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Abstract. This paper presents a design for interlocking blocks and an algorithm
that allows these blocks to be assembled into desired shapes. During and after as-
sembly, the structure is kinematically interlocked if a small number of blocks are
immobilized relative to other blocks. There are two types of blocks: cubes and
double-height posts, each with a particular set of male and female joints. Lay-
outs for shapes involving thousands of blocks have been planned automatically,
and shapes with several hundred blocks have been built by hand. As a proof of
concept, a robot was used to assemble sixteen blocks. The paper also describes a
method for assembling blocks in parallel.

1 Introduction

The goal of the work described in this paper is to enable robotic assembly of large
structures from blocks that interlock without the need for glue, cement, screws, or other
connectors. Figure 1 shows two models for which layouts and assembly plans were gen-
erated automatically by the presented algorithm. The motion of blocks are constrained
by joints; later blocks reinforce and immobilize prior blocks. Each structure has a few
blocks that can move, called keys; the bunny has two keys, in the ears, and the chair
has one, at the top of the back of the chair. If the keys are immobilized, the structure is
rigidly interlocked.

Kinematic interlock presents some advantages over traditional connection methods
such as glue, cement, screws, nails, or friction locks. The interlocks may be structurally
strong, allow simple assembly by robots, allow disassembly and re-use of the compo-
nents, and may be suitable for underwater or other environments where adhesives are
ineffective. Relative to 3D printing, fabricating in parts may present some advantages.
Individual components may be fabricated efficiently, packed for storage and transport,
repaired or replaced as needed, and allow design changes.

The algorithm described in this paper takes a voxelized 3D model as input, and finds
an assembly plan such that the interlocked structure covers the specified voxels. There
are two types of block: 1×1×1 cubes, and 1×1×2 posts, with connectors arranged
in a particular way. The assembly requires only translation motions.

The concept of interlocking block assembly was previously presented by the authors
in [28]. However, the technical work in the current paper is effectively entirely new.
New block designs and layout algorithms enabled the reduction of the types of blocks
needed from nine to two, and have allowed structures that appear to be more robust and
easier to assemble. The paper also explores construction of physical structures much
larger than previously built (406 pieces compared to 64), as well as a more convincing
demonstration of robotic assembly. New theoretical contributions include an analysis
of how blocks may be assembled in parallel, speeding up assembly.



(a) Stanford Bunny assem-
bled in simulation.

(b) Chair model after auto-
matic layout.

(c) Chair assembled by
hand.

Fig. 1: Models assembled

2 Limitations

This paper focuses almost entirely on the geometry of a particular design of blocks,
and associated layout algorithms. As such, many critical issues that would need to be
solved for a practical system have been neglected. Chief among these is the need for
analysis of the rigidity and robustness of the final structures. The physical experiments
conducted use 3D printed blocks, and are no more than a proof of concept, using a very
small number of blocks.

Although the algorithm presented can build essentially arbitrary voxelized structures,
overhanging components of layers are not interlocked until a second identical layer is
placed above. This means that some external (though temporary) means of support is
needed during construction, just as in 3D printing. We believe that modifications to the
algorithm and block designs would allow overhanging layers to be build to be stably
interlocked during construction, but have not made these modifications.

We would also like to gain a better understanding of how to design and analyze block
types and layout algorithms. Effectively, the block types designed are the result of trial-
and-error and creative thought; we do not present significant mathematical or mental
tools to find other block designs.

3 Related work

Interlocking structures have a long history. Wood joints such as the dovetail and mortise
and tenon are used in carpentry around the world; in China and Japan, complex inter-
locking designs have permitted the construction of wooden buildings with no screws or
nails [29]; In the paleontology community, evidence has recently been presented that
supports a hypothesis that the backbones of theropod dinosaurs interlocked to provide
support for the extremely large body mass [23].

The present work is closest in spirit to Song et al. [16, 17, 15, 6, 19] which consider
the problem of designing reusable components to be assembled into different forms re-
lying on geometric constraints; the primary contribution of the current work is a univer-
sal block design and layout algorithm that allows construction of arbitrary geometries.



Yao et al. [24] proposed a method for interactively designing joints for structures and
analyzing the stability. Kong et al. applied curve matching techniques for finding solu-
tions for assembly of 2D and 3D interlocking puzzles; the layout algorithms considered
in the current paper generate assembly motions together with the design.

Robotic construction research dates back to the 1990s [1] when Andres et al. created
a prototype, ROCCO, capable of gripping and laying bricks. The same robotic system
was later applied to site assembly operations by Balaguer et al. [4]. More recent works
include DimRob, a system with an industrial robot arm mounted on a mobile platform
(Helm et al. [8]) used for construction tasks. This prototype was later developed into a
mobile robot, In situ Fabricator, for construction at 1:1 scale (Giftthaler et al. [7]).

Willmann et al. [22], for example, used autonomous flying vehicles to lift and posi-
tion small building elements. Augugliaro et al. [3] demonstrated a system of multiple
quadrocopters precisely laying out foam blocks forming a desired shape. Lindsey et
al. [10] built cubic structures using quadrocopters. Augugliaro et al. [2] explored an-
other approach of construction: quadcopters assembled a rope bridge capable of sup-
porting people. Keating et al [9] built a large mobile 3D printer using a robot arm to
extrude adhesive materials.

Instead of focusing on the robot control system to carry building elements, some re-
searchers designed new building elements. Rus and Vona [13] developed Crystalline,
a modular robot with a 3-DoF actuation mechanism allowing it to make and break
connections with other identical units; a set of such robots form a self-reconfigurable
robot system. White et al. [21] introduced two three-dimensional stochastic modular
robot systems that are self reconfigurable and self assemble-able by successive bonding
and release of free-floating units. Romanishin et al. [11] proposed a momentum-driven
modular robot. SamBot, a cube shaped modular robots with rotation mechanism was in-
troduced by Wei et al. [20]. Daudelin et al. [5] present a self reconfigurable system that
integrates perception, mission planning, and modular robot hardware. Tosun et al. [18]
created a design framework for rapid creation and verification of modular robots.

Inspired by LEGO, Schweikardt et al. [14] proposed a robotic construction kit, roBlocks,
with programmable cubic blocks for educational purpose. Kilobot, a swarm of 1000
crawling mobile robots, was introduced by Rubenstein et al. [12], along with algorithms
for planning mechanisms allowing kilobots to form 2D shapes.

4 Interlocking blocks and constraint graph

A block is a rigid body that has male and female joints allowing assembly with other
blocks, typically by sliding one block against the other using a simple translation. Fig-
ure 2 shows three different joint pairs that may connect blocks in the system we describe
in the paper. A mortise and tenon joint pair (Figure 2a) allows blocks to be disassembled
only in the non-penetrating normal direction of the contact surface. A dovetail joint pair
(Figure 2b) allows block motion only in a particular tangential direction. The third joint
pair we use in the current design is a two-way joint (Figure 2c), which allows motions
of associated blocks in both normal and tangential directions. The dovetail and mortise
and tenon joints fully constrain rotational motion, but the two-way joint permits one
rotational degree of freedom. We manufactured the joints so the front part in the in-



(a) Mortise and tenon joints (b) Dovetail joints (c) Two-way joints

(d) Tenon joint design. (e) Dovetail joint design.

Fig. 2: Three different joint pairs and detailed design.
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(c) Dovetail joint assembled from top down.

Fig. 3: Assembling an interlocking 4-block square. Arrow indicates the assembly direc-
tion. Block 4 is the key.

sertion direction is thiner thus reduce surface contacts, providing better error tolerance.
See Figure 2d and 2e.

Blocks are assembled into a structure in order, and the last block assembled can be
removed by reversing the most recent translation assembly motion. Therefore, the last
block assembled must be attached to the structure using glue, friction, a screw, or some
other external method; we call such a block a key.

Figure 3 shows a 2D projection of an interlocking structure assembled using blocks
with dovetail and mortise and tenon joints. First, block 2 is assembled to block 1, using
a tenon joint on the top of the blocks, and moving block 2 in the positive y direction,
assuming a coordinate frame aligned with the page. Block 3 then slides in and connect
with block 2 with another tenon joint. The final block is assembled from top down,
connecting block 1 and 3 using two dovetail joints and limiting block 2 and 3 to move
in y negative or x positive directions.

4.1 The constraint graph

To better understand how joints constrain motions, we represent a structure using a
directed graph. Each vertex in the graph represents a block. A pair of directed edges is
added between vertices corresponding to blocks that are in contact; w(ei, j) denotes the
set of permitted motions of j relative to i.

Consider a partition of the graph into some non-overlapping subsets of vertices. A
partition is separable if there exists a motion that satisfies constraints by all in-edges
along the boundary of the subset of vertices. In this particular work, the block and joint
design limit motions of every block to translations directly along axes, simplifying the
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(a) A 2× 2 interlocking structure. Numbers
indicate the order. Block 4 is the key.
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(b) Graph representation. Each edge allows
some motions for associated blocks.

Fig. 4: A four-block interlocking structure and its graph representation.
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(b) Forming a larger interlocked struc-
ture from two interlocked structures.

Fig. 5: Any interlocking substructure can be viewed as two nodes in the graph, which
simplifies the graph representation.

analysis. (The two-way joint is used only as an auxiliary connection for blocks whose
motions are already constrained to pure axis-aligned translations by other joints.)

Figure 4b shows an example of a constraint graph for the previous example of a four-
block interlocking structure. Consider partitioning the structure into two parts {1,2}
and {3,4}. These parts are inseparable, since w(e2,3)∩w(e1,4) = {x+}∩{z+}= /0. By
checking more partitions of the structure, we find only {1,2,3} and {4} are separable.
If block 4 is attached to either of its neighbors, the structure is rigid.

We call a structure k-interlocked, if when k keys are attached to neighbors, no parti-
tion is separable. The example structure is 1-interlocked with block 4 as the key.

Analyzing a large structure gets difficult when there are a large number of blocks,
because the number of possible partitions on the graph increases exponentially. Fortu-
nately, proof that a complete structure is interlocked can be accomplished in a hierar-
chical fashion, by first showing that smaller components are interlocked, and then using
those components to build larger interlocking structures.

Figure 5 shows an example of how a larger interlocking structure can be built from
smaller interlocking substructures. Interlocking substructures A and B are similar to
those shown in Figure 4a); the careful eye may note some additional geometry on each
block representing dovetail joints attached from the side; these joints provide some
redundant constraints that add rigidity to the final structure.

The keys of the substructures are KA and KB, and are not considered to be part of A
and B. To show that the entire structure is 1-interlocked by KB, it is sufficient to consider
only partitions that separate KA from A or KB from B, since A and B act as rigid bodies
if their keys are not separated. Figure 5b shows the graph representation.



4.2 Overview of the layout algorithm

The example above suggests an approach to constructing large interlocked structures.
We can build 4-block interlocked squares, and use a second interlocked square to build
an 8-block rectangle (Figure 5a). Inductively, we can extend the rectangle as far as we
like by adding additional squares to the end; we call such a structure a segment.

Intuitively, some additional connections might be added to connect segments to form
a flat structure that we will call a layer. 3D volumes may then be constructed from
stacks of layers. Figure 6 shows a conceptual picture, with the single key block of each
new larger structure shown in red.

The remainder of the paper addresses the details needed to allow implementation of
this process. How should segments interconnect to form a layer? How should layers
interconnect? How should joints be arranged on blocks to allow creating segments and
layers from only a few types of block? How should layers be automatically shaped to
allow construction of geometries more interesting than large cubical volumes?

Algorithm 1 presents an overview of layout algorithm; the details will be discussed
in later sections of the paper, as indicated by the section numbering indicated in the
algorithm; the reader may wish to only skim the algorithm on first reading. For now, it
is worth noting that the input to the algorithm is a voxelized model describing the desired
output shape. Each voxel is further subdivided into eight subvoxels; each subvoxel will
be effectively be instantiated by a block.

The blocks are labelled by layer and segment. Layer and segment labels allow as-
signment of joint types that must connect adjacent blocks. Once the joint types have
been assigned, blocks providing these joint types can be selected. The output is a se-
quence of block assembly orders that constructs an interlocking structure shaped as the
input model. Since our model is built layer-by-layer, the final structure will have k keys,
where k is the number of layers that do not have another layer on their top.

One critical observation is that joint types for a pair of blocks are selected by the
layout algorithm based on the location of those blocks in the segment and layer. Since
there are three joint types, each male or female, and six faces on a cube, this suggests
that there might be 66 = 46656 different types of block to construct. Fortunately, pat-
terns in the segments and layers mean that not all of these block types occur. Further
tricks allow reduction of the number of block types to two. As an example, consider
the blocks in Figure 5a. Adding a mortise joint on the right side of block KB makes it a
copy of KA, reducing the number of types of blocks.

It is also worth pointing out the approach we have taken to connecting adjacent layers.
To provide a firm connection, we use a block of height two as a connector between
layers; we call this block a post.

5 Blocks and squares

The layout algorithms makes use of two types of blocks: a cube is a unit-cube sized
block for filling empty space in a layer and locking with existing blocks, and a post is
a two-unit high block. See Figure 7. The lower half of a post block connects with cube
blocks in the same layer, while the upper half of the block connects with cube blocks in
the upper layer. The post blocks also act as key blocks of substructures.



Algorithm 1 Algorithm overview

1: function CONSTRUCTVOXELMODEL(M)
2: M′← split every voxel into eight dimension-1 cubes.
3: for each layer Li of M′ from bottom to top do
4: Lay out any missing posts.
5: if Li is an even layer then
6: Set all segment types to Xl−Y+. (Section 6)
7: else
8: Determine the key to each layer component. (Section 7.1)
9: Order segments in each layer component. (Section 7.2)

10: Determine the key(s) to each segment. (Section 7.2)
11: Determine the type of each segment. (Section 7.2)
12: Find special cases. (Section 7.3)
13: Modify Li and Li+1 if necessary. (Section 7.3)
14: Assemble blocks, potentially in parallel. (Section 8.1)

Fig. 6: Building an interlocking 3D structure. Blocks interlock to form a square; squares
form an interlocking segment; segments form a layer; layers interlock to form the struc-
ture. The keys are marked red.

Fig. 7: Different views of cube and post blocks.

We carefully analyzed segments and layers to determine how joints might be arranged
on cubes and posts. A cube block has two dovetail male joints on two opposite sides that
can connect, in a tangential direction, with female joints in post blocks allowing motion
only in the assembly direction. Figure 9a and 9b show how a cube’s side male joints
connect with a post’s female joints in two different directions. A cube also has a male
joint on the bottom that connects, in the normal direction, either with the top of a cube
or post. The female joints on the opposite sides of the cube block allow post blocks’
male joint to drop and slide to connect, which allows the post block to disassemble only
in two directions.

To describe a layout and an assembly process, some notation is helpful. For each
block, we use a triplet of characters indicating block type, orientation of the block, and
assembly direction. Figure 8 shows all of the triplets used in assembly of structures
in this paper. For example, C1D means “Cube in orientation 1, assembled by moving



C1D C2D C3D C4D

C5N C6E C7S C8W

(a) Cube orientations and assembly directions.

P1W P1N P2N P2E

P3S P3E P4W P4S

(b) Post orientations and assembly directions.

Fig. 8: Different ways to assembly cube and post blocks and corresponding notations.

(a) Slide in a
C8W block.

(b) Drop in a
C3D block.

(c) Assemble a
P1W block.

(d) Top view
of the square.
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(f) Sb square.

Fig. 9: Assembly process of a square, and two designs for a square.

down”. Figure 8b shows all of the notation triplets used in the current approach. Not
all axis-aligned orientations of cubes and posts are needed to construct structures; for
example, posts only occur in the four orientations generated by rotating the post in
Figure 7 around the z axis in ninety-degree increments.

Block designs are crafted to allow design of squares, segments, and layers. A square
is the smallest interlocking structure we consider, composed of four blocks: two posts
and two cubes. By using posts and cubes in different orientations, different squares
may be constructed, as shown in Figure 9e and 9f as Sa and Sb. Different squares will
be used in Section 7 to constrain key block motions of other adjacent segments in the
same layer, allowing interlock of the layer.

Figure 9 shows the process of assembling one kind of square. The first piece, a post,
may connect to a layer below the current one. Two cubes are added to the top of the
post. The second post acts as a key, and the top half of this post extends above the
square to provide a connection to a square that may be later built above the current one.

6 Segments

We now introduce a method to link squares into a longer interlocking structure, a seg-
ment. A segment is composed of n squares in a 1× n pattern. To build a segment, we
assume n posts have already be pre-placed in the prior layer, such that the top of each
post appears in the same position in each square; these posts allow the segment to in-
terlock with the prior layer.

We will discuss how to assemble a simple segment built from left to right in the
direction of the x axis, assuming posts are in the upper (or y+) half of each line; other
segments are symmetric and will not be discussed in detail. We denote a segment as
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(b) A layer built by two Yl+X+ segments.

Fig. 10: A simple segment and an example layer built by connecting two segments.

Yl+X+ if the posts are in the left position of the y positive half and the segment is built
towards the x positive direction with the key block at the end.

Figure 10a visualizes the process of assembling a Yl+X+ segment of 3 squares. We
connect, from left to right, n− 1 Sa squares. The final square of a sub-segment can be
of type Sa or Sb. The key piece of the segment is the last assembled post block. A sub-
segment with a Sb final square is not interlocking, but when connected with previous
segment(s), the Sb square prevents the adjacent block in the y positive direction from
moving and interlocks the structure. Building another Yl+X+ segment on the y negative
side will create an interlocking layer (Figure 10b). In Section 7, we will discuss how to
constrain the motion of the key in different types of segments.

6.1 Structure mirrors

Knowing how to assemble Yl+X+ segments, one can lay out an array of segments one-
by-one and create interlocking planar structures as in Figure 10b. However, these struc-
tures require the key to every segment to be in the x positive end and constrained by
the next adjacent segment. In order to build more complicated planar structures, we
introduce the concept of mirrors.

Definition 1 (x-mirror). Object A is an x-mirror, mx(B), of another object B if one is a
reflection of the other with reflection plane perpendicular to the x-axis.

We define an analogous y-mirror operation. Cube and post designs are symmetric in
such a way that x and y mirror operations can be accomplished by simple rotation of
the block. Construction of a mirrored structure follows the same order of the original
structure with opposite directions along the same axis; for example, we may build a
Yr+X− segment by x-mirroring a Yl+X+ segment.

Two other types of segments we will need for layer construction are Yr+X+ (Fig-
ure 11a) and its x-mirror Yl+X− (Figure 11b). To build a Yr+X+ segment with n squares,
where n ≥ 2, we first assemble two blocks (C3D and P1W ) in the left two positions.
Then assemble a Yl+X+ segment of n−1 squares. When all pre-existing posts are pre-
vented from moving along z axis, the segment is interlocked.

For many input geometries, it may turn out that neither end of a segment is adjacent
to the next segment, causing the key to be exposed. In this case, we may replace a single
segment by two segments grown from the ends, effectively allowing placement of a pair
of keys at an arbitrary position in the middle, as shown in Figure 11c. These keys may
then be immobilized by later segments.
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Fig. 11: Construction of two x-mirrored segments. Arrows indicate construction direc-
tion. Numbers indicate assembly order.

7 Layers

Now that we know how to build different kinds of segments, we can connect a set
of segments on the same plane to create complicated interlocking 3D structures, by
careful assignment of subvoxels from the original model into layers, segments, squares,
and blocks.

A layer is a set of squares with the same z-coordinate. A set of connected squares with
the same z-coordinate is a layer component. We assume all layer posts are provided by
the prior layer. This is a fundamental limitation of our approach – it does not allow
overhanging structures to be generated without building additional supports.

The section first introduces the ordering of segments in a component. Once ordered,
segments are ready to be assigned square types and assembled. Then we discuss some
special cases caused by the nature of our block design and square structure, and tech-
niques to ensure interlock.

7.1 Layer key(s)

As the first step of building any interlocking structure, we determine the key(s) of the
layer. A layer is immobilized if the key(s) is fixed with respect to its neighbors. Since
every even layer has an upper layer with the exact same shape, based on the division
of voxels into subvoxels, post blocks that connect the upper layer will be immobilized
as long as the upper layer is interlocked, preventing the horizontal motion of any posts.
Therefore, we only consider the odd layers in this section.

For any odd layer component without adjacent upper layer blocks, we select a post
block at the x negative end of a boundary segment as the key, where a boundary segment
is a segment with adjacent neighbors on only one side. If the odd layer component has
an adjacent upper layer, the key can be any post block covered by an upper layer square.

Under this rule, every layer component constrains the key to its lower component.
Any layer components that do not have an immediate upper layer introduce a new key
that will not be covered. The number of key pieces of the whole structure is thus the
number of layer components without an immediate upper layer. This introduces an in-
teresting effect of the orientation of the object to be constructed. For example, the chair
in Figure 1b has a single key, but if the chair were built upside-down, then there would
be four keys: one in each leg.



7.2 Segment construction order

Once a layer’s key square and all starting posts of squares are known, the second step
of assembling a layer is to determine the order and type of each segment.

In the preprocessing step, every voxel is broken into two squares, making every layer
of voxels two layers in the assembly. The bottom layer has an even z-coordinate value,
while the up layer has an odd z-coordinate. Every segment in an even layer is con-
structed along y-axis directions. We simply assemble every segment as Xl−Y+, or 90◦

clockwise rotation of a Yr+X− segment, from left to right. An even layer component
is not necessarily interlocked, because there can be many segment keys unconstrained
and able to move in the x positive direction. However, all square keys are posts in the
upper layer, and as long as the upper layer is interlocked, or all posts are prevented from
moving in x positive direction, the two-layer structure is interlocked.

Each square in an odd layer component is initially assumed to have a post in the
bottom-right position. This, however, could change after the segment types have been
assigned. We first build a set of post lists where each list contains posts with the same
y-coordinate, and two adjacent posts are 2 units away. Each list will be built into a
segment. Two posts are considered adjacent if their x or y-coordinates have a difference
of 2. Two lists are considered adjacent they have adjacent posts. Lists are ordered by
their shortest distances to the final list that contains the post of the key square, where
the distance between two adjacent lists is 1.

Given a list l and the next-built adjacent list ln, the type of the segment Sl associated
with l is determined as described below:

– If ln is at y− side of l & the left end post of l is adjacent to ln, Sl is Yr+X−.
– If ln is at y− side of l & the right end post of l is adjacent to ln, Sl is Yr+X+.
– If ln is at y− side of l & neither ends of l is adjacent to ln, Sl is broken into a Yr+X−

and a Yr+X+ segment.
– If ln is at y positive side of l & the left end post of l is adjacent to ln, Sl is Yr−X−.
– If ln is at y positive side of l & the right end post of l is adjacent to ln, Sl is Yr−X+.
– If ln is at y positive side of l & neither ends of l is adjacent to ln, Sl is broken into a

Yr−X− and a Yr−X+ segment.

The segment associated with the last built list has been specified a key (line 8 of
Algorithm 1). Its type is thus determined.

7.3 Special Cases

At this point, the type of each segment and the order of construction in each layer has
been selected. Many interlocking layer structures can be assembled by directly follow-
ing the construction of each segment as specified in Section 6. However, depends on the
successor segments, some small modifications might be applied to insure the interlock-
ing of adjacent segments.

Consider a segment with key(s) in the y negative side, for example Yl+X+. Its suc-
cessor can be (1) a segment whose key will be constrained by further segments in y
negative side, (2) a segment with key being constrained in y positive side, or (3) a seg-
ment whose key will be constrained by the upper layer. We now list all possible cases
that need modifications.
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Fig. 12: Two special cases of building adjacent segments. Green blocks are posts, and
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Fig. 13: Special cases where two segments with posts in different sides are finished
before the segment in the middle. Red blocks are keys of two segments (Yr+X and Yr−X
types). Numbers indicates the assembly order.

Case (1): A Yl+X+ segment followed by another Yl+X+ segment. We use a Sb squares
at the later built segment to prevent the segment’s key from moving. See Figure 10b.
Otherwise, a Yl+X+ segment always uses a Sa end square.

Case (2) contains four subcases where the current segment has one or both ends
adjacent to its successor whose key is in the x positive or negative side. Figure 12a
shows one subcase. The first Yl+X+ segment is still assembled as usual. We leave some
positions adjacent to the first segment unfilled, and assembled the rest part. Figure12b
is a similar subcase where both ends of the segment are adjacent to the successor. We
divide the lower segment into two segments, one containing no posts adjacent to the
upper segment will be built first, the other containing the rest posts will be built after the
upper segment. In the other subcases, the successor has a key in the x negative direction,
we change the upper segment to Yl+X− and create an x-mirror of the previous case.

Case (3) is shown in Figure 13 where a Yr+X segment and a Yr−X segment are assem-
bled before the segment in the middle. We require the upper and lower segments’ keys
to be in different x positions. To ensure interlocking, we firstly finish the upper seg-
ment, then assemble two C5N blocks in the middle segment. After the lower segment
is assembled, we put in C3D block(s) in the middle to constrain the motion of the lower
segment key(s). The last assembled blocks (keys) in the middle will be constrained by
its upper layer. If the upper layer is not wide enough to cover the keys, we must expand
the upper layer (Line 13 in Algorithm 1).

8 Automatic assembly and parallel construction

Algorithm 1 gives an overview of the construction process. Our construction starts from
the bottom layer to the top. For each layer, we first check if all required posts exist.



If not, we lay out these posts before starting the assembly (Line 4). Even layers are
constructed using Xl−Y+ segments (Line 5, 6). Odd layers need to find the keys first
(Line 8). Based on the key to each layer component, we order segments (Line 9) then
determine segment keys and segment types (Line 10, 11). Before assembling, we check
if any special cases exist as mentioned in Section 7.3 (Line 12). Since Yr+X and Yr−X
segments require at least two adjacent square, we need to modify the current layer if
the condition is not satisfied. The special case as in Figure 13 can also require the upper
layer to expand and cover lower layer keys (Line 13). We then finally assemble blocks
based on block types and special cases.

8.1 Parallel construction

Laying out blocks one-by-one is time-consuming when a structure has a large number of
blocks. This section provides an algorithm that generates a parallel construction order
to accelerate the process. We first consider preliminaries blocks of assembling each
new block, and build a graph between blocks. By querying the graph for blocks whose
preliminaries are satisfied, we can have multiple agents to lay out the blocks.

Consider a block b to be assembled in a layer. Any adjacent block(s) to be assembled
later should not be prevented by the male joint(s) of b, meaning the joints of a block
connect to only the pre-existing blocks. Along the assembly direction of b, the male
joints of b should not be able to touch any blocks. The blocks that must be assembled
before a new block to prevent collision are called predecessors of the new block. Every
block has a predecessor below it if an adjacent block exists in the lower layer. Consider
a block at position (x,y) in any layer. Table 1 is a list of predecessors of different types
of blocks in the same layer.

Block type Predecessors Block type Predecessors
C1D, C3D (x−1,y), (x+1,y) C8W (x,y+1), (x,y−1), (x−1,y)
C2D, C4D (x,y−1), (x,y+1) P1W, P1N (x−1,y), (x,y+1)

C5N (x−1,y), (x+1,y), (x,y+1) P2N, P2E (x,y+1), (x+1,y)
C6E (x,y+1), (x,y−1), (x+1,y) P3S, P3E (x+1,y), (x,y−1)
C7S (x−1,y), (x+1,y), (x,y−1) P4W, P4S (x−1,y−1), (x,y)

Table 1: Predecessors of each type of block.

Besides predecessors listed above, inside each square, cube blocks with mortise joints
connecting blocks in the same layer (C5N, C6E, C7S or C8W blocks) must be assem-
bled before others (C1D, C2D, C3D or C4D blocks).

With the predecessors of each block, we then construct a directed graph G = {V,E},
where V is the set of blocks, and directed edge ei, j ∈ E indicates block i being a prede-
cessor of block j. The construction follows the order of removing nodes with in-degree
of 0. Each construction agent/thread will take a block whose predecessors have been
placed, and remove the node from the graph when the block assembly is finished.

A simple observation with the parallel construction is, after the construction of one
square s, all the adjacent squares to be assembled after s in the sequential order are
ready to assemble. We therefore have the following theorem:

Theorem 1. Parallel construction of a solid cube of N squares takes O( 3
√

N) time.



(a) Robotic assembly of a layer with 4
squares using a 4-DoF robot arm.

(b) Overhead view of the assembled struc-
ture. Numbers indicate assembly order.

Fig. 14: Assembling 16 blocks using a 4-DoF robot arm. No sensors are used. Blocks
are initially placed in correct orientation for the arm to pick up.

Proof. First consider constructing a solid layer of n×n squares. For simplicity, we scale
the width of each square to one. After assembling the square at the corner (0,0), two
adjacent squares in x and y positive directions will be assembled at the next time step,
then three, four, and so on. It takes k steps to construct k(k+1)/2 squares. When k = n,
over n2/2 squares are constructed. So constructing a layer takes at most 2n steps. In
a cube, since finishing every square allows all adjacent squares in x, y and z positive
directions to assemble. When the last square of the bottom layer is done, it takes one
more step to finish the upper layer. So 2n− 1 more steps will finish all upper layers.
Therefore a solid cube of 2n×n×n squares takes O(n) = O( 3

√
N) time to assemble.

9 Results and robotic assembly

We algorithmically designed plans to assemble several models including a Stanford
bunny and a chair model, and animated the results in software. Figure 1 shows these
examples. The Stanford bunny model has 7337 blocks while the chair model has 472
blocks. The assemblies of both models are done in sequential order. The rendered ani-
mation of chair assembly can be found in [26]

We also 3D printed 406 blocks and assembled into a similar chair based on the ren-
dered animation. The assembled chair is a simplified version of the chair in the simula-
tion; two layers were omitted to save material and assembly time. Four legs of the chair
are relatively loose compare to other parts, because each pair of layers in the legs are
connected by only one post and a mortise and tenon joint.

For robotic assembly, we used a 4-DoF Adept robot arm to assemble both a one-layer
structure with 4 squares ( Figure 14a) and a two-layer structure with 6 squares. A closer
look at the one-layer structure is shown in Figure 14b. This interlocking layer has two
Yl−X+ segments. Assembly orders are marked with numbers. The recorded assembly
can be found in [25] and [27]. The assembly shown in Figure 14a was recorded without
human interruption. The joint designs show good tolerance during construction.
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