
square is NP-hard.

Swarm robots. Over the past several years, researchers
have built swarms of biologically-inspired small-scale robots;
papers include [3], [15], [17], [12], [9]. Caprari et al. [8] built
programmable ultra-low-power robots. Kornienko et al. [13]
used the Jasmine micro-robots to study the re-embodiment
of biological aggregation behavior of honeybees. Rubenstein
et al. [18] built a thousand-robot swarm, Kilobot. Becker [6]
later studied manipulation of large populations of simple
robots with common input signals using kilobots. Rubenstein
et al. [19] also used kilobots to study object transportation.
Manipulation of droplets in lab-on-a-chip designs is an
emerging application [23], and global controls may serve as
one approach.

Robot construction and robot assembly. Seminal work
on minimalist manipulation by Erdmann and Mason used
tray tilting and interaction of a part with obstacles to coerce
the part into a desired configuration [11]. Rubenstein et
al. [20] designed an algorithm to control kilobots to self-
assemble shapes in 2D. Kotay et al. [14] designed a robotic
module, groups of which aggregate into 3D structures. Rus
and Vona’s early work [21] on the Crystalline robot presented
an algorithm to do self-reconfiguration. Arbuckle et al. [2]

allowed identical memory-less agents to construct and repair
arbitrary shapes in the plane. In the authors’ own work [24]
on assembly of interlocking structures, nine kinds of blocks
are used to build large-scale voxelized models such that all
blocks are interlocked and the whole structure is rigid as a
whole. Zhang et al. work [25] dissembles divisible material
to extract an atomic part.

III. REARRANGING A ROW OF AGENTS

In this section, we discuss the simplest case of rearranging
a line of n horizontally connected unit-size agents in a grid
world. Rearranging a vertical array of agents can be viewed
as a 90-degree rotation of a horizontal array. These cases will
later be used to solve more complicated cases when there are
several rows of agents.

We present an algorithm for placing 2n obstacles to
rearrange agents using a sequence of just four controls: up,
right, down, left. We will show the space complexity of this
design is O(n2

). To better illustrate the process, we represent
each agent using a ball labeled by a unique number from 1
to n; our goal is to sort these numbers in ascending order.

In this paper, the (0, 0) position of a matrix is at the bottom
left corner. Coordinate (x, y) means the position at the x-th
column and y-th row.

12 4 3 1 2 3 4

Fig. 2: Rearranging a row of n agents using 2n obstacles in
a (n+ 2) · (3n) space. Green spheres are in desired order.

A. The algorithm

The general idea of the approach is to first separate every
agent into different rows using an up command, then move
them to sorted relative positions using a right command and
finally re-move them to a same row using a down command.
See Figure 2.

Assume the first element of the array sits in the bottom-
left corner ((0, 0) position) of a grid space. If an agent is in
the i-th position of the initial array and should be moved to
the j-th position of the sorted array (indices start from 0),
two obstacles will be placed, in the (i, i+2) and (n+2(j+
1)� 1, i+ 2) positions.

Although this algorithm deals only with a row of agents,
it can easily be extended to rearrange a specific row or
column of an agent matrix. In section V, we will see how
an extension of this algorithm can be used to shift agent
positions in a matrix.



B. Space complexity
In the above algorithm, separating n agents into different

rows requires (n+2)·n space. Moving each ball to its correct
position requires at most (n+2)·2n space. So the total space
is at most (n+ 1) · 3n. Because we place two obstacles for
each agent, the total number of obstacles is at most 2n.

IV. REARRANGING AN AGENT MATRIX USING ELEVEN
CONTROLS

We apply the technique mentioned in previous section to
arrange agents in a square matrix. In this section, we present
an algorithm that designs a grid space for a given n ·m agent
matrix and re-configure agent positions in a constant number
of control commands. Figure 8 is an example of rearranging
a 7⇥ 7 size heart image.

A. The algorithm
The idea is to take advantage of the fact that all row

rearrangements require the same controls so we can rearrange
rows simultaneously. Figure 3 is an example for a 2⇥3 agent
matrix.

We describe the algorithm for placing obstacles in the grid
space in two parts. Let the initial agent matrix be M , and
the rearranged matrix be M 0. (All indices start from 0.)

1) Place agents in correct rows. First place obstacles at
(m+m ⇤ i, 6n+m+ 2� i) for i 2 [1, n] to separate
rows. Then for each agent, if at M [x, y] and to be
moved to M 0

[x0, y0], place an obstacle at (m+x, 3n+
m+ 2y0 + 2). Thus every agent can be transported to
its desired row. We denote the matrix after completing
the first step as M 00.

2) Rearrange agent arrays. We place m obstacles at
position (i, 2n) for i 2 [0,m� 1] to stop agents from
the last down command. Similarly, we place obstacles
to separate rows at (2m + (3m + 1) · i, 3n � i) for
i 2 [0, n � 1]. Then for each agent, if at M 00

[x, y]
and to be moved to M 0

[x0, y], place three obstacles at
(m+(3m+1) ·(n�1�y)+x, 3n+1+x+y), (2m+

(3m+1) · (n�1�y)+2x0
+2, 3n+y+(m�1�x0

))

and (2m+ (3m+ 1)(n� 1� y) + 2x0
+ 1, 2y).

B. The complexity
As we can see from the algorithm described above, the

width of the board is m + (3m + 1) · n, and the height of
the board is 6n+m+2. The space complexity of the board
is O(m · n · (m+ n)). There are 2n+ 6m obstacles.

V. REARRANGING AN AGENT MATRIX IN A O(N) SPACE

Although the previous section provides a fast algorithm
to rearrange a given agent matrix, it requires a space that is
relatively large and requires designing the grid of obstacles
for the particular input. In this section, we present a complete
algorithm to rearrange arbitrary agent matrices. Inspired by
the Bubble Sort algorithm, we treat the matrix as a folded
array, and sort the array by swapping adjacent agents. We
show a design for swapping first, then show how to shift
positions of agents so we only need to swap between two

3 6 1

5 4 2

13 2

6 5 4

Place robots in correct rows

(a) The first step moves every agent to its final using a
5-control sequence: up, right, down, left, down.

3 1 2

6 5 4

13 2

6 5 4

1 2 3

4 5 6

1 2 3

4 5 6

Array Arrangement Array Arrangement

(b) With agents in their correct rows, we now rearrange
all rows together using a 5-control sequence: right, up,
right, down, left.

Fig. 3: A board design to rearrange a 2⇥3 matrix in constant
steps. The rearrangement is done in two parts; one moves
agents to correct rows, another rearranges all rows at the
same time.

fixed positions of a matrix. Each grid space design is for n·m
matrices but works for any smaller matrices. We combine
these two parts and present a general grid space capable of
rearranging arbitrary matrices smaller than n ·m.

A. Swapping adjacent agents
We design a board to swap the last two agents in a row

using 3 commands: up, right, down. The design uses the first
command to separate two target agents and other agents. The
second command (right) changes the relative positions of the
target agents, and finally the last command puts them into
the same row again. Figure 4 shows how swapping is done
for a row of four agents.

The placement of obstacles for an array of n agents can
be described as follow: 1. place obstacles at (i, 2) for i 2
[0, n�3], 2. place obstacles at (n�2, 3), (n�1, 4), (2n�2, 1),
(2n, 3) and (2n+1, 2). The width of the grid space is 2n+2,
and the height is 5. A total number of n + 3 obstacles are
introduced into the space.



For a m ·n matrix, if we only swap the last two elements
in the first row, the design is similar, but we need to separate
the first row from others; see Section V-C.

Fig. 4: Swapping the green and red agents. Other agents
remain in the same order. This design requires 5 + (n � 1)

obstacle and 5 · (2n + 1) space, where n is the number of
agents in the array.

B. Shifting agent positions
Because the swapping design only allows exchanging

agents in two fixed adjacent positions (the last two elements
of a row), to swap other adjacent agents, we need to first
do a shift operation. As we treat an agent matrix as a
folded array of N agents, shifting means rearranging agents
[a0, a1, a2, . . . , an�1] to [a1, a2, a3, . . . , an�1, a0]. This op-
eration can be done in four steps: 1. pop the first element of
the first column, 2. push the element back to the end of the
first column, 3. pop the first column 4. and push the column
to the end. If a column of agents is treated as a whole agent,
steps 3 and 4 can also be viewed as a rearrangement of
a single line of agents. So our design is a combination of
two agent line rearrangements. Figure 5 gives an example of
shifting a 3⇥ 3 matrix.

1 2 3

4 5 6

7 8 9

2 3

5 6

8 9 1

4

7

1

4

7

1

4

7

Fig. 5: Shifting all agents to predecessor positions. The first
agent is shifted to the end. The shifting can be viewed as
popping the first element of the first column and pushing it
back to the end of the column, then popping and pushing
the first column to the end.

We place obstacles in the following way:

1) One obstacle at at (0, 4n + 3) to separate the first
column from other columns.

2) m � 1 obstacles at (m + i, n) for i 2 [0,m � 2] and
n obstacles at (2m� 1, 4n+ 3 + i) for i 2 [0, n� 1]

for elements not in the first column
3) Three obstacles at (2m, 4n+2), (2m� 1, 2n+1) and

(3m, 2n+ 2) for the first element of the first column.
4) For other elements of the first column, put n � 1

obstacles at (3m - 2, 4n + 2 - i) for i 2 [1, n � 1],
n� 1 obstacles at (3m, 3n+ 2� j) for j 2 [1, n� 1]

and one obstacle at (3m� 3, 2n+ 3).

In the example, the space is 3m + 1 wide and 5n + 3

tall, so the space complexity is also O(n · m). A total of
4n+m+ 1 obstacles are required.

C. The design of a O(N) workspace

Finally, we combine two spaces: one for swapping and one
for shifting. Figure 6 is an example for a 3⇥3 agent matrix.
The left part of the space is a shifting room and the right part
is a swapping room. The bottom of the right part is designed
to constrain changes of relative positions of agents not in the
first row. Although this board is generated for 3⇥3 matrices,
it also works for smaller matrices. We can transform any
matrix A into B using a Bubble Sort algorithm. We treat
each matrix as a folded 1D array, the first element is the
top-left element while the last is at bottom-right. Label each
agent in matrix B as a sorted array in ascending order. If the
last two elements of the first row are in descending order,
swap, unless these two elements are the end and the head of
matrix B. Otherwise, shift. The matrix is sorted if we have
done n ·m times of consecutive shifts.

1 2 3

4 5 6

7 8 9

2 3
5 6
8 9 1

4
7

2 4

2 3 4

5 6
8 9 1

7

3

Fig. 6: The design of a O(n ·m) size board for rearranging
arbitrary agent matrices smaller than n · m. The board has
two parts: the left part does shifting and the right part
does swapping. Here the agent labeled 3 and 4 exchanged
positions, others remain the same position in the matrix.



Upper room

Pivot room

Lower room

Stairway

(a) The stairway ensures single-
agent exit. At the exit of the
stair way, an agent can be
moved to go to pivot room,
lower room or upper room.

(b) After re-arranging a seg-
ment, move all agents to the
left, then the just rearranged
segment will be pushed to the
top of the row.

Fig. 7: A board design to perform quick sort for a row of
agents. The board is able to perform pivoting for any sub-
sequences of agents and shift them to the top of the row.

D. Time and space complexity
The shifting part of the space is O(n) tall and the swap-

ping part is O(m) wide. Both parts have O(n) obstacles. So
the space complexity is O(n·m). We are using a Bubble Sort
algorithm to transform a matrix, and Bubble Sort requires
O(N2

) number of swaps, where N = mn. Each swap is
followed by a shift operation. To place an agent to its correct
position, the algorithm has to do at most N shifts to position
the agent to swap positions, and the worst case will do N
swaps. So the total number of shifts is N ·N+N ·(N�1)/2.
The total number of operations is O(N2

), which is the time
complexity. Thus, we have Theorem 1.

Theorem 1: Transforming a matrix A into matrix B can
be done by a set of O(n) obstacles in a O(n ·m) grid space.
The transformation requires at most O((n ·m)

2
) moves.

Simply holding n · m agents requires a n · m-size grid;
our grid design also uses O(n ·m) space, achieving a tight
bound.

E. Sorting a row of agents with fewer actions and O(N)

space
Our analysis and experiments (Table I) shows a relatively

large number of operations to complete a matrix rearrange-
ment, which is expected from the worst case O(N2

) time
complexity of Bubble Sort. Can we instead perform an
operation like quicksort?

Figure 7a is an example of a design capable of doing
partition operations of a quicksort.

In our design, a space has five parts: the left-most is
entrance part where agents are kept in a row, the lowest
eight rows is stairway which ensures only one agent is able
to exit and be further rearranged. The right side of the
space is partitioned into three parts: a pivot room in the

middle that holds the pivot agent, an upper room which holds
agents labeled larger than the pivot and a lower room that
holds agents labeled smaller than the pivot. After exiting the
stairway, an agent can be controlled to enter pivot room;
if it is the pivot agent, or the upper room or lower room
independently (Figure 7a). When a segment of the row is
pivoted, move left to recompose all agents into a single row.
This operation also puts the rearranged segment onto the top
of the left-over agents (Figure 7b).

After the partition step of the quicksort algorithm, all
numbers smaller than the pivot element will be placed into
one side of the pivot, and others will be placed into the other
side of the pivot.

The stairway design is fixed for any length row of agents.
So its width and height are both fixed. The upper room, pivot
room and upper room also have fixed width of five.

An interesting note is that selecting the median element of
the partition to pivot around in each partitioning step avoids
the worst-case behavior of quick-sort. From a computational
perspective, finding the median is itself an expensive opera-
tion, so the pivot is typically selected randomly or from one
side of the sub-array to be partitioned. However, in our case,
we are not particularly concerned with computational time
needed to generate the sequence of action, but rather with
the physical number of moves. Thus, it is quite reasonable to
select the median for pivoting, allowing the modified quick-
sort to use something like ⇥(n log n) moves.

Example: Assume we are given an array [8,7,6,5,4,3,2,1].
First step chooses 4 as pivot and partitions the array into
two parts: [3,2,1],[4],[8,7,6,5]. Shift the lower part and pivot
to the end: [8,7,6,5],[3,2,1,4]. Now partition [8,7,6,5] with
pivot 6, yielding: [5],[6],[8,7],[3,2,1,4]. Shift the lower part
and pivot: [8,7],[3,2,1,4],[5],[6]. Partition [8,7] with pivot
7: [7],[8],[3,2,1,4],[5],[6]. Shift the lower part and pivot:
[3,2,1,4],[5],[6],[7],[8]. Partition [3,2,1,4],[5],[6],[7],[8] with
pivot 2: [1],[2],[3,4],[5],[6],[7],[8]. The array is sorted!

Although we have described the partitioning step, which
is the core of quick-sort, quick-sorting rectangular arrays of
agents is left for future work.

VI. EXAMPLES AND RESULTS

We ran several experiments with our design of constant
move space and Bubble Sort space. We tested different cases
of different size matrices including a heart image, a duck
image, and a Super Mario image.

A. Constant-move grid design

Figure 8 shows an example of rearranging a heart image
(7 ⇥ 7 size) using a 51 ⇥ 161 grid. In the initial image
(Figure 8a), agent positions are randomized. After running
the first 5 commands, every agent is moved into its target
row, as shown in Figure 8b. The next 5 commands rearrange
all 7 rows simultaneously, and the last command recomposes
all rows into a matrix. Figure 8c is the goal configuration of
all agents, and Figure 8d demonstrates the board generated
by our algorithm based on the randomized agent positions.



(a) A randomized
arrangement of a
heart image.

(b) Agents are
placed in target
rows after 5 moves.

(c) The target re-
arrangement of the
heart image.

(d) The space designed for rearranging the 7⇥7 heart image. Dark
gray squares are obstacles

Fig. 8: Rearranging a heart image (7 ⇥ 7) in a grid space
in eleven moves. Initially, agent positions are randomized
in Figure 8a. After 5 moves, all agents are moved to their
target positions, Figure 8b. Figure 8c shows the final result
of a rearranged heart image.

B. Bubble Sort grid

We ran our algorithm to generate O(N) grid space and
bubble-sort matrices of 3 ⇥ 3, 6 ⇥ 6, 9 ⇥ 9, 13 ⇥ 13 (duck
image) and 16⇥ 16 (Super Mario image). For each matrix,
we randomize its initial arrangement for 10 times and do
bubble-sorting for each random arrangement. The following
chart (Figure 9) and table (Table I) shows the average number
of shifts, swaps, and moves, and their standard deviations.

Fig. 9: Average number of shifts, swaps and moves for
rearranging 3 ⇥ 3, 6 ⇥ 6, 9 ⇥ 9, 13 ⇥ 13 (duck image) and
16⇥ 16 matrices.

Figure 10 and 1 shows the process of rearranging an duck
image (13⇥ 13) and a Super Mario image (16⇥ 16). They
both use the same 100⇥119 grid space generated for 16⇥16

agent matrices. When 66% of commands are executed, the
last several rows of both images are sorted and we are able
to see the shape of the final image.

TABLE I: Bubble sort experiment results with different sized
matrices.

shifts stdev swaps stdev moves stdev
3⇥ 3 38.7 15.326 13.7 5.697 382.9 149.674
6⇥ 6 1047.6 93.646 316.7 33.869 9768.3 778.590
9⇥ 9 5508 402.291 1555.1 62.836 50154.1 2388.549

13⇥ 13 25941.5 1403.254 7129.4 482.695 234072.4 11498.934
16⇥ 16 61593.6 2023.678 16809.8 635.403 554469.4 14164.014

(a) A randomized
arrangement of
duck image.

(b) Duck image
rearrangement
66% done.

(c) The target rear-
rangement of duck
image.

Fig. 10: Rearranging a duck image (13⇥13) in a O(N) size
board using Bubble Sort with limited global controls.

VII. CONCLUSIONS AND FUTURE WORK

This paper studies the time complexity and space complex-
ity of rearranging any 2D agent matrices using limited global
control signals. It is possible to rearrange arbitrary n·m agent
matrices in a O(n · m) space, which is linear to the space
requirement to simply hold all the agent units. We also pre-
sented a complete algorithm to place obstacles in the space
and to control agents to finish rearrangement. Realizing the
large number of controls required using minimum required
space, we showed an algorithm to manipulate a given agent
matrix in constant steps but in a O(n ·m · (n+m)) space.
Our work can be viewed as a further discussion of the re-
configuring problems raised in [4].

In the future, we hope to extend our work from sim-
ple 2D rectangular agent matrices to arbitrary shapes. Of
even greater interest is whether rearrangement can be done
quickly. There are two approaches to speeding up re-
arrangement: 1) more efficient serial algorithms for me-
chanical sorting, and 2) parallel approaches that exploit the
simultaneous nature of the force-field actions. Our work
on quick-sort shows a promising approach to finding more
efficient serial algorithms for rearrangement, but we are
particularly interested in designing parallel algorithms.

REFERENCES

[1] Hugo Akitaya, Greg Aloupis, Maarten Löffler, and Anika Rounds.
Trash compaction.

[2] DJ Arbuckle and A AG Requicha. Self-assembly and self-repair
of arbitrary shapes by a swarm of reactive robots: algorithms and
simulations. Autonomous Robots, 28(2):197–211, 2010.

[3] Andrew T Baisch and Robert J Wood. Pop-up assembly of a
quadrupedal ambulatory microrobot. In Intelligent Robots and Systems
(IROS), 2013 IEEE/RSJ International Conference on, pages 1518–
1524. IEEE, 2013.

[4] Aaron Becker, Erik D Demaine, Sándor P Fekete, Golnaz Habibi,
and James McLurkin. Reconfiguring massive particle swarms with
limited, global control. In International Symposium on Algorithms and
Experiments for Sensor Systems, Wireless Networks and Distributed
Robotics, pages 51–66. Springer, 2013.



[5] Aaron Becker, Erik D Demaine, Sándor P Fekete, and James
McLurkin. Particle computation: Designing worlds to control robot
swarms with only global signals. In Robotics and Automation (ICRA),
2014 IEEE International Conference on, pages 6751–6756. IEEE,
2014.

[6] Aaron Becker, Golnaz Habibi, Justin Werfel, Michael Rubenstein, and
James McLurkin. Massive uniform manipulation: Controlling large
populations of simple robots with a common input signal. In Intelligent
Robots and Systems (IROS), 2013 IEEE/RSJ International Conference
on, pages 520–527. IEEE, 2013.

[7] Aaron T Becker, Erik D Demaine, Sándor P Fekete, Hamed Mo-
htasham Shad, and Rose Morris-Wright. Tilt: The video-designing
worlds to control robot swarms with only global signals. In LIPIcs-
Leibniz International Proceedings in Informatics, volume 34. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

[8] Gilles Caprari, Patrick Balmer, Ralph Piguet, and Roland Siegwart.
The autonomous micro robot” alice”: a platform for scientific and
commercial applications. In Micromechatronics and Human Science,
1998. MHS’98. Proceedings of the 1998 International Symposium on,
pages 231–235. IEEE, 1998.

[9] Yufeng Chen, E Farrell Helbling, Nick Gravish, Kevin Ma, and
Robert J Wood. Hybrid aerial and aquatic locomotion in an at-
scale robotic insect. In Intelligent Robots and Systems (IROS), 2015
IEEE/RSJ International Conference on, pages 331–338. IEEE, 2015.

[10] Arundhati Dhagat and Joseph ORourke. Motion planning amidst
movable square blocks. PhD thesis, Smith College, Northampton,
Mass., 1992.

[11] Michael A. Erdmann and Matthew T. Mason. An exploration of
sensorless manipulation. IEEE Journal of Robotics and Automation,
4(4):369–379, 1988.

[12] Michael Karpelson, Benjamin H Waters, Benjamin Goldberg, Brody
Mahoney, Onur Ozcan, Andrew Baisch, Pierre-Marie Meyitang,
Joshua R Smith, and Robert J Wood. A wirelessly powered, biolog-
ically inspired ambulatory microrobot. In Robotics and Automation
(ICRA), 2014 IEEE International Conference on, pages 2384–2391.
IEEE, 2014.

[13] S Kornienko, R Thenius, O Kornienko, and T Schmickl. Reem-
bodiment of honeybee aggregation behavior in artificial microrobotic
system. Adaptive Behavior (accepted for publication).

[14] Keith Kotay, Daniela Rus, Marsette Vona, and Craig McGray. The self-
reconfiguring robotic molecule. In Robotics and Automation, 1998.
Proceedings. 1998 IEEE International Conference on, volume 1, pages
424–431. IEEE, 1998.

[15] Kevin Y Ma, Pakpong Chirarattananon, Sawyer B Fuller, and Robert J
Wood. Controlled flight of a biologically inspired, insect-scale robot.
Science, 340(6132):603–607, 2013.

[16] Arun V Mahadev, Dominik Krupke, Jan-Marc Reinhardt, Sándor P
Fekete, and Aaron T Becker. Collecting a swarm in a grid environment
using shared, global inputs. In Automation Science and Engineering
(CASE), 2016 IEEE International Conference on, pages 1231–1236.
IEEE, 2016.

[17] Cagdas D Onal, Robert J Wood, and Daniela Rus. An origami-inspired
approach to worm robots. IEEE/ASME Transactions on Mechatronics,
18(2):430–438, 2013.

[18] Michael Rubenstein, Christian Ahler, and Radhika Nagpal. Kilobot:
A low cost scalable robot system for collective behaviors. In Robotics

and Automation (ICRA), 2012 IEEE International Conference on,
pages 3293–3298. IEEE, 2012.

[19] Michael Rubenstein, Adrian Cabrera, Justin Werfel, Golnaz Habibi,
James McLurkin, and Radhika Nagpal. Collective transport of com-
plex objects by simple robots: theory and experiments. In Proceedings
of the 2013 international conference on Autonomous agents and multi-
agent systems, pages 47–54. International Foundation for Autonomous
Agents and Multiagent Systems, 2013.

[20] Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. Pro-
grammable self-assembly in a thousand-robot swarm. Science,
345(6198):795–799, 2014.

[21] Daniela Rus and Marsette Vona. Crystalline robots: Self-
reconfiguration with compressible unit modules. Autonomous Robots,
10(1):107–124, 2001.

[22] Hamed Mohtasham Shad, Rose Morris-Wright, Erik D Demaine,
Sándor P Fekete, and Aaron T Becker. Particle computation: Device
fan-out and binary memory. In Robotics and Automation (ICRA), 2015
IEEE International Conference on, pages 5384–5389. IEEE, 2015.

[23] V. Shekar, M. Campbell, and S. Akella. Towards automated optoelec-
trowetting on dielectric devices for multi-axis droplet manipulation.
pages 1431–1437, Karlsruhe, Germany, May 2013.

[24] Yinan Zhang and Devin Balkcom. Interlocking structure assembly
with voxels. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on, pages 2173–2180. IEEE, 2016.

[25] Yinan Zhang, Emily Whiting, and Devin Balkcom. Assembling and
disassembling planar structures with divisible and atomic components.
In Algorithmic Foundations of Robotics X - Proceedings of the
Workshop on the Algorithmic Foundations of Robotics, WAFR, San
Francisco, USA, 2016.


